Текст книги "Ткань космоса. Пространство, время и текстура реальности"
Автор книги: Брайан Грин
Жанр:
Физика
сообщить о нарушении
Текущая страница: 49 (всего у книги 52 страниц)
Чёрные дыры являются самыми загадочными объектами Вселенной. Снаружи они кажутся очень простыми и различаются всего лишь тремя параметрами: массой (определяющей размер чёрной дыры, т. е. расстояние от её центра до горизонта событий – поверхности вокруг чёрной дыры, после пересечения которой нет пути назад), электрическим зарядом и скоростью вращения. И это всё. Больше нет никаких деталей, определяющих облик чёрной дыры. Физики подытожили это фразой: «У чёрных дыр нет волос», подразумевая, что чёрные дыры лишены индивидуальных особенностей. Увидев одну чёрную дыру с заданной массой, зарядом и моментом вращения (хотя вы узнали о её параметрах не непосредственно, а через её воздействие на окружающий газ и звёзды, поскольку чёрные дыры действительно чёрные), вы тем самым увидели все чёрные дыры с такой же массой, зарядом и спином.
Тем не менее за внешней каменной «невозмутимостью» чёрной дыры скрывается величайший беспорядок, который только можно вообразить во Вселенной. Среди всехфизических систем заданного размера чёрные дыры обладают самой большой энтропией. Вспомним из главы 6, что энтропия – это, грубо говоря, число всевозможных перестановок элементов данной физической системы, при которых её общий вид не меняется. Применяя это определение к чёрным дырам и даже не зная, из чего они состоят (поскольку мы не знаем, что происходит с материей, втянутой в чёрную дыру), мы можем с уверенностью сказать, что перестановка элементов чёрной дыры оказывает не большее влияние на её массу, заряд или спин, чем перестановка страниц книги «Война и мир» влияет на вес этой книги. А поскольку масса, заряд и момент вращения полностью определяют облик чёрной дыры для внешнего мира, то всетакие манипуляции проходят незамеченными, что даёт нам основание говорить, что чёрная дыра имеет максимально возможную энтропию.
Несмотря на это, вы могли бы предложить следующий простой способ превысить энтропию чёрной дыры. Вообразите пустую сферу того же размера, что и размер чёрной дыры, и начните наполнять её газом (водородом, гелием, углекислым газом, чем угодно), который может свободно распространяться внутри этой сферы. Чем больше газа вы закачиваете, тем выше энтропия, поскольку большее число составляющих элементов означает большее количество всевозможных перестановок. Тогда вы могли бы предположить, что по мере закачки газа энтропия будет всё время расти и расти, так что в определённый момент превысит энтропию чёрной дыры того же размера. Эта стратегия хитра, но общая теория относительности показывает, что она неверна. Дело в том, что по мере закачки газа растёт и масса сферы. И ещё до того как энтропия сферы достигнет энтропии чёрной дыры того же размера, масса сферы достигнет критического значения, при котором сфера со всем своим содержимым становится чёрной дырой. И нет способа обойти это. Чёрные дыры обладают монополией на максимально возможный беспорядок.
А что если попытаться дальше увеличивать энтропию самой чёрной дыры, продолжая закачивать в неё газ? Энтропия действительно будет продолжать расти, но у вас уже изменились правила игры. По мере исчезновения материи за горизонтом событий чёрной дыры будет расти не только её энтропия, но и её размер. Размер чёрной дыры пропорционален её массе, так что чем больше материи вы закачиваете в чёрную дыру, тем тяжелее и объемнее она становится. Таким образом, любая попытка увеличить энтропию в заданной области пространства после того, как эту область заняла чёрная дыра, проваливается. Эта область не может поддерживать больше беспорядка. Энтропия достигла в ней своего насыщения. И что бы вы ни делали – закачивали бы газ в чёрную дыру или бросали бы в неё тяжёлые армейские грузовики – от этого чёрная дыра будет только расти и занимать всё большую область пространства. Таким образом, количество энтропии, заключённой в чёрной дыре, не только является фундаментальным свойством чёрной дыры, но и говорит нам о чём-то фундаментальном, касающемся самого пространства: максимальное количество энтропии, которую можно вместить в заданную область пространства – любую область, где угодно, в любое время, – равняется количеству энтропии, содержащейся в чёрной дыре того же размера.
А сколько энтропии содержит чёрная дыра заданного размера? Вот где начинается самое интересное. Начнём свои рассуждения с чего-то наглядного, наподобие воздуха в тапперуэровском контейнере [102]102
Тапперуэровский контейнер – пластиковый контейнер для хранения пищевых продуктов и других кухонных аксессуаров производства компании «Тапперуэр корпорейшн». Эти контейнеры примечательны тем, что распространяются не в магазинах, а на так называемых «тапперуэровских вечеринках», а теперь и через Интернет. (Прим. перев.)
[Закрыть]. Если вы соедините два таких контейнера, удвоив их общий объём и количество содержащихся в них молекул воздуха, то можно подумать, что тем самым вы удвоите и энтропию. Точные расчёты подтверждают это предположение {209} и тем самым показывают, что при прочих равных условиях (неизменная температура, плотность и т. д.) энтропия известных нам физических систем пропорциональна их объёму. Следующим шагом можно предположить, что энтропия и менее знакомых нам систем, таких как чёрные дыры, тоже пропорциональна их объёму.
Но в 1970-х гг. Якоб Бекенштейн и Стивен Хокинг обнаружили, что это не так. Их математический анализ показал, что энтропия чёрной дыры пропорциональна не её объёму, а площадиеё горизонта событий – грубо говоря, площади её поверхности. Это ответ очень отличается от того, что мы ожидали. Если удвоить радиус чёрной дыры, то её объём увеличится в 8 раз (2 3), тогда как площадь её поверхности возрастёт только в 4 раза (2 2); если в 100 раз увеличить радиус чёрной дыры, то её объём увеличится в миллион раз (100 3), тогда как площадь её поверхности возрастёт только в десять тысяч раз (100 2). У чёрных дыр гораздо больше объёма, чем поверхности. {210} Таким образом, хотя чёрные дыры содержат предельно возможное количество энтропии, но Бекенштейн и Хокинг показали, что это количество меньше, чем мы могли бы по наивности полагать. Пропорциональность энтропии площади поверхности является не просто любопытным различием между чёрными дырами и тапперуэровскими контейнерами, о которых мы ранее упомянули и быстро пошли дальше. Мы видели, что чёрные дыры устанавливают предел количеству энтропии, которое в принципе может быть вмещено в заданную область пространства: возьмите чёрную дыру точно такого же размера и найдите её энтропию – это и будет абсолютным пределом энтропии, которую может содержать заданная область пространства. И поскольку, согласно работам Бекенштейна и Хокинга, эта предельная энтропия пропорциональна площади поверхности чёрной дыры, которая занимала бы заданную область, значит, максимальное количество энтропии, которое может содержаться в заданной области пространства, пропорционально площади её поверхности. {211}
Легко выявить причину расхождения этого вывода с тем, что мы нашли, рассуждая о воздухе в тапперуэровском контейнере (когда мы установили, что энтропия пропорциональна объёмуконтейнера, а не площади его поверхности): поскольку мы предположили, что воздух однородно распределяется внутри контейнера, то тем самым мы игнорировали гравитацию; ведь когда гравитация существенна, происходит сгущение. Игнорировать гравитацию можно в случае низкой плотности частиц, но при большой энтропии плотность высока, так что гравитация существенна, и перестаёт быть справедливым рассуждение, применённое к тапперуэровскому контейнеру. Экстремальные условия требуют учёта гравитации, что и приводит к тому, что максимально возможное количество энтропии, содержащейся в заданной области пространства, пропорционально площади её поверхности, а не её объёму.
Хорошо, но почему это должно нас интересовать? На это есть две причины.
Во-первых, существование предела энтропии даёт ещё одно указание на то, что ультрамикроскопическое пространство имеет атомизированную структуру. Согласно Бекенштейну и Хокингу, если вообразить, что на плоскости горизонта событий чёрной дыры расчерчена шахматная доска с клетками размера планковской длины (так что каждая «планковская клетка» имеет площадь 10 −66см 2), то энтропия чёрной дыры равна количеству таких клеток, уместившихся на горизонте событий. {212} Отсюда неизбежен вывод: планковская клетка является минимальным, фундаментальным элементом пространства, и каждая такая клетка несёт минимальный, единичный элемент энтропии. Это значит, что ничего, даже в принципе, не может происходить внутрипланковской клетки, поскольку любое перемещение является потенциальным источником беспорядка, для создания которого требуется более чем один элемент энтропии в пределах планковской клетки. Таким образом, с совсем другой точки зрения мы снова пришли к представлению о существовании сущностного пространственного элемента. {213}
Во-вторых, верхний предел энтропии в заданной области пространства является для физика критической, почти священной величиной. Чтобы понять причину этого, вообразите, что вы помогаете психиатру, и ваша работа состоит в том, чтобы детально записывать всё, что происходит в группе гиперактивных детей. Каждое утро вы молитесь, чтобы дети как можно спокойнее себя вели, поскольку чем больший бедлам они устраивают, тем труднее ваша работа. Причина очень проста, но стоит явно сказать: чем более беспорядочно ведут себя дети, тем за большим количеством вещей вам требуется следить. Вселенная бросает физику во многом тот же вызов. Фундаментальная физическая теория должна описывать всё, что происходит – или могло было произойти, даже в принципе, – в заданной области пространства. И, как и в случае с детьми, чем больший беспорядок может содержать область пространства – даже в принципе – тем больше должна уметь отслеживать теория. Таким образом, максимальная энтропия в области пространства может служить своеобразной «лакмусовой бумажкой»: физики полагают, что по-настоящему фундаментальная теория – это та, которая полностью согласуется с максимальной энтропией в любой заданной области пространства. Теория должна соответствовать природе с такой точностью, чтобы быть в состоянии точноотследить максимально возможный беспорядок в любой области пространства, не больше и не меньше.
Если бы рассуждения, касавшиеся тапперуэровского контейнера, были бы универсально справедливы, то фундаментальная теория должна была бы учитывать «объёмное» количество беспорядка в любой области. Но поскольку эти рассуждения оказываются неверными при учёте гравитации – а фундаментальная теория должна включать гравитацию, то фундаментальной теории требуется принимать во внимание лишь «поверхностный» беспорядок в любой области. И на паре примеров мы уже показали, что для больших областей «поверхностный» беспорядок гораздо меньше «объёмного».
Таким образом, результат Бекенштейна и Хокинга говорит нам о том, что теория, включающая гравитацию, в некотором смысле проще теории, не включающей её. В ней меньше «степеней свободы» (меньше составляющих, которые могут меняться и тем самым вносить свой вклад в беспорядок), которые теория должна описывать. Этот вывод интересен сам по себе, но если сделать ещё один шаг вперёд, то он приведёт нас к кое-чему чрезвычайно необычному. Если максимум энтропии в любой заданной области пространства пропорционален площади поверхности этой области, а не её объёму, тогда, возможно, подлинные, фундаментальные степени свободы – атрибуты, способные вызывать беспорядок, – на самом деле пребывают на поверхности области, а не внутри неё. То есть возможно, что реальные физические процессы Вселенной происходят на тонкой удалённой поверхности, окружающей нас, а всё, что мы видим и переживаем, является попросту проекцией тех процессов. Иными словами, возможно, что Вселенная подобна голограмме.
Это очень странная идея, но, как мы сейчас увидим, она недавно получила значительную поддержку.
Является ли Вселенная голограммой?Голограмма – это двумерный кусок пластика со специальной гравировкой, который при освещении подходящим лазерным светом проецирует трёхмерное изображение. {214} В начале 1990-х гг. лауреат Нобелевской премии голландский физик Герард ’т Хофт и Леонард Сасскинд, один из основателей теории струн, предположили, что сама Вселенная может функционировать подобно голограмме. Они выдвинули потрясающую идею, что всё, что происходит в трёх измерениях повседневной жизни, может быть голографической проекцией физических процессов, происходящих на удалённой двумерной поверхности. С их новой, совершенно непривычной для нас точки зрения, мы и всё, что мы делаем или видим, сродни голографическим образам. Тогда как Платон считал обычные ощущения отображающими лишь тень реальности, голографический принцип говорит похожее, но переворачивает эту метафору с ног на голову. Тени – то, что плоское и, следовательно, пребывает на двумерной поверхности, – реальны, тогда как то, что кажется нам более богато структурированными объектами более высокой размерности (мы сами и мир вокруг нас) является эфемерной проекцией этих теней. [103]103
Если вам не хочется переписывать Платона, то модель мира на бране дает голографическую версию мира, в которой тени вновь занимают надлежащее место. Представим, что мы живём на 3-бране, окружающей четырёхмерную область (подобно тому как двумерная кожица яблока окружает его трёхмерную внутренность). В такой модели мира голографический принцип скажет, что наши трёхмерные ощущения являются тенями четырёхмерной физики, происходящей в области, окружённой нашей браной.
[Закрыть]
Несмотря на то что это чрезвычайно странная идея, и её роль в окончательном понимании пространства-времени далеко не ясна, так называемый голографический принцип’т Хофта и Сасскинда имеет под собой веские основания. Ведь, как мы узнали в последнем разделе, максимальное количество энтропии, которое может вмещать определённая область пространства, пропорционально площади её поверхности, а не её объёму. Поэтому естественно предположить, что наиболее фундаментальные ингредиенты Вселенной, её самые базисные степени свободы – элементы, которые могут быть носителями энтропии Вселенной почти как страницы романа «Война и мир» несут свою энтропию, – пребывают на граничной поверхности, а не внутри Вселенной. То, что мы переживаем в «объёме» Вселенной, определяется тем, что происходит на граничной поверхности, аналогично тому, как трёхмерное голографическое изображение определяется информацией, закодированной в плоской голографической маске. Законы физики уподобляются вселенскому лазеру, освещающему реальные космические процессы, происходящие на тонкой удалённой поверхности, и генерирующему голографические иллюзии повседневной жизни.
Мы ещё не понимаем, как этот голографический принцип может быть реализован в реальном мире. Одна из проблем состоит в том, что обычно Вселенная представляется либо простирающейся до бесконечности, либо замкнутой на себя подобно сфере или экрану компьютерной игры (как в главе 8) и, следовательно, не имеющей каких-либо краёв или границ. Так где же может находиться «граничная голографическая поверхность»? Более того, нам определённо видится, что физические процессы находятся под нашим контролем прямо здесь в «объёме» Вселенной. Нам не кажется, что нечто на неуловимой границе как-то распоряжается тем, что происходит здесь, внутри. Означает ли голографический принцип, что наше ощущение управления и автономии иллюзорно? Или же лучше думать о голографическом принципе как о выражающем некоторую дуальность, позволяющую в зависимости от вкуса (а не от реальной физики) выбирать привычное описание, в котором фундаментальные законы действуют здесь, в «объёме» (что согласуется с нашей интуицией и нашим восприятием), либо необычное описание, в котором фундаментальные физические процессы происходят на некой границе Вселенной, и при этом каждая точка зрения будет одинаково законной? Эти существенные вопросы до сих пор остаются дискуссионными.
Но в 1997 г. аргентинский физик Хуан Малдасена, основываясь на ряде ранних догадок физиков, занимавшихся теорией струн, сделал крупный прорыв, который значительно продвинул понимание этих вопросов. Его открытие не связано прямо с вопросом о роли голографии в нашей реальной Вселенной, но он нашёл гипотетический контекст – гипотетическую Вселенную, для которой абстрактные рассуждения о голографии могут стать конкретными и математически точными. По техническим причинам Малдасена изучал гипотетическую Вселенную с четырьмя большими пространственными измерениями и одним временны́м измерением и с постоянной отрицательной кривизной (в трёхмерном пространстве постоянную отрицательную кривизну имеет седлообразная поверхность, знакомая широкой публике по форме картофельных чипсов «Принглс», рис. 8.6 в). Стандартный математический анализ показывает, что это пятимерное пространство-время обладает границей, {215} имеющей, как и все границы, на одно измерение меньше, чем окружаемая ею область, т. е. у этой границы три пространственных и одно временно́е измерение. (Как всегда, трудно представить себе пространство высокой размерности, но если вы хотите иметь мысленную картинку, то подумайте о банке с томатной пастой – трёхмерная жидкая томатная паста будет играть роль пятимерного пространства-времени, а её двумерная поверхность – роль четырёхмерной пространственно-временно́й границы.) Включив дополнительные свёрнутые измерения, требуемые теорией струн, Малдасена убедительно показал, что все физические процессы, воспринимаемые наблюдателем, живущим внутри этой Вселенной (в «пасте»), можно полностью описать в терминах физических законов, действующих на границе этой Вселенной (на поверхности банки).
Хотя мы и не знаем подобной Вселенной, но эта работа дала первый и математически строгий пример, в котором был явно реализован голографический принцип. {216} Она пролила свет на применимость голографического представления ко всей Вселенной. Например, в работе Малдасены «объёмное» и «граничное» описания имеют совершенно равные права. Ни одно из них не является первичным, а другое – вторичным. Подобно взаимосвязи между пятью вариантами теории струн, «объёмная» и «граничная» теории переходят друг в друга. Однако в этом переходе необычно то, что «объёмная» теория имеет больше измерений, чем эквивалентная ей теория, сформулированная на границе. Более того, расчёты показывают, что тогда как «объёмная» теория включает гравитацию (поскольку Малдасена сформулировал её с помощью теории струн), «граничная» теория её не включает. Тем не менее любой вопрос (или расчёт) одной теории может быть переформулирован в эквивалентный вопрос (или расчёт) другой теории. Не знакомый с этой дуальностью может подумать, что соответствующие вопросы и расчёты не имеют ничего общего друг с другом (например, поскольку «граничная» теория не включает гравитацию, то вопросы в «объёмной» теории, включающие гравитацию, переводятся в совсем по другому сформулированные вопросы «граничной» теории, не включающие гравитацию), тогда как знаток обеих теорий увидит их взаимосвязь и поймёт, что ответы на соответствующие вопросы и результаты соответствующих вычислений должны согласовываться друг с другом. И действительно, все проведённые к настоящему времени расчёты (а их множество) подтверждают это утверждение.
Трудно полностью охватить детали всего этого, но пусть это не затмевает главное. Результат Малдасены изумителен. Он нашёл конкретную, пусть и гипотетическую реализацию голографического принципа в рамках теории струн. Он показал, что определённая квантовая теория, не включающая гравитацию, переходит в другую квантовую теорию, включающую гравитацию, но сформулированную для пространства, в котором на одно измерение больше. Запущены мощные исследовательские программы, стремящиеся применить эти идеи к более реалистичной Вселенной, нашей Вселенной, но прогресс медленен, так как эти исследования сталкиваются с техническими трудностями. (Малдасена выбрал свой гипотетический пример из тех соображений, что он относительно легко поддаётся математическому анализу; гораздо труднее иметь дело с более реалистичными примерами.) Тем не менее теперь мы знаем, что теория струн, по крайней мере в определённом контексте, может поддерживать голографическую концепцию. И, как и в случае с преобразованием геометрии, упомянутым ранее, это даёт другой намёк на то, что пространство-время не является фундаментальной концепцией. При переходе от одной теоретической формулировки к другой эквивалентной формулировке может меняться не только характерный размер и форма пространства-времени, но и количествопространственных измерений.
Всё больше указаний на то, что форма пространства-времени является скорее чем-то внешним, меняющимся от одной формулировки физической теории к другой, а не фундаментальным элементом реальности. Подобно тому как разнится количество букв, слогов и гласных в английском слове «cat» и в его переводе на испанский язык «gato», так и форма, характерные размеры и даже количество измерений пространства-времени меняются при переводе с языка одной теории на язык другой. Для любого данного наблюдателя, использующего одну из теорий, пространство-время может казаться реальным и обязательным. Но как только наблюдатель сменит формулировку теории на эквивалентную, но отличающуюся от прежней, так сразу же обязательно изменится то, что раньше казалось ему реальным и непреложным. Таким образом, если эти идеи верны – а я должен подчеркнуть, что их ещё следует досконально проверить, хотя у теоретиков накопилось громадное количество подтверждений, – то они вызывают сильные сомнения в первичности пространства и времени.
Из всех путеводных нитей, которые здесь обсуждались, я бы назвал голографический принцип самым перспективным для того, чтобы сыграть доминирующую роль в будущих исследованиях. Этот принцип возникает из базисной характеристики чёрных дыр – их энтропии, – понимание которой, с чем согласятся многие физики, покоится на прочном теоретическом основании. Даже если детали наших теорий изменятся, мы ожидаем, что любое здравое описание гравитации будет допускать существование чёрных дыр, и, следовательно, останется ограничение на максимально возможную энтропию в данной области пространства, так что голографический принцип будет применим. Тот факт, что теория струн естественным образом включает в себя голографический принцип (по крайней мере в примерах, поддающихся математическому анализу), является другим веским доводом в пользу справедливости этого принципа. Я полагаю, что независимо от того, куда может завести нас поиск оснований пространства и времени, независимо от модификаций теории струн / M-теории, которые могут ожидать нас на последнем этапе, принцип голографии будет продолжать оставаться ведущей концепцией.