355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Большая Советская Энциклопедия » Большая Советская Энциклопедия (КА) » Текст книги (страница 79)
Большая Советская Энциклопедия (КА)
  • Текст добавлен: 4 октября 2016, 10:38

Текст книги "Большая Советская Энциклопедия (КА)"


Автор книги: Большая Советская Энциклопедия


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 79 (всего у книги 169 страниц)

Канал (в теории информации)

Кана'л в теории информации, всякое устройство, предназначенное для передачи информации. В отличие от техники, информации теория отвлекается от конкретной природы этих устройств, подобно тому как геометрия изучает объёмы тел, отвлекаясь от материала, из которого они изготовлены (ср. Канал информационный). Различные конкретные системы связи рассматриваются в теории информации только с точки зрения количества информации , которое может быть надёжно передано с их помощью. Т. о. приходят к понятию К.: канал задаётся множеством «допустимых» сообщений (или сигналов) x на входе, множеством сообщений (сигналов) у на выходе и набором условных вероятностей р (у|х) получения сигнала у на выходе при входном сигнале х. Условные вероятности р (у|х) описывают статистические свойства «шумов» (помех), искажающих сигналы в процессе передачи. В случае, когда р (у|х) = 1 при у = х и р (y|x)= 0 при у ¹ х, К. называют каналом без «шумов». В соответствии со структурой входных и выходных сигналов выделяют К. дискретные и К. непрерывные. В дискретных К. сигналы на входе и на выходе представляют собой последовательности «букв» из одного и того же или различных «алфавитов» (см. Код ). В непрерывных К. входной и выходной сигналы суть функции непрерывного параметра t — времени. Возможны также смешанные случаи, но обычно в качестве идеализации предпочитают рассматривать один из указанных двух случаев.

  Способность К. передавать информацию характеризуется некоторым числом – пропускной способностью, или ёмкостью, К., которое определяется как максимальное количество информации относительно сигнала на входе, содержащееся в сигнале на выходе (в расчёте на единицу времени).

  Точнее: пусть входной сигнал x принимает некоторые значения х с вероятностями р (х ). Тогда по формулам теории вероятностей можно рассчитать как вероятности q (y ) того, что сигнал h на выходе примет значение у:

так и вероятности р (х, y) совмещения событий x = х, h = у:

р (х, у) = р (х) р (у|х).

По этим последним вычисляется количество информации (в двоичных единицах)   и его среднее значение

,

где T — длительность x. Верхняя граница С величин R, взятая по всем допустимым сигналам на входе, называют ёмкостью К. Вычисление ёмкости, подобно вычислению энтропии , легче в дискретном случае и значительно сложнее в непрерывном, где оно основывается на теории стационарных случайных процессов.

  Проще всего положение в случае дискретного К. без «шумов». В теории информации устанавливается, что в этом случае общее определение ёмкости С равносильно следующему:

где N (T ) число допустимых сигналов длительностью Т.

  Пример 1. Пусть «алфавит» К. без «шумов» состоит из двух «букв» – 0 и 1, длительностью tсек каждая. Допустимые сигналы длительностью Т = nt представляются последовательностями символов 0 и 1. Их число N (Т) = 2n . Соответственно

 – двоичных единиц/сек .

  Пример 2. Пусть символы 0 и 1 имеют длительность t и 2tсек соответственно. Здесь допустимых сигналов длительностью Т = nt будет меньше, чем в примере 1. Так, при n = 3 их будет всего 3 (вместо 8). Можно подсчитать теперь

 двоичных единиц/сек .

  При необходимости передачи записанных с помощью некоторого кода сообщений по данному К. приходится преобразовывать эти сообщения в допустимые сигналы К., т. е. производить надлежащее кодирование . После передачи надо произвести операцию декодирования, т. е. операцию обратного преобразования сигнала в сообщение. Естественно, что кодирование целесообразно производить так, чтобы среднее время, затрачиваемое на передачу, было возможно меньше. При одинаковой длительности символов на входе К. это означает, что надо выбирать наиболее экономный код с «алфавитом», совпадающим с входным «алфавитом» К.

  При описанной процедуре «согласования» источника с К. возникает специфическое явление задержки (запаздывания), которое может пояснить следующий пример.

  Пример 3. Пусть источник сообщений посылает через промежутки времени длиной 1/u (т. е. со скоростью u) независимые символы, принимающие значения x1 , x2 , x3 , x4 с вероятностями, равными соответственно 1 /2 , 1 /4 , 1 /8 , 1 /8 . Пусть К. без «шумов» такой же, как в примере 1, и кодирование осуществляется мгновенно. Полученный сигнал или передаётся по К., если последний свободен, или ожидает (помещается в «память») до тех пор, пока К. не освободится. Если теперь выбран, например, код x1 = 00 , x2= 01 , x3= 10 , x4 = 11 и u £ 1 /2 t (т. е. 1/u ³ 2t ), то за время между появлением двух последовательных значений х кодовое обозначение успевает передаться и К. освобождается. Т. о., здесь между появлением какой-либо «буквы» сообщения и передачей ее кодового обозначения по К. проходит промежуток времени 2t. Иная картина наблюдается при u > 1 /2 t ; n -я «буква» сообщения появляется в момент (n – 1)/u и её кодовое обозначение будет передано по К. в момент 2nt. Следовательно, промежуток времени между появлением n -й «буквы» сообщения и моментом её получения после декодирования переданного сигнала будет больше, чем n (2t – 1/u) , что стремится к бесконечности при n ® ¥. Таким образом, в этом случае передача будет вестись с неограниченным запаздыванием. Стало быть, для возможности передачи без неограниченного запаздывания при данном коде необходимо и достаточно выполнение неравенства u £ 1 /2 t . Выбором более удачного кода можно увеличить скорость передачи, сделав её сколь угодно близкой к ёмкости К., но эту последнюю границу невозможно превзойти (разумеется, сохраняя требование ограниченности запаздывания). Сформулированное утверждение имеет совершенно общий характер и называется основной теоремой о К. без «шумов».

  Специально в отношении примера 3 уместно добавить следующее. Для рассматриваемых сообщений двоичный код x1 = 0 , x2 = 10 , x3 = 110 , x4= 111 оптимален. Из-за различной длины кодовых обозначений время wn запаздывания для n- й «буквы» первоначального сообщения будет случайной величиной. При u < 1/t (1/t – ёмкость К.) и n ® ¥ его среднее значение приближается к некоторому пределу m(u), зависящему от u. С приближением u к критическому значению 1/t значение m(u) растет пропорционально (t-1 – u)-1 . Это опять-таки отражает общее положение: стремление сделать скорость передачи возможно ближе к максимальной сопровождается возрастанием времени запаздывания и необходимого объёма «памяти» кодирующего устройства.

  Утверждение «основной теоремы» (с заменой безошибочной передачи на «почти безошибочную») справедливо и для К. с «шумами». Этот факт, по существу основной для всей теории передачи информации, называют теоремой Шеннона (см. Шеннона теорема ). Возможность уменьшения вероятности ошибочной передачи через К. с «шумами» достигается применением так называемых помехоустойчивых кодов.

  Пример 4. Пусть входной «алфавит» К. состоит из двух символов 0 и 1 и действие «шумов» сводится к тому, что каждый из этих символов при передаче может с небольшой (например, равной 1 /10 ) вероятностью р перейти в другой или с вероятностью q = 1 – р остаться неискажённым. Применение помехоустойчивого кода сводится, по сути дела, к выбору нового «алфавита» на входе К. Его «буквами» являются n-членные цепочки символов 0 и 1, отличающиеся одна от другой достаточным числом D знаков. Так, при n = 5 и D = 3 новыми «буквами» могут быть 00000, 01110, 10101, 11011. Если вероятность более чем одной ошибки на группу из пяти знаков мала, то даже искажённые эти новые «буквы» почти не перепутываются. Например, если получен сигнал 10001, то он почти наверное возник из 10101. Оказывается, что при надлежащем подборе достаточно больших n и D такой способ значительно эффективнее простого повторения (т. е. использования «алфавитов» типа 000, 111). Однако возможное на этом пути улучшение процесса передачи неизбежно сопряжено с сильно возрастающей сложностью кодирующих и декодирующих устройств. Например, подсчитано, что если первоначально р = 10-2 и требуется уменьшить это значение до p1 = 10-4 , то следует выбирать длину n кодовой цепочки не менее 25 (или 380) в зависимости от того, желают ли использовать ёмкость К. на 53% (или на 80%).

  Лит. см. при ст. Информации теория .

  Ю. В. Прохоров.

Канал имени Москвы

Кана'л и'мени Москвы', см. Москвы имени канал .

Канал связи

Кана'л свя'зи, канал передачи, технические устройства и тракт связи , в котором сигналы, содержащие информацию, распространяются от передатчика к приёмнику. Технические устройства (усилители электрических сигналов, устройства кодирования и декодирования сигналов и др.) размещают в промежуточных (усилительных или переприёмных) и оконечных пунктах связи. В качестве тракта передачи пользуются разнообразными линиями – проводными (воздушными и кабельными), радио и радиорелейными, радиоволноводными и т.д. Передатчик преобразует сообщения в сигналы, подаваемые затем на вход К. с.: по принятому сигналу на выходе К. с. приёмник воспроизводит переданное сообщение. Передатчик, К. с. и приёмник образуют систему связи, или систему передачи информации. По назначению системы, в состав которой входят К. с., различают каналы телефонные, звукового вещания, телевизионные, фототелеграфные (факсимильные), телеграфные, телеметрические, телекомандные, передачи цифровой информации; по характеру сигналов, передачу которых К. с. обеспечивают, различают каналы непрерывные и дискретные как по значениям, так и по времени. В общем случае К. с. имеет большое число входов и выходов, т. н. уплотнённый К. с. (см. Многоканальная связь ), и может обеспечивать двустороннюю передачу сигналов.

  Лит.: Назаров М. В., Кувшинов Б. И., Попов О. В., Теория передачи сигналов, М., 1970.

Канал телемеханический

Кана'л телемехани'ческий, совокупность устройств между передающим и приёмным пунктами, удалёнными на значительное расстояние, для передачи информации телеуправления, телеизмерения и телесигнализации. К. т. – разновидность канала связи . В состав К. т. входят источник информации (датчик), кодирующее устройство , передатчик, линия связи, приёмник, декодирующее устройство. К. т. обычно строится по многоканальному принципу, т. е. образуется из нескольких каналов. Сообщения по К. т., особенно в условиях помех, передаются лишь после предварительной обработки, кодирования и модуляции. На приёмной стороне путём декодирования или демодуляции сообщение восстанавливается. Закодированное (модулированное) сообщение в виде дискретных или непрерывных сигналов передают по радиоканалам, проводным и радиорелейным линиям связи. Пример К. т. – канал системы телемеханики (с передачей сигналов по радио) для управления искусственными спутниками Земли или автоматическими лунными станциями.

  Лит.: Васильев Р. Р. и Шастова Г. А., Передача телемеханической информации, М. – Л., 1960; Величкин А. И., Теория дискретной передачи непрерывных сообщений, М., 1970.

  М. М. Гельман.

Канал (технич.)

Кана'л информационный, 1) совокупность устройств, объединённых линиями связи, для приёма, передачи, преобразования и регистрации информации. Начальными и конечными устройствами К. могут быть телефонный или телеграфный аппараты, магнитофон, перфоратор, ЭВМ, лазеры, акустические приборы и устройства и т.д. Для связи обычно применяют радиоканалы, телефонные, телеграфные и радиорелейные линии, акустические и оптические линии связи, сигнальные кабели и провода. Техническая характеристика К. определяется принципом действия входящих в него устройств, видом сигнала, свойствами и составом физической среды, в которой распространяются электрические, акустические и световые сигналы, свойствами применяемого кода или языка. Эффективность К. характеризуется скоростью и достоверностью передачи информации, надёжностью работы устройств и задержкой сигналов во времени, См. также Канал связи .

  2) Совокупность устройств ЦВМ, непосредственно участвующих в приёме, хранении, обработке и выдаче информации.

  Лит .: Голдман С., Теория информации, пер. с англ., М., 1957; Шеннон К., Работы по теории информации и кибернетики, пер. с англ., М., 1963.

  Е. Я. Дашевский.

Каналетто Джованни Антонио

Канале'тто (Canaletto) (собственно Каналь, Canal) Джованни Антонио (18.10.1697, Венеция, – 20.4.1768, там же), итальянский живописец. Мастер архитектурного пейзажа (так называемые ведуты). Учился у своего отца – театрального художника Бернарде Каналя. Работал главным образом в Венеции, а также в Риме (1719—20 и около 1740) и Лондоне (1745—55). Испытал влияние венецианских пейзажистов Л. Карлевариса и М. Риччи. Писал пейзажи-панорамы, главным образом с изображением архитектурных ансамблей и памятников Венеции, наполняя их красочными эпизодами городской жизни, а так же виды Англии. Сочетал в своих работах документ, точность рисунка и совершенство перспективного построения с нарядностью и свежестью цветовой гаммы, свето-воздушными эффектами, а также парадной зрелищностью композиционного решения. Выполнил много пейзажных офортов, отмеченных непосредственностью наблюдений, лёгкостью светотеневых градаций (серия «Ведуты», 1740—44). Учеником К. был его племянник Б. Беллотто , унаследовавший прозвище учителя.

  Лит.: ConsLabie W. G., Canaletto, v. 1—2, Oxf., 1962; [Berto G., Puppi L.], L'opera completa del Canaletto, Mil., [1968]; L i nksJ. G.. Views in Venice by Canaletto, N. Y., 1971.

  О. Д. Никитюк.

Антонио Каналетто. «Двор каменотёса». Около 1730. Национальная галерея. Лондон.

Канализационная сеть

Канализацио'нная сеть, совокупность подземных труб (трубопроводов) и коллекторов для приёма и отведения сточных вод с территории населённых мест и промышленных предприятий к месту расположения очистных сооружений ; основная часть системы канализации . В состав К. с. города входят внутриквартальные, дворовые и уличные сети, коллекторы (см. Коллектор канализационный ) и напорные трубопроводы. К внутриквартальной или дворовой сети через выпуски присоединяются трубопроводы внутренней К. с., проводимые внутри зданий. Для перекачки сточных вод к очистным сооружениям устраиваются насосные станции , а для осмотра и ремонта К. с. – колодцы канализационные . На промышленных предприятиях может быть несколько К. с. для отвода сточных вод различного состава (сильнокислых, сильнощелочных и пр.).

  В зависимости от рельефа местности, грунтовых условий, состава сточных вод, очерёдности строительства и пр. различают схемы К. с.: перпендикулярную, пересечённую, параллельную, зонную, радиальную и др. При проектировании К. с. принимают по возможности самотёчный режим движения бытовых и производственных сточных вод. Гидравлический расчёт К. с. заключается в определении диаметров канализационных труб, степени их наполнения, скоростей течения сточных вод и пр. Минимальная глубина заложения К. с. (зависящая от глубины промерзания почвы) должна быть достаточной для предохранения труб от разрушения наземным транспортом; для средней полосы СССР она составляет около 2 м.

  Выбор материала труб для прокладки К. с. зависит от состава сточных и грунтовых вод и назначения трубопровода. Самотёчная К. с. выполняется из керамических, асбестоцементных, бетонных и железобетонных труб, а коллекторы больших диаметров – из железобетонных труб или сборных железобетонных элементов. Для напорных трубопроводов применяют металлические, асбестоцементные и железобетонные трубы. Возможно применение труб из синтетических материалов. Водонепроницаемость и долговечность К. с. достигается тщательной заделкой стыковых соединений при укладке труб.

  Лит. см. при ст. Канализация .

  Ю. М. Ласков.

Канализационный коллектор

Канализацио'нный колле'ктор, см. Коллектор канализационный .

Канализационный колодец

Канализацио'нный коло'дец, см. Колодец канализационный .

Канализация

Канализа'ция, комплекс инженерных сооружений, оборудования и санитарных мероприятий, обеспечивающих сбор и отведение за пределы населённых мест и промышленных предприятий загрязнённых сточных вод, а также их очистку и обезвреживание перед утилизацией или сбросом в водоём. Различают внутреннюю и наружную К. Внутренняя К. служит для приёма сточных вод (в местах их образования) и отведения их из здания в наружную канализационную сеть . Элементами внутренней К. являются санитарные приборы, отводные трубы, стояки и выпуски из зданий. Наружная К., предназначенная для транспортирования сточных вод за пределы населённых мест и промышленных предприятий, включает трубопроводы (самотёчные и напорные), насосные станции и очистные сооружения.

  Под системой К. принято понимать совместное или раздельное отведение трёх категорий сточных вод (бытовых, производственных и дождевых). В практике городского строительства наибольшее распространение получили общесплавная и раздельная системы К. При общесплавной системе (рис. 1 ) все три категории сточных вод отводятся по одной общей сети труб и каналов за пределы населённого места. При раздельной системе (рис. 2 ) дождевые и условно чистые производственные воды удаляют по одной сети труб и каналов, а бытовые и производственные – по другой (одной или нескольким канализационным сетям). Раздельная система К. может быть полной или неполной.

  Схемой К. называют технически и экономически обоснованное проектное решение принятой системы К. с учётом местных условий и перспектив развития объекта канализования (города, посёлка, промышленного или жилого района и т.д.). Каждая схема К. может быть осуществлена различными техническими приёмами в отношении трассирования сетей и коллекторов, глубины их заложения, количества насосных станций, числа и местоположения очистных сооружений, необходимой степени очистки сточных вод, очерёдности строительства и т.д.

  В зависимости от рельефа местности всю канализуемую территорию населенного пункта условно делят на бассейны канализования, т. е. участки, ограниченные водоразделами. В каждом бассейне по подземным канализационным трубам уличной сети сточные воды собирают в один или несколько коллекторов. Сточные воды сплавляют по коллекторам самотёком, а в случаях большого заглубления коллектора сеть разделяют на несколько районов с нормальным заглублением трубопроводов. Из этих районных сетей сточные воды направляют к районной насосной станции перекачки (РСП), откуда они по напорному трубопроводу поступают на более высокую отметку в самотёчные коллекторы. Устраивают также канализационные насосные станции для подачи сточных вод непосредственно к очистным сооружениям, откуда очищенные воды по выпуску сбрасывают в водоём. На рис. 3 приведён пример общей схемы и основных сооружений современной К. населённого пункта.

  Историческая справка. Отведение сточных вод по трубам за пределы населенных мест применялось с древних времён. При раскопках в Египте обнаружены канализационные каналы, построенные 2500 лет до н. э. Аналогичные сооружения существовали ещё раньше в Индии. В 6 в. до н. э. в Риме был построен канал «клоака максима», частично используемый в современной К. Однако эти сооружения требовали огромных затрат труда и материалов и осуществлялись лишь для дворцов, храмов, общественных купален. В эпоху феодализма и особенно в последующий период развития капитализма возросшая плотность населения привела к ухудшению санитарного состояния городов. Участившиеся эпидемии вызвали необходимость строительства водопроводов, а затем и К. Это диктовалось также развитием промышленности и увеличением объёмов производственных сточных вод. Интенсивное строительство К. началось в Европе только с 19 в. Первые подземные каналы для отведения загрязнённых вод в России были построены в 11—14 вв. (Новгород, Московский Кремль). Значительное применение канализационные каналы получили лишь в начале 19 в. в Петербурге и Москве (в дореволюционной России К. имелась в 18 наиболее крупных городах). В СССР одновременно с ростом городов и посёлков в широких масштабах осуществляется их благоустройство и в том числе строительство централизованных систем водопровода и К. Для большей части канализационных сооружений разработаны и применяются типовые проекты, значительно сокращающие затраты труда и сроки сооружения систем К. Получили широкое распространение индустриальные методы производства строительных работ, в частности щитовая проходка при прокладке коллекторов, сборные конструкции канализационных сооружений. К 1980 в Советском Союзе намечается построить (дополнительно к существующим) свыше 270 тыс. км канализационных сетей, увеличить пропускную способность очистных сооружений К. до 90 млн. м3 /сут; объём очищаемых производственных сточных вод достигнет 120 млн. м3 /сут.

  Лит.: Канализация, под ред. А. И. Жукова, М., 1969.

  С. В. Яковлев, Ю. М. Ласков.

Рис. 3. Общая схема и основные сооружения канализации населённого пункта: 1 – границы бассейнов канализования; 2 – уличная сеть и коллекторы; 3 – районная насосная станция; 4 – напорные водоводы; 5 – промышленные предприятия; 6 – главный коллектор; 7 – главная насосная станция; 8 – загородный коллектор; 9 – очистные сооружения; 10 – выпуск в водоём.

Рис. 1. Общесплавная система канализации: 1 – коллекторы; 2 – главные коллекторы; 3 – камеры ливнеспусков; 4 – насосная станция; 5 – очистные сооружения с выпуском.

Рис. 2. Раздельная система канализации: 1, 2 – бытовая сеть; 3, 4 – дождевая сеть; 5 – насосная станция; 6 – очистные сооружения.


    Ваша оценка произведения:

Популярные книги за неделю