355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Сергей Бобров » Волшебный двурог » Текст книги (страница 28)
Волшебный двурог
  • Текст добавлен: 30 марта 2017, 07:30

Текст книги "Волшебный двурог"


Автор книги: Сергей Бобров



сообщить о нарушении

Текущая страница: 28 (всего у книги 31 страниц)

Благодаря этому построению замечательные самаркандские математики в XV веке сумели вычислить синус одного градуса с восемнадцатью точными знаками после запятой.

вым математиком, одним из последних ученых исламитского мира, который трудился у знаменитого астронома Улугбека в Самарканде в пятнадцатом веке. Работы Улугбека были уничтожены реакционным духовенством, его обсерватория разрушена, а сам он был убит. Но память о работах ученых его школы осталась, и в шестнадцатом веке Мариам Челеби, внук ар-Руми, астронома, работавшего вместе с Улугбеком, обнародовал решение задачи трисекции угла. В Европе это решение узнали только в девятнадцатом веке. Это решение не дает искомого угла построением, как невсис Паппа. Но при его помощи можно получить нужное кубическое уравнение.

– 445 —

– А как потом решали кубические уравнения?

– К этому труднейшему вопросу вернулись через некоторое время. Сначала Эйлер со свойственной ему наблюдательностью заметил, что по формуле Кардана получается девять значений корней, тогда как ясно, что нужны всего три. И Эйлер показал, как надо комбинировать между собой эти значения, чтобы получить те три, которые нужны. Таким образом выяснилось, что в формуле Кардана таится еще один неожиданный секрет.

– А почему девять значений? – удивился Илюша.

– Да ведь в формуле Кардана два кубических корня, у каждого три значения, и если каждое из трех значений первого комбинировать с тремя значениями второго…

– … то и получим девять! – заключил мальчик. – А как их комбинировать?

– У вас ведь есть уравнение:

uv = – p/3

так вот мы и должны так их соединять, чтобы их произведение давало бы как раз эту величину, то есть – у. Это как раз и заметил Эйлер. Однако вскоре выяснилось, что можно действовать еще и другим способом, очень интересным…

– Как это так?

– Все это можно сделать, опираясь на важные положения, касающиеся извлечения корней из комплексных чисел. Эта операция не очень проста. Она делается при помощи так называемых корней из единицы…

– Не совсем понимаю, – перебил Илья, – запутался!..

– Ничего, смелее! Допустим, что мы извлекаем из комплексного числа корень пятой степени. Переходим к тригонометрической форме комплексного числа и пишем:

где к = 0, 1, 2, 3, 4, как мы уже это выяснили ранее. Но когда мы перемножаем комплексные числа, углы, вернее, аргументы комплексных чисел складываются и ничто не мешает суммы аргументов разъединить и написать извлечение корня пятой степени в таком виде:

– 446 —

Отсюда вытекает утверждение, что все значения корня из комплексного числа можно получить, умножая одно из этих значении на разные значения корпя той же степени из единицы, то есть на вторую скобку правой части. Представляете себе?

– Кажется, теперь представляю, – осторожно признался Илья. – Только разве это так важно, написать в таком виде, а не в другом?

– В таком кропотливом деле, как это, – отвечал Мнимий, – нельзя пренебрегать ни малейшим упрощением. Так и в данном случае, то есть для куба, при решении уравнения

x3 = 1

Первый корень, конечно, равен единице, а другие два…

– Другие два, – подсказал Илюша, – получаются из квадратного уравнения, то есть из такого:

где в правой части неполный квадрат суммы. Решая квадратное уравнение, получаем:

– Правильно… – заметил Мнимий. – Но давайте проделаем еще один поучительный опыт: возведем наш только что полученный икс-второй в квадрат:

– И получился, – сказал Илья, – не кто иной, как сам икс-третий! Ну, а если его еще и в куб?.. Правильно! Единица получается. Все в порядке.

– Так вот, – продолжал Мнимий, – назовем один из корней из единицы, то есть наш икс-второй, греческой буквой альфа. Тогда икс-третий, как вы только что выяснили, будет а2. А теперь я должен еще отметить, что среди всех корней из единицы (для квадратного корня два, для кубического три, и так далее, то есть их число совпадает с числом единиц в показателе корня) имеются такие корни, которые обладают весьма интересным и полезным свойством. Если мы один из таких корней будем возводить последовательно в возрастаю-

– 447 —

щие степени, начиная со второй, то получим все остальные корни данной совокупности. Например, второй и третий корни кубические из единицы (первый, конечно, единица) обладают этим свойством, так что

а22 = а3; а32 = а2; а23 = а1 = 1.

Если же взять для другого примера все корни шестой степени из единицы, от а1 до а6, то из них только два (а именно а1 и а5) обладают этим свойством и называются первообразными корнями. Например, из корней четвертой степени первообразных только два (a2 и а4), тогда как для пятой степени все корни, не считая первого, равного 1, будут первообразными. Если вписать в единичный круг правильный многоугольник, одна вершина которого лежит в точке с координатами 1, 0), то можно заметить, что только те его вершины будут давать первообразные корни, которые принадлежат именно этому многоугольнику, но отнюдь не какому-либо другому – с меньшим числом сторон и одной вершиной к точке с координатами A, 0). Прошу покорнейше запомнить это правило. Оно нетрудное. А теперь мы можем снова перейти и к формуле Кардана. Если у нас есть уравнение кубическое:

y3 + py + q = 0,

а формулу Кардана напишем в таком сокращенном виде:

то корни нашего уравнения будут таковы:

y1 = A + B;

y2 = αА + α2В;

y3 = α2А + αВ.

– Все-таки, – вымолвил опасливо Илюша, – это получается не так-то просто… С квадратным одна минута, а тут…

– Есть и более сложные задачи, а у сложных задач и способы решения довольно хитрые. Да это еще не все! А дальше способен слушать? А то закроем заседание нашей комиссии – и по домам!

– Нет, нет, – взмолился Илюша, – мне хочется все-таки до конца дослушать!

– «До конца»! – повторил ворчливо Радикс. – Ты дума-

– 448 —

ешь, у этой штуки есть конец? Что касается меня, то я в этом отнюдь не уверен. Так еще немножко проползти можно…

– Поползем! – ответил Илюша, вздохнув потихонечку.

– Воля твоя, – отвечал Радикс, – только потом чтобы не жаловаться, что, дескать, замучили!

– Не буду жаловаться! – храбро заявил Илья.

– Тогда слушай дальше, – продолжал Радикс.

– Слушаю!..

– В конце восемнадцатого века замечательный французский математик Лагранж пытался разобраться во всех способах решения уравнений третьей и четвертой степеней. После того как Эйлер нашел сочетания значений двух кубических корней в формуле Кардана, чтобы получить значения всех трех искомых корней, изучение алгебры комплексных чисел сильно двинулось вперед. Лагранж обратил внимание на то, что любой из двух кубических радикалов в формуле Кардана можно выразить через три корня уравнения при помощи следующей формулы (в зависимости от того, какой корень считается первым, какой – вторым, какой – третьим):

⅓(x1 + αx2 + α2x3)

– Совсем я запутался! – с огорчением пробормотал Илья. – Чем эта формула поможет? Откуда взять корни, когда я еще не решил уравнения? Значит, надо сперва воспользоваться формулой Кардана. Какой смысл в этой формуле?..

– Видите ли, – вмешался Мнимий, – вы правы в том отношении, что в деле разыскания корней эта формула помочь не может. Но чтобы представить себе, как связаны корни кубического уравнения с его коэффициентами, она в высшей степени полезна.

– Опять не понимаю! – снова огорчился мальчик. – Ведь мы же знаем, какие для Кардановой формулы делали два раза подстановки! Разве из этого нельзя вывести, какие получаются соотношения между корнями и коэффициентами?

– Того, что мы знаем о наших подстановках, еще мало. Потому что те подстановки, которые годятся для кубического уравнения, не подходят для уравнения четвертой степени, а следовательно, это способ не общий. Кроме того, пока самый способ решения нельзя проверить – или, как говорится, проанализировать, – невозможно подойти и к рассмотрению всего вопроса в целом об алгебраических уравнениях. Ведь мало еще догадаться, каково решение, надо дознаться, почему оно такое, а не иное.

– Возьмем квадратное уравнение, – предложил Радикс, —

– 449 —

хорошо тебе известное. Что ты скажешь, если я предложу тебе для него такую формулу? Ты с ней согласишься?

x = 1/2[(x1 + x2) ± (x1x2)]

– Д-да… – сказал Илюша неуверенно. – То есть если припомнить общую формулу квадратного уравнения

(x1 + x2)(x1x2) = 0,

потом открыть в ней скобки

x2 – (x1 + x2)x + x1x2 = 0,

а затем применить к такому выражению всем известную формулу, для решения квадратного уравнения, то как раз и придешь к твоей формуле. И действительно, она показывает, как формула решения связана с корнями. Но ведь в квадратном уравнении все так просто!

– Боюсь, – вымолвил Мнимий, – что вас пугают эти самые альфы в формуле Лагранжа. Не так ли? А ведь мы о них недавно говорили… Вспомните-ка!

– Говорили…

– А что именно?

– Что с их помощью получаются все значения корней из комплексного числа…

– Разве? – сказал удивленный Радикс. – Как же это возможно? Мыслимое ли это дело?

Илюша посмотрел на своего друга укоризненно.

Что-то очень маленькое и беленькое вдруг упало у ног Илюши, а потом пошел целый снег из этих маленьких беленьких… Одна штучка упала Илюше прямо на руку, и он увидал, что на ладошке у него лежит крохотная беленькая альфа. А кругом так и сыплются все новые и новые маленькие беленькие альфы…

А Мнимий посмотрел на эту альфообразную метель и признался:

– А ведь в самой своей сущности я тоже альфа!

Илюша взглянул на него и сказал:

– Когда мы разбирали пример Бомбелли, я, кажется, понял, что под корнями в формуле Кардана стоят сопряженные комплексные числа… Ну вот, отсюда и альфы, чтобы получать один за другим все значения корня из комплексного числа! Теперь я как будто разобрался. Значит, Лагранж дал

– 450 —

формулу Кардана не просто в виде результата двух подстановок, а так, как она складывается из самых корней.

И тут альфовый снежок стал стихать.

– Так-с… – произнес наставительно Мнимий. – Это похоже на дело. Но теперь на минутку давайте снова вернемся к квадратному уравнению. Вы этого не бойтесь! Поверьте, что все те крупные ученые, которые это разбирали, тоже не раз вспоминали о квадратном уравнении. Так вот вам еще один вывод для формулы решения квадратного уравнения, причем чрезвычайно полезный. Нам ведь хорошо известно, что по формулам Виеты сумма корней квадратного уравнения (х2 + рх + q = 0) равняется коэффициенту при неизвестном в первой степени с обратным знаком, то есть:

х1 + х2 = – р.

Возьмем еще одно выражение, составленное из тех же корней, только не сумму, а разность, и возведем ее в квадрат:

(x1x2)2 = (x1 + x2)2 – 4x1x2 = p2 – 4q

Отсюда сразу можно написать, что

x1 + x2 = – p

x1x2 = ± √( p2 – 4q)

Сложим эти два равенства и сейчас же получим известную формулу решения квадратного уравнения. Не так ли?

– Так, конечно, – отвечал Илюша. – Из суммы этих выражений один корень получаем, а из их разности – другой. Все понятно. Выходит, что мы этим способом получили два уравнения первой степени. Раз нам нужно два решения, то мы можем к ним прийти через два уравнения первой степени… То есть я не знаю, всегда ли так должно получаться, но во всяком случае с квадратным уравнением именно так и получается…

– Допустим… – отвечал Мнимий. – Но лучше сказать, пусть так будет вплоть до первого противоречия с этим предположением либо допущением.

– А если встретится противоречие?

– Тогда посмотрим. Попробуем его обойти, а если не удастся, придется видоизменять наше допущение. Когда Лагранж, пытаясь обнаружить общее правило из разных решений алгебраических уравнений, нашел наконец свою замечательную формулу, он заметил, что три корня в ней надо брать в некотором вполне определенном порядке, а это на-

– 451 —

толкнуло его на новые плодотворные опыты. Если взять все три корпя кубического уравнения, то есть х1, х2 и х3, то, если их брать не только в той последовательности, которая оказалась необходимой – вместе с нашими помощницами, альфами, – но и во всех остальных…

– Интересно, – заметил Радикс, – а сколько будет этих всех остальных?

И оба, Радикс и Мнимий, внимательно посмотрели на нашего героя, Илью Алексеевича.

– Остальных последовательностей корней? – неуверенно повторил мальчик. – Не понимаю вопроса… Или, может быть, о порядке вы говорите? Тогда вы меня о перестановках спрашиваете?..

Не отвечая ни слова, Радикс и Мнимий все так же пристально смотрели на Илюшу, который чувствовал себя под их взглядами не в своей тарелке.

– … и уж если это так, – в полной неуверенности продолжал он, – то раз всего три корня, то, как их ни переставляй, выйдет только шесть различных последовательностей. И все.

Опять полная тишина. Вдруг Илюша почувствовал, что в его левой руке оказалась маленькая коробочка, и действительно, это был просто самый маленький Дразнилка с тремя шашками. Только на шашках были изображены символы корней:

Илюша начал машинально двигать шашечки, но ничего нового или интересного не обнаружил. Да, действительно, всего получалось шесть перестановок! Но он это давно знал:

(x1 x2 x3); (x2 x3 x1); (x3 x1 x2);

затем опять получается то же самое. А если переставить две шашки, ну, скажем, x2 и x2, то получатся еще три случая:

(x2 x1 x3); (x1 x3 x2); (x3 x2 x1);

а потом снова то же.

– Шесть, – согласился Мнимий, – спору нет. Но вам пришлось однажды что-то менять в первом расположении. Это как надо понимать?

– 452 —

– Это как бы два круга Дразнилки; первый можно назвать четным кругом, а второй – нечетным, потому что в первом случае одна шашка постоянно обходит две шашки, как и полагается в Дразнилке, а во втором сначала обходят одну шашку, и порядок меняется. Перейти от одного круга к другому, не вынимая одной шашки из коробочки, нельзя.

При перестановках каждый раз первая шашка попадает в конец направо.

– Все верно, – подтвердил Мнимий. – Итак, два круга, причем один в другой непосредственно не переходят..

– Да, и если отразить какую-нибудь перестановку первого (четного) круга в зеркале, то выйдет перестановка второго круга (нечетного).

– Хорошо, – подхватил Мнимий, – это важное замечание. Мы можем отметить, что названные вами два круга Дразнилки-Малого зеркально симметричны.

– Похоже, что так, – неуверенно произнес Илюша.

– Мы встретились с явлением, которое называют симметрией. Вы ведь знаете, что такое преобразование? – спросил Мнимий.

– Да, конечно, – отвечал Илюша, – например, подобие. Потом еще умножение на комплексный вектор, как мы уже в прошлой схолии рассматривали, подобие и поворот… А еще у нас дома есть подставка для чайника. Она раздвижная – может быть квадратом, а потянешь за уголки, получается ромб. Папа говорит, что это преобразование…

– А по-твоему, это что? – спросил Радикс. – Из квадрата – ромб, и обратно. Чем не преобразование? Такие преобразования называются аффинными. Если бы на квадрате был нарисован круг, что бы ты из него получил при аффинном преобразовании?

– Может быть, эллипс? – неуверенно ответил Илюша.

– А почему бы и нет?

– Я – «за»! – отвечал храбрый Илья.

– Присоединяюсь, – заключил Радикс.

– Так вот, – снова начал Мнимий, – чтобы ответить на вопрос, что такое симметрия, необходимо и ее тоже рассматривать как некоторое преобразование. У нас, например, есть равнобедренный треугольник; пусть его основание не равно одной из его сторон, значит, он симметричен относительно своей высоты; при повороте на 180° вокруг высоты он совместится сам с собой. Разумеется, мы не принимаем в расчет, какой стороной он к нам повернут. Равносторонний треугольник симметричен не только относительно высоты, но относительно каждой из своих высот (они же медианы и биссектрисы). Аналогично мы рассуждаем и о телах…

– 453 —

– Бабочка симметрична!

– Ну конечно! Это уже касается тела в пространстве.

Одним словом, явление симметрии – вещь понятная. Здесь преобразование – во всех наших случаях – сводится к повороту, но самым «процессом поворота» мы но интересуемся (этим делом механика занимается), а смотрим только на то, что из этого поворота получилось. Кроме поворота, еще возможно зеркальное отображение – симметрия относительно плоскости (с настоящим зеркалом) либо относительно прямой (как для сопряженных комплексных векторов) и параллельный перенос в плоскости или вместе со всей плоскостью. Это все геометрическая симметрия. Но возможна еще и симметрия в алгебраическом смысле, симметрия многочленов. Вот как раз в этом-то случае к нам и приходит на помощь понятие перестановки, с помощью которой мы можем уяснить и записать алгебраическую симметрию. Хотя, конечно, на первый взгляд перестановки непосредственно симметрией и не обладают, но, например, мы обнаружили, что все шесть перестановок из трех элементов разделяются на две части (по три), связанные между собой зеркальной симметрией. Если мы теперь возьмем формулы Виеты, известные нам по квадратному уравнению, но которые легко написать и для кубического уравнения, начиная с того, что свободный член всегда равен произведению всех корней, то…

– Значит, – перебил мальчик, – мы получим для уравнения:

х3 + ах2 + + с = 0,

если начать с такой записи уравнения:

(xx1) (хх2) (хх3) = 0,

такие выражения для его коэффициентов через его корни:

c = x1x2x3

b = x1x2 + x1x3 + x2x3

– а = х1 + x2 + х3.

Знаки меняются.

– Так-с… Так вот, именно эти выражения Виеты обладают очень важным свойством: они не меняются, если переставлять в них корни. Проверьте!

– Насчет а3 и с, конечно, верно, потому что это сумма и произведение. А как быть с b? Если поменять местами икс-первый и икс-третий?.. Верно! То же самое получается.

– Поэтому математики называют эти функции корней

– 454 —

из формул Виеты симметрическими функциями. Для алгебраических уравнений любых степеней они строятся по одному и тому же правилу, которое вы уже указали. А у кубического уравнения есть еще одно общее свойство с Дразнилкой Малым. Когда мы разбирали пример Рафаэля Бомбелли, вы ведь заметили, что кубические корни, им полученные, суть сопряженные комплексные числа, то есть величины неравные, хотя и геометрически зеркально симметричные. Свойство это заключается в том, что существует такая функция корней кубического уравнения, которая при всех перестановках может принять только два значения – это и будут подкоренные величины кубических корней в Кардановой формуле.

– Вроде, как два круга разной четности у Дразнилки Малого? – осторожно спросил Илюша.

– Похоже, но не больше… Эта функция, найденная Лагранжем, такова:

(х1 + αх2 + α2х3).

Она может принимать только два значения, поэтому появляется возможность приравнять их двум корням квадратного уравнения, что и позволяет нам построить Карданову формулу, то есть найти решение кубического уравнения. Вот как примерно через два века была выяснена сущность Кардановой формулы. Вслед за этим Лагранж рассмотрел и решение уравнения четвертой степени, которое приводится не к квадратному уравнению, а к кубическому, однако теперь это уже не страшно!

– А уж с четвертой степенью, наверно, ужасно трудно… – заметил Илюша.

– Да, не так просто! Но Лагранж и для этого уравнения нашел решение. Он вообще старался найти самый смысл решения, так сказать, ключ к этой удивительной загадке. И ему многое удалось. Он даже предполагал, что именно в перестановках весь секрет этих сложнейших дел и прячется. А потом оказалось, что это верно! Но все-таки даже и этой тонкой догадки еще было мало. Ученые бились над уравнением пятой степени, и Лагранжу с этой загадочной пятой степенью тоже ничего не удалось сделать. Он даже с горя начал поговаривать, что вообще с математикой дела плохи… Так что вы можете убедиться, что не только в средней школе с математикой огорчения случаются!

– Удивительные все-таки перестановки! Такие, мне казалось, простые…

– Сами математики долгое время не знали, какие в них таятся удивительные секреты, – отвечал Радикс, – и до чего полезные секреты! Физики, которые ныне занимаются строе-

– 455 —

нием атома, перестановкам уделяют много внимания. Алгебра теперь занимается главным образом математическими операциями и их соотношениями. Когда-то араб ал-Хорезми поругивал греческие геометрические «премудрости», расхваливая свою алгебру, которая помогает решать житейские арифметические задачи, а в разные отвлеченности, не интересные для торговой практики, не лезет. И оказалось в дальнейшем, что он жестоко ошибся! Как раз в алгебре-то и зародились самые отвлеченные разделы нашей науки. Благодаря этому развитию математика помогла физике осилить задачи, которые раньше казались совершенно недоступными.

– А как же все-таки получилось с уравнением пятой степени?

– Сейчас я разъясню, – отвечал Мнимий – Я снова прошу внимания! Здесь есть один важный и трудный пункт… Тут вот в чем дело: Лагранж, человек редкой наблюдательности и проницательности, когда стал изучать симметрические функции, довольно скоро заметил, что знать только одни симметрические функции еще не достаточно для того, чтобы решить кубическое уравнение. И что в формуле Кардана незаметно запрятан еще какой-то важный секрет, без которого смысл ее все-таки еще остается темен. В чем же тут дело? Самый трудный пункт здесь в том, что самые симметрические функции не позволяют еще отличить один корень от другого, и надо найти еще одну несимметрическую функцию корней, которая, в случае квадратного уравнения, принимает всегда одно-единственное значение (а для кубического уравнения– ровно два и не больше). Приглядитесь сами к решению квадратного уравнения. Там мы получаем две функции симметрические:

x1 + x2 = —p; x1x2 = q.

Но что с ними делать? Ведь чтобы разделить эти два корня, надо опять решать то же самое уравнение? Выходит, что мы мучались-мучались, а все равно не сдвинулись с места! Так вот, в том-то и заключается вся сила, что возможно найти еще одну функцию корней, которая уже не будет симметричной и – а это-то и есть основное! – принимает одно и только одно значение. Это и будет функция (x1x2), о которой мы уже говорили. А зная сумму и разность наших корней, мы их немедленно находим, и при этом из уравнения первой степени, но не второй! Теперь – готово! Степень уравнения мы понизили, все в порядке. Совершенно так же для кубического уравнения мы ищем несимметрическую (знакопеременную) функцию, принимающую только два значения. Для уравнения четвертой степени это будет несимметрическая функция

– 456 —

с тремя значениями. Но дальше уже стоит незыблемая точка. Дальше этого в уравнениях с радикалами двинуться невозможно. Подробности вы когда-нибудь узнаете из учебника высшей алгебры, а ваш милый друг Дразнилка-Малый будет вам помогать изо всех своих крохотных силенок! Не думайте, что вы случайно, на первых же шагах, с ним встретились здесь у нас – в серьезном волшебном царстве для любознательных ребят!

Вы ведь поняли, наверно, что перестановки корней – когда их всего три или четыре – обладают тем полезнейшим свойством, что с их помощью можно отыскать такую функцию корней, для которой число значений меньше числа корней данного уравнения. У кубического уравнения три корня и можно составить шесть перестановок, но можно найти такую функцию корней, которая имеет только два значения, как мы уже говорили. Уравнения четвертой степени имеет четыре корня, их можно переставлять двадцатью четырьмя способами. Есть функция, имеющая только шесть значений, но с ними можно справиться, опираясь на помощь кубического уравнения.

– То есть вроде как мы делаем в наших биквадратных уравнениях?..

– Именно в этом роде. Но вот далее нас и подстерегает разочарование. В 1799 году итальянский врач и математик Руффини, занимаясь систематическим изучением перестановок, нашел и доказал теорему, что от пяти элементов (у которых будет сто двадцать перестановок) не существует таких функций, которые имели бы четыре или три значения. А если так…

– Значит, степень уравнения нельзя понизить?.. – воскликнул Илюша.

– Выходит, – ответил Мнимий, – что дальше уж нельзя.

С уравнением пятой степени было не просто полторы тысячи неудач, а нечто более серьезное: оказалось, что в этом роде задача не только не имеет решения, но и иметь не может. В работе Руффини еще не все было очень гладко, а через сравнительно короткий срок гениальный молодой математик норвежец Абель дал безупречное доказательство положениям Руффини. Затем Абель нашел еще новые подробности насчет алгебраических уравнений. Коротко это можно так изложить: если уравнение таково, что между его корнями существуют некоторые сравнительно несложные отношения, его можно решить в радикалах. Но, к сожалению, для уравнений выше четвертой степени такие свойства имеют многие отдельные виды уравнений, но отнюдь не все. Вскоре этой задачей занялся гениальный юный француз Эварист Галуа, погибший

– 457 —

на поединке с наемным убийцей, подосланным подлой полицией тогдашнего реакционного французского правительства. В ночь перед трагической гибелью юный математик набросал свою работу. А она увидела свет только через четырнадцать лет после того, как ранняя могила поглотила этого замечательного юношу. Ему было всего двадцать лет…

– А его работа была очень сложная?

– Даже весьма сложная! – отозвался Мнимий. – Многие вопросы и решения снова оказались связанными с той же самой симметрией, но в еще более хитроумном виде по сравнению с тем, о чем мы уже говорили. Введены были и некоторые новые крайне важные общие понятия, сыгравшие свою роль не только в алгебре, но обогатившие и другие разделы нашей науки. Самый процесс постепенного упрощения уравнений был изучен во всей сложности. Для целого ряда, казалось бы, неодолимых препятствий были придуманы обходные хитрые пути, а затем и они сами подверглись исследованию, изучению, так что весь этот раздел математики сам превратился в исследование того, как именно строятся методы решения задач и на чем они в сущности своей основаны. Методы Галуа дали результаты удивительные и неожиданные: если мы сейчас не только убедились на опыте, но и знаем, что с помощью линейки и циркуля невозможно решить кубическое уравнение, то доказано это было в точности только после Галуа. Уравнения любой степени, у которых все коэффициенты при неизвестном в любой степени вплоть до нулевой (то есть, значит, до свободного члена) равны единице – а это и есть общее уравнение деления круга (с одним из них мы познакомились в предыдущей схолии), – всегда решаются, потому что они могут быть сведены к целой цепи уравнений низших степеней. Это опять же до конца разъясняется тем же Галуа. Однако я могу привести только отдельные примеры, хотя и они очень убедительны. В этом направлении наука сделада гигантские шаги. И чем дальше ученый забирается в глубь строения своих методов, тем меньше ему служит то, что можно сразу охватить наглядно. Поэтому вопросы рассуждения, то есть логики, получают все большее и большее значение. Ну вот! Это приблизительно все, что мы способны вам рассказать из этой удивительной, но крайне трудной и весьма отвлеченной области науки[40]40
  По этому вопросу см. книгу «Математика, ее содержание, методы и значение». М., АН СССР, 1956, т. I, статья Б. Н. Делоне «Алгебра», стр. 257-261.


[Закрыть]
.

– Да, все-таки очень сложные формулы! – вздохнул Илюша.

– 458 —

– Да ими и не пользуются, – отвечал Мнимий, – имеются гораздо более доступные средства в дифференциальном исчислении.

– Ну-с, молодой человек, – выговорил степенно Радикс, – голова на месте?

– Кажется, на месте, – отвечал Илюша. – Трудно ужасно, так длинно!..

– Не так еще ужасно! – отвечал преспокойно Радикс. – А ты, кстати, видел, какую траекторию в пространстве описал тот советский спутник, который умудрился снять фотографию Луны с той ее стороны, которую с Земли не видно? Как ты полагаешь, очень легко было ее вычислить?.. Ну, а громадные турбины на гидростанциях, их рассчитать просто? А скоростные и высотные самолеты? А счетные электронные машины? Ведь это все необходимые и неизбежные устройства в нашем веке! А расчеты, касающиеся атома и всего его строения, так это еще во много-много раз труднее. Но люди, твои современники, одолевают! Да еще каждый день и каждый час идут вперед… Так что хочешь не хочешь, а поспевать всюду надо!

– Конечно, – покорно пробормотал Илья, – я ведь не спорю…

– Тогда чем же ты недоволен?

– Мне ужасно обидно, что я все-таки самого главного не понимаю! Не понимаю, и все!

– Ишь какой сердитый! – заметил Радикс. – Из-за чего ты так раскипятился?

Илюша даже раскраснелся от волнения.

– Не могу поверить, чтобы эти Мнимии были просто открытием. По-моему, они в то же время еще и чье-то изобретение…

– Видишь ли, – отвечал ему Радикс, – всякое открытие если и не изобретение, то путь к нему. Открытие явления электрической индукции кончилось сооружением динамо-машины, то есть изобретением. Оно было основано на использовании открытия об индукции. Здесь, в вопросе насчет Мнимия, дело обстоит несколько сложнее, а в общем довольно похоже. Человек, изучая алгебраические уравнения, натолкнулся на эти «странные» комплексные числа. Оказалось, что анализировать некоторые очень важные вопросы алгебры без них невозможно – это было открытие! Но в дальнейшем, когда ученые постепенно примирились с этими «странностями», оказалось, что эти замечательные орудия научного прогресса крайне важны и для техники (в электротехнике, в самолетостроении, например), и тогда комплексное число стало привычным. Догадка – великое дело в науке! Но ведь

– 459 —

догадку надо обосновать, чтобы знать, где она пригодится, а где нет. И когда начинается обоснование догадки, начинается и самое построение этого образа или понятия, тогда это логическое построение понятия в известном смысле можно назвать изобретением, например, математические обозначения. Понятие интеграла, о котором мы уже говорили, было найдено, то есть открыто, примерно в одно и то же время Ньютоном и Лейбницем. Но Лейбниц придумал такие удобные обозначения в этом новом разделе нашей науки, которые сразу всем очень помогли, и вот это было именно изобретением[41]41
  Многое может пояснить книжка М. М. Постникова «Теория Галуа» (*) (М., Физматгиз, 1963), однако она требует внимательного чтения. Кроме того, уже упомянутая книжка У. У. Сойера (последние главы, особенно гл. XIV) многое расскажет нашему читателю о замечательных достоинствах теории Эвариста Галуа. Некоторые историки науки полагают, что эта теория открыла новую эпоху в математике.
  В маленькой полезной книжке И. Я. Бакельмана «Инверсия» (М., «Наука», 1966, Серия «Популярные лекции по математике», вып. 4) читатель найдет теорему Птолемея (о которой у нас говорится на стр. 445), а также и краткие указания о теореме Галуа (см. стр. 52-54, 65 и далее). О решении кубического уравнения можно узнать из книги Г. М. Шапиро «Высшая алгебра» (М., Учпедгиз, 1938, изд. IV), гл. V, § 2; о симметрических функциях – гл. IV, стр. 123 и 145. Теорема Галуа упоминается в гл. VIII, § 4, стр. 311. Кроме того, мы настоятельно советуем нашему многоуважаемому читателю раздобыть себе прекрасную книгу Г. С. Кокстера «Введение в геометрию» (М., «Наука», 1966), где он найдет целый ряд интереснейших вещей, изложенных мастерски и с большим остроумием. А если кому-нибудь вздумается еще кое-что серьезное узнать о великих подвигах комплексных чисел, то можно посоветовать прочитать статью А. П. Юшкевича об определенном интеграле Коши (см. сборник «Труды института истории естествознания», М., АН СССР, 1947, т. I, стр. 373 и далее).


[Закрыть]
.

– Так вот-с… – промолвил Мнимий, – в заключение я должен буду еще сделать три важных замечания к нашей этой последней беседе. Первое заключается в том, что замечательные труды ученых о решениях уравнений высших степеней привели к выводу, что многие трудные вопросы по части уравнений можно уподобить двум очень простым задачам: 1) извлечению квадратного корня и 2) извлечению корня шестой степени. Первая задача не поддается никакому упрощению, тогда как вторая может быть разбита на две ступени – извлечение кубического корня, а затем из результата – извлечение квадратного. Так вот, общее решение уравнения пятой степени относится именно к первому классу задач. Второе – это то, что все подобного рода задачи очень тесно связаны


    Ваша оценка произведения:

Популярные книги за неделю