355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Брайан Грин » Ткань космоса. Пространство, время и текстура реальности » Текст книги (страница 12)
Ткань космоса. Пространство, время и текстура реальности
  • Текст добавлен: 19 сентября 2016, 13:25

Текст книги "Ткань космоса. Пространство, время и текстура реальности"


Автор книги: Брайан Грин


Жанр:

   

Физика


сообщить о нарушении

Текущая страница: 12 (всего у книги 52 страниц)

Тестирование реальности

Чтобы понять суть идеи Белла, вернёмся к Малдеру и Скалли и представим, что каждый из них получил другую посылку, также содержащую титановые коробочки, но с новой важной особенностью. Теперь каждая титановая коробочка имеет не одну, а три дверки: одну сверху, одну сбоку и одну спереди. {52} Сопроводительное письмо извещает, что теперь при открытии любой из трёх дверок коробочки находящийся внутри неё шарик вспыхивает случайным образом либо синим, либо красным цветом. Если на той же коробочке открывается другая дверка (например, верхняя вместо боковой или передней), то шарик может случайным образом вспыхнуть другим цветом. Но когда уже открыта одна дверка и шарик вспыхнул каким-то цветом, то невозможно определить, какой был бы цвет шарика, если бы мы открыли другую дверку. (Это свойство соответствует квантовой неопределённости: точно измерив одну характеристику, вы ничего не можете сказать относительно других). Наконец, в письме говорится, что снова имеется таинственная связь, странное сцепление между двумя наборами титановых коробочек: несмотря на то что все шарики случайным образом выбирают свой цвет при открытии одной из трёх дверок своей коробочки, если Малдер и Скалли откроют одинаковыедверки коробочек с одним и тем женомером, то увидят шарики одинакового цвета. Например, если Малдер откроет верхнюю дверку на своей коробочке с номером 1 и увидит синий шарик, то Скалли также увидит синий шарик, открыв верхнюю дверку на своей коробочке с номером 1; если Малдер откроет боковую дверку на свой коробочке номер 2 и увидит красный цвет, то и Скалли увидит красный, открыв боковую дверку на своей коробочке номер 2, и т. д. И открыв несколько дюжин коробочек (предварительно договариваясь по телефону, какую дверку какой коробочки открывать в следующий раз), Скалли и Малдер убеждаются, что всё так и есть, как написано в письме.

Хотя Малдер и Скалли поставлены в несколько более сложную ситуацию, чем раньше, но на первый взгляд кажется, что прежние аргументы Скалли подойдут и здесь.

«Малдер, – говорит Скалли, – это столь же глупо, как в прошлый раз. И здесь нет тайны. Шарики внутри каждой коробочки можно просто запрограммировать. Ты не находишь?»

«Но теперь тут три дверки, – возражает Малдер, – так что шарик не может “знать”, какую дверку мы откроем, верно?»

«А ему и не нужно гадать, – объясняет Скалли. – Всё это запрограммировано. Возьмём, к примеру, следующую неоткрытую коробочку под номером 37. Представь себе, что шарик в моей коробочке 37 запрограммирован, скажем, вспыхнуть красным цветом, если открыта верхняя дверка, синим цветом, если открыта боковая, и снова красным, если открыта передняя дверка. Я называю это программу красный, синий, красный. И тогда ясно, что тот, кто послал нам эту штуку, ввёл в твою коробочку 37 ту же самую программу, так что когда мы оба откроем одинаковые дверки, то увидим одинаковые цвета. Это объясняет “таинственную связь”: если наши коробочки с одинаковыми номерами запрограммированы одинаковым образом, то мы увидим одинаковые цвета, открыв одинаковые дверки. Нет здесь никакойтайны!»

Но Малдер не верит в то, что шарики запрограммированы. Он верит письму. Он верит, что шарики случайным образом выбирают между красным и синим цветом при открытии одной из дверок, так что между его коробочками и коробочками Скалли действительно существуетнекая таинственная дальнодействующая связь.

Кто же прав? Поскольку невозможно изучить шарики перед или во время предполагаемого случайного выбора цвета (помните, что любая такая попытка приведёт к тому, что шарик немедленно выберет себе цвет случайным образом), то кажется невозможным установить, кто прав – Малдер или Скалли.

Однако примечательно, что после небольшого раздумья Малдер понимает, что можно провестиэксперимент, который определил бы, кто же прав. Рассуждения Малдера просты, но они всё же чуть глубже, чем раньше, затрагивают математику. Несомненно, стоит попытаться проследить детали – их не так уж и много, – но не беспокойтесь, если что-то ускользнёт от вас; мы вскоре кратко суммируем основные выводы.

Малдер понимает, что он и Скалли до сих пор рассматривали лишь то, что произойдёт, если они будут открывать одинаковые дверки в коробочках с одинаковыми номерами. Перезвонив Скалли, он взволнованно объясняет ей, что можно узнать кое-что важное, если они будут выбирать дверки случайным образом и независимо друг от друга, а не открывать всегда одинаковые дверки.

«Малдер, пожалуйста, дай мне насладиться своим отпуском. Что мы можем узнать таким образом?»

«Скалли, мы сможем рассудить, кто из нас прав».

«Ладно, я слушаю».

«Всё очень просто, – продолжает Малдер. – Вот что я понял. Если ты права, то, открывая двери одинаковых коробок случайным образом и независимо друг от друга, мы обнаружим, что болеечем в 50% случаев наши результаты (цвета шариков) совпадут. Разумеется, для набора статистики надо открыть достаточно много коробок. Но если мы обнаружим, что наши результаты не совпадают более чем в 50% случаев, тогда ты не можешь быть права».

«В самом деле, почему так?» – немного заинтересовалась Скалли.

«Вот пример, – продолжает Малдер. – Предположим, ты права, и каждый шарик действует в соответствии с программой. Пусть к примеру, какая-то коробочка запрограммирована так, что при открытии верхней, боковой и передней дверок появляются синий, синийи красныйцвета соответственно. Далее, поскольку мы оба выбираем одну из трёх дверок, то всего имеется девять возможных комбинаций дверок, которые мы можем открыть в своих коробочках с одинаковым номером. Например, я могу выбрать верхнюю дверку на своей коробочке, тогда как ты можешь выбрать боковую на своей; или я могу выбрать переднюю дверку, а ты – верхнюю и т. д.»

«Да, конечно, – перебивает Скалли. – Если мы припишем верхней дверке номер 1, боковой – номер 2, а передней – 3, то получается ровно девять комбинаций выбора дверок: (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2) и (3, 3)».

«Да, всё верно, – продолжает Малдер. – Теперь важный момент: пять из девяти комбинаций дверок – (1, 1), (2, 2), (3, 3), (1, 2) и (2, 1) – соответствуют тому, что открыв свои дверки, мы увидим один и тот же цвет. В первых трёх вариантах мы выбираем одинаковые дверки, а тогда, как мы знаем, мы всегдавидим одинаковые цвета. В остальных двух случаях – (1, 2) и (2, 1) – мы тоже обнаруживаем одинаковые цвета, но уже в силу того, что шарики запрограммированы на один цвет (синий) при открытии дверок с номерами 1 и 2. Итого, поскольку 5 больше половины от 9, то более чем в половине случаев – более чем в 50% случаев – мы увидим один и тот же цвет».

«Но подожди, – протестует Скалли. – В твоём примере все коробочки запрограммированы одинаково: синий, синий, красный. Я же предполагала, что коробочки с разными номерами могут быть запрограммированы по-разному».

«На самом деле это не имеет значения. Вывод справедлив для любых вариантов программ. Смотри, мои рассуждения с вариантом синий, синий, красныйопирались только на тот факт, что два цвета в программе одинаковы, так что мой вывод справедлив для любого варианта программы с двумя одинаковыми цветами: красный, красный, синийили красный, синий, красныйи т. д. В любом варианте будет как минимум два одинаковых цвета; иной исход будет лишь в случае, когда все три цвета одинаковы – красный, красный, красныйили синий, синий, синий. Но в последнем случае мы всегда увидим одинаковый цвет, какие бы дверцы мы ни выбрали, так что процент совпадений только увеличится. Итак, если твоё объяснение верно и коробочки запрограммированы – пусть даже каждая пара коробочек с одинаковыми номерами запрограммирована по-своему – то мы должны увидеть одинаковые цвета болеечем в 50% случаев».

Таковы аргументы. Трудная часть наших рассуждений позади. Суть в том, что существуеттест, позволяющий установить, права ли Скалли и действует ли каждый шарик в соответствии с программой, которая однозначно определяет, какой вспыхнет свет в зависимости от того, какая дверка откроется. Скалли с Малдером осталось лишь провести сам эксперимент: случайным образом и независимо друг от друга открывать по одной из дверок в каждой паре коробочек с одинаковыми номерами и записывать цвет шариков. Затем им надо будет сравнить свои записи и установить, совпали ли их результаты болеечем в 50% случаев.

В следующем разделе мы увидим, что «на языке шариков» Малдер предложил провести то же самое, что и Джон Белл на языке физики.

Подсчёт ангелов на игле

Полученный результат прямо переносится на физику. Представим, что у нас есть два детектора, один – в левой части лаборатории, а второй – в правой; эти детекторы измеряют спин попадающих в них скоррелированных частиц вроде электронов, как в эксперименте, обсуждавшемся в предпоследнем разделе. Перед измерением требуется выбрать ось (вертикальную, горизонтальную или любую другую), относительно которой будет определяться спин; ради простоты предположим, что нам попался детектор, купленный по дешёвке на распродаже, который может измерять спин относительно только трёх осей. При каждом измерении мы будем определять направление спина электрона относительно выбранной оси: по или против часовой стрелки.

Согласно Эйнштейну, Подольскому и Розену, каждый электрон попадает в детектор уже как бы запрограммированным, так что он имеет определённое значение спина относительно каждой из трёх осей ещё до измерения, а само измерение только определяет этот спин. Например, электрон, вращающийся по часовой стрелке относительно каждой из трёх осей, имеет программу «по, по, по»относительно часовой стрелки; электрон, вращающийся по часовой стрелке относительно первых двух осей и против часовой стрелки относительно третьей, имеет программу «по, по, против»относительно часовой стрелки и т. д. Для того чтобы объяснить корреляцию между двигающимся влево электроном и двигающимся вправо электроном, Эйнштейн, Подольский и Розен просто говорят, что скоррелированные электроны имеют идентичные спины и поэтому доставляют к детекторам, которые измеряют спины, идентичные программы. Поэтому если для измерения спина выбраны одинаковые оси в левом и в правом детекторе, то детекторы дадут и одинаковые результаты.

Отметим, что наш эксперимент полностью воспроизводит ситуацию, с которой столкнулись Скалли и Малдер, но с простой заменой: вместо выбора дверки в титановой коробочке мы выбираем ось; вместо того чтобы видеть красный или синий цвет, мы регистрируем направление спина – по или против часовой стрелки. Далее, точно так же, как, открывая одинаковые дверки в титановых коробочках с одинаковыми номерами, мы видим одинаковый цвет, так и, выбирая одинаковые оси на обоих детекторах при измерении спина пары скоррелированных электронов, мы получаем одинаковый спин. Наконец, подобно тому как, открывая какую-либо дверцу титановой коробочки, мы лишаем себя возможности узнать, какой цвет мы бы увидели, если бы выбрали другую дверку, так и измерение спина относительно какой-либо оси лишает нас возможности узнать (в силу квантовой неопределённости), какой спин мы бы зарегистрировали, если бы выбрали другую ось.

И весь приведённый выше анализ Малдера для определения, кто прав в вопросе с шариками инопланетян, равным образом применим и к эксперименту с определением спина электронов. Если правы ЭПР, и каждый электрон действительно имеет определённый спин относительно всех трёх осей (если каждый электрон заранее «запрограммирован» на определённый результат при измерении спина относительно каждого из направлений), тогда можно сделать следующее предсказание. Измерив спин достаточно большого количества пар идентичных электронов относительно случайно выбираемых осей, мы получим, что более чем в половине случаев электроны имеют одинаковый спин. Если это не так, то Эйнштейн, Подольский и Розен не правы.

В этом и состоит открытие Белла. Оно показывает, что хотя вы не можете измерить спин электрона одновременно относительно нескольких осей – вы не можете «прочитать» программу, которая доставляется к детектору, – это неозначает, что попытка установить, имеет ли электрон определённый спин относительно более чем одной оси одновременно, равносильна подсчёту количества ангелов, которые могут уместиться на кончике иглы. Далеко не так. Белл нашёл проверяемое следствие, которое должно выполняться, если частицы имеют определённый спин относительно каждой оси. Используя оси под тремя разными углами, Белл нашёл способ подсчитать количество ангелов Паули.

Нет дыма без огня

На тот случай, если вы упустили какие-нибудь детали, суммируем, к чему мы пришли. Посредством принципа неопределённости Гейзенберга квантовая механика утверждает, что в мире есть характеристики – такие как положение и скорость частицы или спин частицы относительно различных осей, – которые не могут одновременно иметь определённые значения. Согласно квантовой механике частица не может одновременно иметь определённое положение и определённую скорость; частица не может иметь определённый спин (по часовой стрелке или против часовой стрелки) относительно более чем одной оси одновременно; частица не может иметь одновременно определённые значения характеристик, которые находятся по разные стороны от черты, проведённой принципом неопределённости.Частицы как бы подвешены в состоянии квантовой неопределённости, парят в размытой, аморфной, вероятностной смеси всех возможностей; и только в ходе измерения из множества возможностей выбирается один определённый вариант. Ясно, что эта картина реальности радикально отличается от той, которую рисовала классическая физика.

Эйнштейн, вечный скептик в отношении квантовой механики, вместе со своими коллегами, Подольским и Розеном, попытался использовать вероятностный аспект квантовой механики как оружие против самой этой теории. ЭПР утверждали, что даже если квантовая механика не позволяет одновременно определить такие характеристики, частицы тем не менее в действительности имеют определённые значения положения и скорости; частицы в действительности имеют определённые значения спина относительно всех осей; частицы в действительности имеют определённые значения для всех комбинаций характеристик, запрещённых квантовой неопределённостью. ЭПР, таким образом, утверждали, что квантовая механика не может оперировать всеми элементами физической реальности – она не может управиться одновременно с положением и скоростью частицы; она не может управиться со спином частицы относительно более чем одной оси – и, следовательно, это неполная теория.

Долгое время казалось, что подтверждение или опровержение утверждения ЭПР – это дело скорее метафизики, чем физики. Как говорил Паули, если вы не можете в действительности измерить характеристики, запрещённые квантовой неопределённостью, то что из того, что, возможно, они существуют на некотором скрытом уровне реальности? Но, что замечательно, Джон Белл обнаружил нечто, что ускользнуло от Эйнштейна, Бора и других гигантов теоретической физики XX в.: он нашёл, что просто существование определённых вещей, даже если их невозможно явно измерить или определить, имеет следствия, которые можно проверить экспериментально. Белл показал, что если ЭПР правы, то результаты, полученные двумя далеко разнесёнными в пространстве детекторами, измеряющими определённые характеристики частиц (спин относительно различных случайно выбираемых осей в рассмотренной нами схеме), совпадут более чем в 50% случаев.

Белл понял это в 1964 г., но в то время ещё не было технологии, которая позволила бы провести требуемый эксперимент. Такая технология появилась в начале 1970-х гг. Сначала Стюартом Фридманом и Джоном Клаузером из Беркли, затем Эдвардом Фраем и Рэндаллом Томпсоном из Техасского агротехнического университета и, в завершение, в начале 1980-х гт. Аланом Аспектом с сотрудниками, работавшими во Франции, были проведены всё более тонкие и впечатляющие эксперименты. В эксперименте Аспекта два детектора были разнесены друг от друга на расстояние 13 м, а контейнер с возбуждёнными атомами кальция был размещён посередине между ними. Хорошо понятная физика показывает, что каждый атом кальция, возвращаясь в своё нормальное состояние с меньшей энергией, испускает пару фотонов, разлетающихся в противоположных направлениях с полностью скоррелированными величинами спинов, как в обсуждавшемся нами примере со скоррелированными спинами электронов. В самом деле, в эксперименте Аспекта одинаково настроенные детекторы всегда регистрировали одинаковый спин каждой пары фотонов. Если бы к детекторам Аспекта были подсоединены световые индикаторы, мигающие красным светом при попадании в них фотонов со спинами, ориентированными против часовой стрелки, и синим светом – при попадании в них фотонов со спинами, ориентированными по часовой стрелки, то детекторы синхронно вспыхивали бы одинаковыми огоньками.

Но, – и это самое важное, – проведя множество экспериментов, в которых настройки детекторов менялись случайным и независимым друг от друга образом, Аспект обнаружил, что показания детекторов не совпали более чем в 50% случаев.

Это сногсшибательный результат. От такого результата перехватывает дыхание. Но если вы этого ещё не поняли, я кое-что поясню. Результат Аспекта показал, что утверждение Эйнштейна, Подольского и Розена опровергнуто экспериментом – не теорией, не размышлениями, а самой природой. И это значит, что что-то неправильное было в рассуждениях, использованных ЭПР при получении вывода о том, что частицы обладают определёнными значениями характеристик – вроде величины спина относительно разных осей, – для которых это запрещено принципом неопределённости.

Но где же они могли ошибиться? Вспомним, что рассуждение Эйнштейна, Подольского и Розена зиждилось на одном центральном предположении: если в данный момент времени можно определить характеристику объекта путём эксперимента, проведённого над другим, пространственно удалённым объектом, то первый объект должен был ещё до измерения иметь определённое значение этой характеристики. Основание для этого предположения было простым и вполне здравым. Вы проводите измерения здесь, тогда как первый объект удалён и находится там. Два объекта пространственно разделены, поэтому измерение не может как-либо повлиять на первый объект. Точнее, если, измеряя один объект, вы каким-то образом влияете на другой (например, вынуждаете другой объект принять то же значение спина относительно выбранной оси), то это должно произойти с задержкой как минимум на такое время, которое потребуется свету, чтобы преодолеть расстояние между двумя объектами, поскольку ничто не распространяется быстрее света. Но как в нашем абстрактном рассуждении, так и в реальном эксперименте две частицы исследуются одновременно. Поэтому всё, что мы можем узнать о первой частице, изучив вторую, она должна иметь совершенно независимо от того, проводим ли мы измерение второй частицы. Короче говоря, рассуждение Эйнштейна, Подольского и Розена основывалось на том, что данный объект никак не затрагивает то, что вы делаете с другим, отдалённым от него объектом.

Но, как мы уже видели, эти рассуждения ведут к предсказанию, что показания детекторов должны совпасть более чем в половине случаев, что опровергается экспериментом. Поэтому нам остаётся лишь заключить, что предположение, сделанное Эйнштейном, Подольским и Розеном, не может соответствовать устройству нашей квантовой Вселенной, сколь бы правдоподобным оно ни выглядело. Таким образом, путём косвенной, но правильно выстроенной аргументации, эксперименты ведут нас к заключению, что удалённый объект там может чувствовать, что вы делаете с другим объектом здесь.

Хотя квантовая механика показывает, что частицы случайным образом выбирают те или иные величины во время измерения, мы поняли, что эти случайности могут быть связаны друг с другом через пространство. Пары должным образом подготовленных частиц – они называются запутаннымичастицами – выбирают свои характеристики не независимо друг от друга. Они уподобляются паре магических игральных костей, одна из которых бросается в Атлантик Сити, а другая – в Лас Вегасе; на каждой из игральных костей случайным образомвыпадает то или иное число, но эти числа каким-то непостижимым образом оказываются равными. Запутанные частицы действуют аналогично, за исключением того, что им не нужна магия. Запутанные частицы, даже когда они пространственно разделены, не действуют автономно.

Эйнштейн, Подольский и Розен намеревались показать, что квантовая механика даёт неполное описание Вселенной. Полвека спустя теоретические догадки и экспериментальные результаты, вдохновлённые их работой, потребовали перевернуть их анализ с ног на голову и заключить, что неверна самая основная, интуитивно убедительная, классически осмысленная часть их рассуждения: Вселенная не является локальной. Результат того, что делается в одном месте, может быть связан с тем, что происходит в другом месте, даже если ничто не перемещается между этими местами – даже если ничто не может успеть преодолеть расстояние между ними. Интуитивно привлекательное предположение Эйнштейна, Подольского и Розена о том, что такие дальнодействующие корреляции возникают просто из-за того, что частицы имеют определённые, существующие до измерения, скоррелированные характеристики, исключается данными опыта. Вот что делает этот результат столь шокирующим. {53}

В 1997 г. Николас Гизин со своей группой из Женевского университета провёл эксперимент по схеме Аспекта, удалив детекторы друг от друга на расстояние 11 км. Результат не изменился. С точки зрения микроскопических масштабов длин волн фотонов, 11 км составляют гигантскую величину. С тем же успехом расстояние могло быть равным 11 млн км или 11 млрд световых лет. Есть все основания полагать, что корреляции между фотонами будут сохраняться независимо от того, как далеко разнесены детекторы.

Это выглядит совершенно противоестественно. Но теперь есть неоспоримое доказательство этой так называемой квантовой запутанности. Если два фотона запутаны, то измерение спина любого фотона относительно одной оси «заставляет» другой, удалённый фотон принять тот же спин относительно той же оси; акт измерения одного фотона «вынуждает» другой, возможно, удалённый фотон вынырнуть из тумана вероятности и принять определённое значение спина – значение, которое в точности равно спину его удалённого напарника. И это поражает разум. [30]30
  Многие исследователи, включая меня, считают, что довод Белла и эксперимент Аспекта убедительно устанавливают, что наблюдаемые корреляции между далеко разнесёнными частицами не могут быть объяснены рассуждениями в стиле Скалли – что корреляции закладываются каким-то обычным способом, во время, когда частицы были (ранее) вместе. Другие пытаются уклониться от ошеломляющего заключения о нелокальности, к которому это ведёт, или ослабить это заключение. Я не разделяю их скептицизм, но отдельные работы для широкого круга читателей, в которых обсуждаются некоторые из таких альтернатив, цитируются в примечании {221} .


[Закрыть]


    Ваша оценка произведения:

Популярные книги за неделю