355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Брайан Грин » Ткань космоса. Пространство, время и текстура реальности » Текст книги (страница 44)
Ткань космоса. Пространство, время и текстура реальности
  • Текст добавлен: 19 сентября 2016, 13:25

Текст книги "Ткань космоса. Пространство, время и текстура реальности"


Автор книги: Брайан Грин


Жанр:

   

Физика


сообщить о нарушении

Текущая страница: 44 (всего у книги 52 страниц)

Океан Хиггса, суперсимметрия и теория струн

Помимо научного вызова, состоящего в поиске неизвестного и шанса обнаружения доказательства существования дополнительных измерений, есть ещё пара специфических мотивов для усовершенствования ускорителя в Фермилабе и построения гигантского Большого адронного коллайдера. Один из этих мотивов – обнаружение частиц Хиггса. Как мы уже говорили в главе 9, неуловимые частицы Хиггса явились бы мельчайшими составляющими поля Хиггса – поля, которое, по предположению физиков, образует океан Хиггса и тем самым придаёт массу другим фундаментальным видам частиц. Согласно современным теоретическим и экспериментальным представлениям частицы Хиггса должны обладать массой в диапазоне от ста до тысячи масс протона. Если верна нижняя оценка, то у Фермилаба есть достаточно хорошие шансы открыть частицы Хиггса в самом ближайшем будущем. А если Фермилаб постигнет неудача, но всё же указанная оценка диапазона массы верна, то в конце десятилетия Большой адронный коллайдер должен будет рождать частицы Хиггса в изобилии. Обнаружение частиц Хиггса явится крупной вехой, поскольку подтвердит существование поля, на которое специалисты по элементарным частицам и космологи ссылались в течение десятилетий, не имея для него никаких экспериментальных подтверждений.

Другой крупной целью как Фермилаба, так и Большого адронного коллайдера является обнаружение суперсимметрии. Вспомним из главы 12, что идея суперсимметричных пар частиц, спины которых отличаются на половинку единицы, изначально в теории струн возникла в начале 1970-х гг. Если суперсимметрия реализуется в реальном мире, то для каждой известной частицы со спином, равным 1/2, должна существовать частица-партнёр с нулевым спином; для каждой известной частицы со спином, равным 1, должна существовать частица-партнёр со спином, равным 1/2. Например, в паре с электроном, обладающим спином 1/2, должна существовать частица с нулевым спином, названная суперсимметричным электрономили, для краткости, сэлектроном; в паре с кварками, имеющими спин 1/2, должны существовать суперсимметричные кварки, или скварки; в паре с нейтрино, имеющим спин 1/2, должно существовать снейтринос нулевым спином; в паре с глюонами, фотонами, W– и Z-частицами, обладающими спином 1, должны существовать глюино, фотино, винои зиносо спином 1/2. (Да, физики вошли в раж).

Никто никогда не обнаруживал ни одну из таких парных частиц, и физики надеются, что причина состоит в том, что суперсимметричные частицы значительно тяжелее своих партнёров. Теоретические соображения наводят на мысль, что суперсимметричные частицы могут быть в тысячи раз тяжелее протона, и в этом случае нет ничего загадочного в том, что их до сих пор не удалось обнаружить экспериментально: у существующих ускорителей частиц просто не хватает мощности. В грядущем десятилетии это изменится. Уже у усовершенствованного ускорителя в Фермилабе есть шанс открыть некоторые из суперсимметричных частиц. И, как и в случае с частицами Хиггса, если Фермилаб постигнет неудача, то LHC с лёгкостью должен их породить, при условии, конечно, что порядок массы суперсимметричных частиц оценён достаточно точно.

Подтверждение суперсимметрии явилось бы самым важным достижением в физике элементарных частиц за более чем два десятилетия. Оно ознаменовало бы новый шаг за рамки стандартной модели физики частиц и дало бы косвенное подтверждение тому, что теория струн находится на верном пути. Но, заметьте, это не подтвердило бы саму теорию струн. Хотя суперсимметрия была открыта в ходе разработки теории струн, но физики уже давно поняли, что суперсимметрия является более общим принципом, который может быть легко включён в традиционные подходы на основе представлений о точечных частицах. Подтверждение суперсимметрии установило бы важный элемент теории струн и задало бы направление множеству последующих исследований, но оно не явилось бы «лакмусовой бумажкой», подтверждающей справедливость теории струн.

С другой стороны, если верен сценарий мира на бране, то действительноесть возможность, что в будущих экспериментах с ускорителями будет подтверждена теория струн. Как было кратко упомянуто в главе 13, если дополнительные измерения в сценарии мира на бране достигают порядка 10 −16см, то не только гравитация может оказаться значительно сильнее, чем думали раньше, но и сами струны могли бы быть существенно длиннее. Такие длинные струны менее жёсткие, так что для их возбуждения требуется меньше энергии. Тогда как в стандартной теории струн моды колеблющихся струн обладают энергиями, более чем в миллион миллиардов раз превосходящими предел достижимого в наших экспериментальных установках, в сценарии мира на бране энергии мод колеблющихся струн могут лишь в тысячураз превосходить массу протона. В таком случае высокоэнергетические столкновения в LHC окажутся сродни мячику для гольфа, влетевшему внутрь фортепьяно; в них хватит энергии для возбуждения множества «октав» гаммы колеблющихся струн. Экспериментаторы обнаружат изобилие новых, не виданных ранее частиц – т. е. новых, невиданных ранее мод колеблющихся струн, – энергии которых будут соответствовать гармоническим резонансам теории струн.

Свойства этих частиц и взаимосвязи между ними безошибочно укажут на то, что все они составляют часть одной и той же космической партитуры, что при всём своём различии они являются связанными нотами, что все они являются отдельными колебательными модами одного и того же объекта – струны. Это наиболее вероятный сценарий прямого подтверждения теории струн в обозримом будущем.

Космические истоки

Как мы уже видели, реликтовое излучение играло доминирующую роль в космологических исследованиях с момента его открытия в середине 60-х гг. XX в. Причина ясна: на ранних этапах эволюции Вселенной пространство было заполнено смесью электрически заряженных частиц – электронов и протонов, – которые посредством электромагнитного взаимодействия расшвыривали фотоны во всех направлениях. Но всего через 300 000 лет после Большого взрыва Вселенная уже достаточно охладилась для того, чтобы электроны и протоны соединились в электрически нейтральные атомы, – и начиная с этого момента излучение стало почти беспрепятственно пронизывать пространство, запечатлев чёткий снимок ранней Вселенной. Каждый кубический метр пространства пронизывает около 400 млн этих изначальных фотонов, нетронутых реликтов ранней Вселенной.

Первоначальные измерения реликтового излучения показали, что его температура на удивление однородна, но, как мы обсуждали в главе 11, при более тщательном обследовании, проведённом сначала в 1992 г. с помощью спутника COBE и с тех пор усовершенствованном в ряде наблюдений, были выявлены небольшие температурные вариации, представленные на рис. 14.4 а. Данные отмечены разными оттенками серого цвета, причём наибольшая разница между самыми светлыми и самыми тёмными пятнами составляет всего лишь несколько десятитысячных долей градуса. Пятнистость рисунка указывает на мельчайшую, но неоспоримо реальную неоднородность распределения температуры излучения по всему небу.

Результаты эксперимента COBE сами по себе являются впечатляющим открытием, но они также отметили существенное изменение в характере космологических исследований. До эксперимента COBE космологические данные были грубыми. В свою очередь, космологическая теория имела право на существование, если она соответствовала этим приблизительным данным астрономических наблюдений. Теоретики могли выдвигать схему за схемой с минимальной оглядкой на ограничения, накладываемые данными наблюдений. Этих ограничений было попросту немного, а существовавшие не были особенно точными. Но эксперимент COBE положил начало новой эре, в которой стандарты значительно ужесточились. Теперь появляется всё больше точных данных, которым должна соответствовать любая теория, прежде чем с нею начнут серьёзно считаться. В 2001 г. был запущен спутник WMAP (Wilkinson Microwave Anisotropy Probe – зонд для изучения реликтового излучения имени Вилкинсона), совместный венчурный проект НАСА и Принстонского университета, для измерения реликтового излучения с примерно в 40 раз большей точностью и разрешением. Сравнивая первоначальные результаты WMAP (рис. 14.4 б) с результатами COBE (рис. 14.4 а), можно сразу заметить, сколь более тонкую и более детальную картину может дать WMAP. Запуск другого спутника под названием «Планк» («Planck»), разрабатываемого Европейским космическим агентством (European Space Agency), намечен на 2007 г. [92]92
  Запуск обсерватории «Planck» намечен на весну 2009 г. (Прим. ред.)


[Закрыть]
и, если всё пойдёт по плану, он даст картину с вдесятеро лучшим разрешением, чем WMAP.

Рис. 14.4.( а) Данные по реликтовому излучению, собранные спутником COBE. Это излучение стало беспрепятственно пронизывать пространство спустя примерно 300 000 лет после Большого взрыва, так что на картинке отражены мельчайшие температурные вариации, существовавшие во Вселенной примерно 14 млрд лет тому назад. ( б) Более точные данные, собранные спутником WMAP

Наплыв точных данных сузил поле космологических предположений, среди которых ведущее место, несомненно, занимает инфляционная модель. Но, как мы упоминали в главе 10, инфляционная теория является не единственным кандидатом. Теоретики предложили множестворазличных версий (старая инфляция, новая инфляция, тёплая инфляция, гибридная инфляция, гиперинфляция, вспомогательная инфляция, вечная инфляция, расширенная инфляция, хаотическая инфляция, двойная инфляция, маломасштабная инфляция, гипернатуральная инфляция – и это ещё не всё), каждая из которых характеризуется кратким периодом быстрого расширения, но все они разнятся в деталях (количеством полей, формой их потенциальной энергии и т. д.). Эти различия ведут к немного разным предсказаниям свойств реликтового излучения (различные поля с различными энергиями испытывают немного разные квантовые флуктуации). Сравнение с данными спутников WMAP и «Planck» должно отсеять множество предположений, значительно улучшив наше понимание.

На самом деле эти данные могут ещё больше сузить поле предложений. Хотя квантовые флуктуации, растянутые инфляционным расширением, дают убедительное объяснение наблюдаемым температурным вариациям, но у инфляционной модели есть достойный соперник. Циклическая космологическая модель Стейнхардта и Тьюрока, описанная в главе 13, предлагает альтернативное объяснение. По мере того как две 3-браны циклической модели медленно направляются друг к другу, квантовые флуктуации вынуждают различные части бран приближаться с разной скоростью. Когда браны наконец-то сталкиваются приблизительно триллион лет спустя, то различные области бран соприкасаются немного в разные моменты времени, примерно как при соединении двух кусков шершавой наждачной бумаги. Крохотные отклонения от совершенно однородного соприкосновения порождают небольшие отклонения от совершенно однородной эволюции на каждой бране. Поскольку по предположению одна из этих бран является нашим трёхмерным пространством, то эти отклонения от однородности мы и должны обнаружить. Стейнхардт, Тьюрок и их сторонники заявили, что эти неоднородности порождают температурные отклонения той же формы, что и в инфляционной модели, и, следовательно, при сопоставлении с имеющимися сейчас данными циклическая модель даёт столь же жизнеспособное объяснение данным наблюдений.

Однако более точные данные, которые будут получены в следующее десятилетие, возможно, отсеют одну из соперничающих моделей. В инфляционной модели не только квантовые флуктуации растягиваются инфлатонным полем при экспоненциальном расширении, но в результате этого интенсивного растяжения генерируется также и мельчайшая квантовая рябь ткани пространства. Поскольку рябь пространства есть не что иное, как гравитационные волны (как в нашем недавнем обсуждении LIGO), то инфляционная модель предсказывает порождение гравитационных волн в самые ранние моменты Вселенной. {191} Эти волны часто называют реликтовыми гравитационными волнами, чтобы отличать их от волн, которые были относительно недавно сгенерированы в результате крупных астрофизических событий. В циклической же модели, наоборот, отклонение от совершенной однородности происходит медленно, в течение почти безмерного промежутка времени, поскольку у бран уходит триллион лет на медленное приближение друг к другу для следующего столкновения. Отсутствие резкого и сильного изменения геометрии бран и геометрии пространства означает, что пространственная рябь негенерируется, так что в циклической модели реликтовые гравитационные волны отсутствуют. Таким образом, если реликтовые гравитационные волны будут обнаружены, то это обернётся ещё одним триумфом инфляционной модели и окончательно перечеркнёт циклическую теорию.

Вряд ли чувствительности LIGO хватит на то, чтобы обнаружить гравитационные волны, предсказанные инфляционной моделью, но, возможно, их существование будет косвенно подтверждено данными «Planck» или данными другого эксперимента, названного CMBPol (Cosmic Microwave Background Polarization – космический эксперимент для изучения поляризации реликтового излучения), – этот эксперимент сейчас планируется. «Planck» и, в особенности, CMBPol не будут сосредоточены исключительно на температурных вариациях реликтового излучения; они также будут измерять поляризацию– среднее направление спинов обнаруживаемых фотонов реликтового излучения. Путём сложных рассуждений, которые мы здесь пропускаем, можно показать, что гравитационные волны, порождённые Большим взрывом, должны оставить особый отпечаток на поляризации реликтового излучения, и, возможно, этот отпечаток достаточно силён, чтобы его можно было измерить.

Так что в предстоящее десятилетие у нас появится возможность определить, был ли Большой взрыв на самом деле соударением и является ли наша Вселенная на самом деле 3-браной. В золотую эру космологии некоторые из этих самых сумасшедших идей могут быть действительно проверены.

Тёмная материя, тёмная энергия и будущее Вселенной

В главе 10 мы познакомились с вескими теоретическими и наблюдательными свидетельствами того, что только 5% массы Вселенной составляет известная нам материя – протоны и нейтроны (на долю электронов приходится менее 0,05% общей массы обычной материи), тогда как 25% массы даёт тёмная материя, а 70% – тёмная энергия. Но всё ещё остаётся значительная неопределённость в том, из чего же состоит тёмная материя. Естественно предположить, что тёмная материя тоже состоит из протонов и нейтронов, которые каким-то образом избежали совместного сцепления с последующим образованием звёзд, излучающих свет. Но другой теоретический взгляд оставляет этой гипотезе очень мало шансов.

Благодаря детальным наблюдениям астрономы точно знают об относительной средней распространённости лёгких элементов (водорода, гелия, дейтерия и лития), рассеянных по всему космосу. С высокой степенью точности эта распространённость согласуется с теоретическими расчётами процессов, в ходе которых ядра этих элементов были предположительно синтезированы в первые минуты Вселенной. Эта согласованность является одним из величайших успехов современной теоретической космологии. Однако в этих расчётах предполагается, что основная часть тёмной материи состоит неиз протонов и нейтронов; если главными составляющими на космологических масштабах были бы протоны и нейтроны, то результаты расчётов не согласовывались бы с наблюдаемыми данными.

Но если не протоны и нейтроны, тогда что же составляет тёмную материю? Сегодня никто этого не знает, но в предположениях нет недостатка. Имена кандидатов пробегают весь ряд от аксионовдо зино, и тот, кто найдёт ответ, несомненно, будет приглашён в Стокгольм. То обстоятельство, что ещё никто не обнаружил частицы тёмной материи, накладывает существенное ограничение на любое предположение. Дело в том, что тёмная материя находится не только в глубоком космосе; она распределена по всей Вселенной и поэтому присутствует и здесь, на Земле. Согласно многочисленным предположениям прямо сейчас миллиарды частиц тёмной материи ежесекундно пронизывают ваше тело, так как в ряду перспективных кандидатов остаются только те частицы, которые могут проходить через материю, не оставляя заметного следа.

Одним из оставшихся кандидатов является нейтрино. По оценкам, плотность реликтовой распространённости нейтрино с момента Большого взрыва составляет 55 млн/м 3, так что если масса одного из трёх видов нейтрино дотягивает до сотой от миллионной доли (10 −8) массы протона, то нейтрино могут обеспечить надлежащую массу тёмной материи. Хотя в недавних экспериментах были получены веские свидетельства того, что нейтрино действительно имеют массу, но согласно современным данным нейтрино слишком легки, чтобы обеспечить должную массу тёмной материи – нейтрино примерно в сто раз легче, чем нужно.

Другими перспективными кандидатами являются суперсимметричные частицы, особенно, фотино, зинои хиггсино(партнёры фотона, Z-частицы и частицы Хиггса соответственно). Они самые «нелюдимые» из всех суперсимметричных частиц – они могли бы невозмутимо проходить через всю Землю без малейшего влияния на своё движение – и поэтому могли бы легко избегать своего обнаружения. {192} Из расчётов количества этих частиц, порождённых Большим взрывом и доживших до настоящих дней, следует, что их масса должна от 100 до 1000 раз превышать массу протона, чтобы набрать должную массу тёмной материи. Это интригующий результат, поскольку в различных моделях суперсимметричных частиц, как и в теории суперструн, получена та же оценка массы без какой-либо оглядки на тёмную материю и космологические процессы. Это было бы загадочным и совершенно необъяснимым совпадением, если, конечно, тёмная материя действительно не состоит из суперсимметричных частиц. Таким образом, поиск суперсимметричных частиц в современных и строящихся ускорителях частиц может также считаться поиском наиболее подходящих кандидатов на роль тёмной материи.

С некоторых пор уже ведутся и прямые поиски частиц тёмной материи, проносящихся через Землю, хотя такие эксперименты чрезвычайно трудны. Из примерно миллиона частиц тёмной материи, которые должны ежесекундно проходить через площадь размером примерно с 25-центовую монетку, в лучшем случае только одна может оставить какой-либо след в экспериментальной установке, специально построенной для их обнаружения. До сих пор не было подтверждённых обнаружений частиц тёмной материи. {193} Имея перед собой цель, всё ещё парящую вдалеке, исследователи настойчиво продвигаются вперёд. Вполне возможно, что в течение следующих нескольких лет будет установлено, из чего же состоит тёмная материя.

Окончательное подтверждение существования тёмной материи и прямое определение её состава явилось бы крупным достижением. Впервые в истории мы узнали бы о чём-то основополагающем и одновременно удивительно ускользающем: о составе большей части материального содержимого Вселенной.

Но всё же, как мы видели в главе 10, недавние результаты определённо указывают на то, что помимо тёмной материи остаётся ещё кое-что не менее важное, требующее экспериментальной проверки: наблюдения за сверхновыми свидетельствуют в пользу космологической постоянной, на долю которой приходится 70% полной энергии во Вселенной. Как самое волнующее и неожиданное открытие за последнее десятилетие, это свидетельство в пользу космологической постоянной – энергии, заполняющей пространство, – требует решительного и надёжного подтверждения. С этой целью тоже запланирован или уже осуществляется целый ряд проектов.

Эксперименты, относящиеся к реликтовому излучению играют важную роль и здесь. Размер пятен на рис. 14.4 (где, напомним, каждое пятно соответствует области одинаковой температуры) отражает форму ткани пространства. Если бы пространство имело сферическую форму, как на рис. 8.6 а, то выпуклость пространства сделала бы пятна более крупными, чем на рис. 14.4 б; если бы пространство имело седлообразную форму, как на рис. 8.6 в, пятна были бы несколько меньше; а если пространство плоское, как на рис. 8.6 б, то размер пятен имеет промежуточное значение между двумя упомянутыми выше случаями. Точные измерения, выполненные COBE, а затем улучшенные WMAP, веско подтверждают предположение, что пространство плоское. Это не только соответствует теоретическим ожиданиям, исходящим из инфляционных моделей, но и полностью согласуется с результатами наблюдений сверхновых звёзд. Как мы видели, в плоской Вселенной требуется, чтобы общая плотность материи/энергии равнялась критической плотности. Все данные впечатляюще согласуются друг с другом при вкладе обычной и тёмной материи около 30%, и вкладе тёмной энергией около 70%.

Более прямое подтверждение результатов по сверхновым является целью исследований, проводимых с помощью спутника SNAP (SuperNova/Acceleration Probe – спутник для изучения сверхновых и расширения Вселенной), предложенного учёными Лоуренсовской лаборатории в Беркли (Lawrence Berkeley Laboratory). SNAP будет представлять собой орбитальный спутниковый телескоп, способный измерять в 20 раз больше сверхновых, чем в земных обсерваториях. SNAP в состоянии не только подтвердить предыдущие результаты о том, что 70% приходится на долю тёмной энергии, но также он должен оказаться способным точнее определить природу тёмной энергии.

Вы видите, хотя я описал тёмную энергию как одну из версий космологической постоянной Эйнштейна – постоянной, неизменной энергии, заставляющей пространство постоянно расширяться, – но есть и тесно связанная альтернативная возможность. Вспомним из обсуждения инфляционной космологии (и прыгающей лягушки), что поле, величина которого держится на уровне, превосходящем уровень самого низкого энергетического состояния, может действовать подобно космологической постоянной, вызывая ускоренное расширение пространства, но обычно оно способно на это только в течение короткого промежутка времени. Рано или поздно поле займёт своё место на дне энергетической чаши, и его расталкивающее действие исчезнет. В инфляционной космологии это происходит за крошечную долю секунды. Но за счёт введения нового поля и тщательного подбора формы его энергетической чаши физики нашли способ, как сделать ускоренное расширение гораздо более мягким и длящимся гораздо дольше – чтобы поле вызывало относительно медленное и равномерное расширение пространства, длящееся не доли секунды, а миллиарды лет, по мере того как поле очень медленно скатывается в состояние с наименьшей энергией. Это открывает возможность, что прямо сейчас мы можем переживать чрезвычайно мягкую версию инфляционного взрыва, который имел место в самые ранние моменты истории Вселенной.

Это различие между настоящей космологической постоянной и последней возможностью, известной как квинтэссенция, имеет минимальное значение сегодня, но влечёт чрезвычайные последствия для далёкого будущего Вселенной. Космологическая постоянная постоянна– она обеспечивает нескончаемое расширение, так что Вселенная будет всё быстрее расширяться и будет становиться всё более разреженной и пустой. Но в концепции квинтэссенции ускоренное расширение рано или поздно закончится, так что будущее рисуется менее безрадостным и пустынным, чем при вечном ускоренном расширении. Фиксируя изменения в ускорении расширения пространства за отдалённые промежутки времени (посредством наблюдения сверхновых, удалённых от нас на различные расстояния и, следовательно, на различные временны́е эпохи), SNAP, может быть, поможет выделить верный вариант. Определив, представляет ли тёмная энергия действительно постоянную величину – космологическую постоянную, – SNAP позволит заглянуть в очень отдалённое будущее Вселенной.


    Ваша оценка произведения:

Популярные книги за неделю