355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Сергей Бобров » Волшебный двурог » Текст книги (страница 20)
Волшебный двурог
  • Текст добавлен: 30 марта 2017, 07:30

Текст книги "Волшебный двурог"


Автор книги: Сергей Бобров



сообщить о нарушении

Текущая страница: 20 (всего у книги 31 страниц)

Разумеется, успехи вавилонских вычислителей-астрономов очень помогли этому. В Греции возникла пифагорейская школа мыслителей, которая учила, что все на свете определяется числом, причем целым. Значение этой школы в том, что она утверждала; мировой порядок есть нечто от человека не зависящее, что законы природы представляют собой не просто что-то таинственное, но нечто сложное, однако постижимое для человека. И вот при разработке этого учения древние мыслители столкнулись с явлением, которого не знал Древний Восток, – с иррациональностью, которая никакими числами точно выражена быть не может. Это открытие разрушило веру в целое число, а с другой стороны, показало, что геометрия в некотором смысле сильнее арифметики, ибо построить корень из двух нетрудно, а вычислить невозможно.

– 309 —

– Значит, – решил Илья, – это и было одним из завоеваний новой науки?

– Конечно! – ответил Радикс. – Иногда оно выражалось очень странно. Например, утверждали, что геометрия великая наука, а простой счет, которым люди пользуются на базаре, – нечто жалкое и убогое…

– Теперь понять это нетрудно, а тогда… – продолжал Коникос. – Греки постепенно создали такую геометрическую алгебру, где при помощи построений решались довольно сложные задачи. Причем весь ход решения, все рассуждения от начала до конца можно было проследить, обдумать и провести с точки зрения логики точно и ясно. Ясное размышление и точное доказательство – вот драгоценный вклад Древней Греции в математику.

– Но ведь все нельзя точно доказать? – усомнился Илюша. – Многое люди делают и без доказательства.

– Конечно! – подтвердил Коникос. – Мы и говорили о том, как целые поколения простых тружеников, ремесленников, со временем совершенствуя свое мастерство, добиваются замечательных успехов. А осмыслить эти достижения очень трудно. Догадка – великое дело! И обычно она идет впереди рассуждения. На опыте не только человека, но даже насекомого – пчелы, мы видим, что за миллионы лет пчелиное искусство строить соты приобретает такие качества, которые только и можно выразить математически: соты при наименьшем количестве израсходованного материала (воска) обладают наибольшей вместимостью. И это обстоятельство не осталось у греков незамеченным. Но преимущество человека перед пчелой то, что он не только может учить своего преемника на живом примере, но может еще кое-что объяснить и записать…

– Все это очень интересно! Расскажите, пожалуйста, еще про Древнюю Грецию, – попросил Илюша.

– Новый мир Древней Греции, – продолжал Коникос, – был уже в полном своем расцвете. Замечательное различие между людьми из восточных стран, где царили неумолимые деспоты, и людьми нового мира, греками, заключалось в том, что раб деспота умел только исполнять повеления, тогда как в греческом, более свободном государстве, человек научился рассуждать, опираясь не просто на приказы, а на подлинные законы общежительного мира, которые, в свою очередь, состояли из законов природы и великих достижений человеческого труда и опыта. Греки заимствовали у своих соседей ряд важных социально-экономических нововведений: у одних они заимствовали простую и удобную азбуку, у других – чеканную монету, что в результате очень облегчило торговые связи, а

– 310 —

вскоре восточные царства пали под натиском греческого оружия. Вспомни-ка походы Александра! А затем в новом богатом эллинистическом мире, где смешались древневосточная культура и греческая городская цивилизация, произошли и новые математические открытия. Великий философ Древней Греции Аристотель, основатель научной логики, учил, что геометрия занимается вещами недвижимыми, если не считать того, что двигается по небу, то есть тела небесные. Но вскоре понятие движение вошло и в геометрию. Аристотель в свое время учил, что точка «не может двигаться», что она есть пересечение двух прямых, подобно тому, как прямая – пересечение двух плоскостей, а плоскость – граница объема. Но пришло время новых задач, более трудных, и они потребовали ввести в геометрию движение.

– Вообще, – добавил Радикс, – в древности, а также и в средневековье полагали, что геометрия строится путем чистого рассуждения и как бы независимо от опыта, что, разумеется, неправильно. Отсюда делался необоснованный вывод, что такого рода наука в некотором смысле выше наук опытных, так как опыт, дескать, может и обмануть. Греческий философ и математик Платон утверждал, что геометрия «разрушается», если мы «низводим ее к чувственному миру», то есть к миру опыта, вместо того чтобы «насыщать ее невещественными и мысленными образами», то есть плодами чистого рассуждения и размышления. Отчасти это было полезно тем, что люди научились рассуждать абстрактно, а в этом был, конечно, свой смысл. Наконец греки столкнулись с задачами, к которым с помощью таких рассуждении подойти было невозможно.

И тогда-то в геометрические задачи и вторглось нечто совершенно новое, а именно движение.

– А что же тут такого? – спросил Илюша. – Почему же нельзя рассуждать о движении в математике? Разве это так сложно?

– Спустя много веков после того, как греки впервые подумали об этом, конечно, вопрос этот кажется совершенно несложным. А в то время это было не так-то просто. Геометрия Востока учила главным образом вычислять площади. Греки сами немало потрудились над определением объемов. Но вое это касалось свойств некоторых неподвижных и вполне определенных тел и фигур. Когда же дело коснулось линий, порожденных движением, то возникло немало споров о том, что такое движение, можно ли говорить о нем с той же строгостью и точностью, с какой мы говорим о геометрических соотношениях. И были такие философы, которые утверждали, что говорить о движении вообще невозможно, что это понятие разрушает всю человеческую логику.

– 311 —

– Как странно это! – сказал Илюша. – Впрочем, мне вспоминаются стихи Пушкина:


 
Движенья нет, сказал мудрец брадатый,
Другой смолчал и стал пред ним ходить.
Сильнее бы не мог он возразить;
Хвалили все ответ замысловатый.
Но, господа, забавный случай сей
Другой пример на память мне приводит:
Ведь каждый день пред нами солнце ходит,
Однако ж прав упрямый Галилей.
 

Но что же такого в движении, что оно казалось таким неопределенным?

– При рассмотрении движения древние мыслители сталкивались с большим для них затруднением, которое представляло тогда понятие непрерывности, ибо для понимания движения следовало представить себе, что движущееся тело проходит через бесконечное множество промежуточных положений. Вспомни рассказ про Ахиллеса и черепаху из Схолии Двенадцатой.

– Как же они применили движение в геометрии? – спросил Илюша.

– Ну вот, – сказал Асимптотос, – посмотри, как решил задачу о трисекции угла греческий математик Гиппий Элидекий, современник Сократа, в пятом веке до вашей эры. Возьмем квадрат ABCD. Радиусом АЕ, равным стороне квадрата, проведем четверть окружности BED.

Приведем теперь радиус АЕ в совпадение со стороной АВ и будем поворачивать его по движению часовой стрелки по направлению к стороне AD. В то же время будем перемещать сторону ВС вниз параллельно ей самой так, чтобы это перемещение шло равномерно, согласованно с движением радиуса.

– Не понимаю, – сказал Илюша. – В каком смысле согласованно?

Сторона ВС опускается вниз; радиус АЕ поворачивается вокруг точки А по часовой стрелке. Кривая BFG называется квадратрисой. Она есть геометрическое место точек пересечения двигающихся линий ВС и АЕ. АВ=ВС=АЕ.

– 312 —

– В таком, что обе линии начинают двигаться в один момент, а затем в один и тот же момент сливаются с линией AD.

Если они будут двигаться именно так, то когда линия ВС пройдет половину стороны АВ, радиус АЕ пройдет половину угла BAD. Следовательно, если линия ВС пройдет четверть своего пути, то и радиус АЕ пройдет четверть прямого угла, и так далее. Будем теперь отмечать точки пересечения радиуса АЕ и стороны ВС. Геометрическим местом этих точек пересечения будет кривая BFG, намеченная пунктиром. Очевидно, что мы можем получить любое число таких точек, то есть построить всю кривую BFG. Когда же это сделано, нам достаточно разделить сторону CD на любое число равных частей, чтобы разделить угол на то же число частей. Если я разделю сторону CD на три части, как показано на этой странице, и проведу через точки H и I линии, параллельные стороне ВС, то точки пересечения этих прямых НК и IL с кривой BF1F2G, то есть точки F1 и F2, достаточно соединить прямыми с точкой А, чтобы разделить угол BAD на три части. И подобным же образом можно поступить не только с прямым, но и с любым углом и с любыми его частями, то есть разделить любой угол на любое число частей. Видишь, как все это просто и как остроумно решено.

– Да! – сказал Илюша. – Правда, очень просто! А что же это за кривая?

– Кривая эта называется квадратрисой. Это гораздо более хитрая кривая, чем те, с которыми древние геометры имели дело до нее. Следовательно, древним для решения этой задачи пришлось изобрести новую кривую. Именно это решение и вводит в ход рассуждения движущиеся линии, тогда как раньше речь шла только о соотношениях неподвижных линий. Говорят, философы были недовольны и считали, что это решение не геометрическое, а механическое. Но опыт показывал, что решение получается скоро и просто.

– Вот, значит, – добавил Асимптотос, – и выходит, что, заставив точку непрерывно двигаться и, полагая, что она, дви-

– 313 —

гаясь, может начертить кривую, мы и получаем несложное средство для деления угла на любые части. Только в дальнейшем выяснилось, что сама эта кривая значительно сложнее и окружности и параболы. Но тем не менее был найден новый способ для решения задач. Это одна из так называемых «механических кривых» древности. «Механической» она называлась потому, что ее тогда невозможно было обосновать теоретически из геометрических соображений. И как ни странно, ни одна из таких «механических» кривых не повлияла непосредственно на развитие древней науки. Они стали приносить пользу только уже во времена Ньютона. Древняя математика еще не в силах была осмыслить их. Догадаться, как надо сделать, смогли, а рассудить почему – не сумели. Поэтому и философы ворчали и говорили, что это «не настоящая» геометрия.

– Однако имей в виду, – заметил Радикс, – что в руках Архимеда этот способ чертить кривые при помощи движущейся точки дал необыкновенный результат.

– Какой?

– Ты, наверно, знаешь, что такое граммофонная пластинка?

– Еще бы! – отвечал Илья не без удивления. – У нас их очень много.

– Очень хорошо – одобрил Радикс. – А теперь скажи, пожалуйста, какую кривую описывает иголка звукоснимателя, когда она бежит по бороздке пластинки?

– Папа говорит, что это спираль…

– Верно. Так эту самую спираль и нашел Архимед. Она так и называется «спираль Архимеда». Точка чертит спираль.

– А как она чертит? Я понимаю, как иголка бежит по пластинке. Но как это получается с точкой?

– В проигрывателе пластинка вращается. Но в нашем опыте мы ее оставим неподвижной, а в центре укрепим отрезок прямой и, пользуясь нашими волшебными возможностями, прикажем отрезку: вращайся вокруг этой средней точки против часовой стрелки (это направление мы будем считать положительным), но при этом увеличивайся в длине в соответствии с углом, на который ты повернулся. Чтобы нам удобней отсчитывать вращение отрезка, мы направо от точки в середине проведем горизонтальную прямую и назовем ее полярной осью. Пока отрезок – радиус-вектор – будет еще лежать на полярной оси, угол его с ней равен нулю, а затем он будет увеличиваться. Итак, вперед!

Тотчас в полутьме возникло все, что заказал Радикс: в середине светилась оранжевая точка, а от нее направо шла ро—

– 314 —

зовая полярная ось. Что-то очень маленькое лежало на этой оси…

– А, Мнимий Радиксович! Мое почтение! – воскликнул Илюша.

И Мнимий, возникший из средней точки, стал вращаться, постепенно вырастая, и своим кончиком чертить спираль Архимеда. Описав несколько витков, Мнимий исчез, а спираль так и осталась висеть в воздухе.

– Эта спираль, – сказал Коникос, – умеет делить как угодно любые углы. А с ее помощью Архимед даже построил очень точно длину, окружности.

– Длину окружности? – воскликнул Илюша. – Да ведь это что-то вроде квадратуры круга! Разве это можно?

– Для такой умницы спирали оказалось возможным, – произнес Коникос[25]25
  О спиралях Архимеда можно прочесть в книге «Историко-математические исследования», выпуск VI. М., Гостехиздат, 1953, стр. 623-648; статья И. Г. Башмаковой (*) «Дифференциальные методы в работах Архимеда», § 3-6. См. Схолию Девятнадцатую.


[Закрыть]
.

– Так вот каким образом греки, решая геометрические задачи, пришли, во-первых, к новым основаниям для геометрических суждений и убедились до некоторой степени, что геометрия не такова, какой они себе ее представляли; во-вторых, они пришли к новым кривым, неизвестным египетским вервиетягателям, о которых вспоминал Демокрит. Именно его атомистическая теория, кстати сказать, и привела к новым удивительнейшим открытиям в математике.

– Как же это так? – спросил Илюша. – Ведь атомы – это касается физики и химии. А при чем здесь математика?

– Мы уже говорили о том, как связана математика с изучением природы, поэтому вполне естественно, что человек, который пришел к убеждению, что весь мир состоит из атомов, начинает думать и о том, что геометрические образы, то

– 315 —

есть кривые, площади, объемы, тоже как бы составлены из некоторых элементарных частиц. Кроме того, в таком деле играет очень большую роль опыт. В одном своем сочинении Архимед рассказывает, что Демокрит нашел объем конуса и показал, что его объем равен одной трети объема цилиндра с тем же основанием и той же высотой. Проверить это на практике, то есть путем опыта, ровно ничего не составляет. Любой слесарь сделает тебе цилиндр, то есть ведерко, и конус. Налей в ведерко воды, смеряй конусом, сколько ее там, и найдешь это соотношение. Вот что говорит тебе опыт. Если не поверишь первому опыту, можешь повторить его, сделав цилиндр и конус, например, с другим основанием. И снова ты убедишься, что соотношение это правильно. Необходимо только найти логический способ, которым можно это доказать без участия слесаря.

– Значит, Демокрит раньше теоремы своей уже знал это решение? – спросил заинтересованный Илюша.

– Возможно, что и так. Возможно и обратное. Может быть, он сперва вывел свою теорему, а потом проверил ее на опыте. Но еще более вероятно, что он узнал ее от слесаря, кузнеца или медника, которые благодаря своему ремеслу сталкивались с такого рода соотношениями уже не раз. Кстати сказать, теорема эта была доказана со всей необходимой строгостью гораздо позже Демокрита. Весь вопрос заключался в том, чтобы вывести это – такое простое на вид – соотношение теоретически. И я не знаю, с чего начал Демокрит: атомистическая ли теория привела его к этому решению или это решение привело его к мысли об атомах.

– Как это интересно! – воскликнул Илюша. – Значит, у них и физика, и философия, и геометрия – все было вместе?

– Конечно. Над входом в одну греческую академию было написано: «Да не входит сюда никто, кто не знает геометрии!»

– А как Демокрит решил эту задачу?

– Решил он ее вот как. Он предположил, что конус можно весь разрезать на очень тоненькие кружочки, если резать параллельно основанию, то есть на цилиндрики с очень малой высотой. Правило, по которому изменяется диаметр кружков, вывести не очень трудно. Мы этого пока еще делать не будем, так как сейчас речь не о выводе формулы, а о способе рассуждения, с помощью которого ее можно вывести. Теперь допустим, что цилиндриков не только очень много и толщина их ничтожно мала, но что число их безгранично увеличивается, а толщина тем же порядком уменьшается. Конус заменяется ступенчатой фигурой из кружков. Конечно, это ступенчатое тело не есть конус, но чем дальше я буду уменьшать толщину кружков, которых будет накопляться все больше и больше,

– 316 —

тем меньше это ступенчатое тело будет отличаться от конуса.

Допустим, что высота конуса равна 500 мм, а цилиндрики, на которые его режем, сделаны из бумаги, толщина которой примерно равна 0,05 мм, следовательно, всего в конусе их будет десять тысяч. Вряд ли такой конус, склеенный из десяти тысяч листов бумаги, можно отличить от сделанного, скажем, из гипса. А так как объемы цилиндров определить нетрудно, то таким путем мы определим и объем конуса.

Конус разбивается на маленькие цилиндры.

– Что-то я плохо понимаю, – грустно сказал Илюша.

– Ничего! Не падай духом! Слушан хорошенько и понемногу поймешь, – подбодрил его Радикс. – Ясно, что когда я заменяю маленький усеченный конус маленьким цилиндром, то делаю ошибку. Но эта ошибка, вычисленная в процентном отношении к измеряемой величине (так называемая «относительная ошибка»), будет сколь угодно мала. Ведь можно взять настолько тонкие кружки, что объем, которым я пренебрегаю, составит, например, менее одной десятой, либо сотой, либо тысячной процента и так далее по отношению к объему конусика (или цилиндрика; считай как хочешь, это неважно). Но раз это так, то нетрудно сообразить, что если суммировать цилиндрики, то и искомый объем большого конуса тоже будет с той же относительной ошибкой, то есть менее одной десятой, либо сотой, либо тысячной процента и так далее по отношению к истинному объему. Следишь ли ты за развитием моего рассуждения?

Усеченный конус и цилиндр.

– Да-да! – ответил поспешно мальчик. – Слежу и пока, кажется, все понимаю.

– Приятно слышать. Ну, слушай далее! Итак, если конус высотой в метр делить на кружки, толщина которых равна одному микрону, то есть тысячной доле миллиметра, то велика ли – опять-таки в процентах! – будет разница между объемом кружка и объемом усеченного конусика, на которые делится конус, если действовать совершенно точно?

– Нет, – ответил Илюша. – Раз каждый кружок будет толщиной в микрон, то наверно разницу-то и заметить будет невозможно.

– Справедливо, – отвечал Асимптотос. – Но ведь у нас нет надобности резать на самом деле конус на кружки, нам достаточно только вообразить это, ибо мы это делаем только для рассуждения, а если так, то никто не мешает нам допустить, что мы будем разрезать каждый кружок в тысячную долю миллиметра толщиной еще на миллион сверхтончайших кружков. Как ты тогда обнаружишь разницу между объемом кружка и элементарного усеченного конусика? А ведь в рассуждении я могу повторять мое деление на миллион еще любое число раз. Этот метод деления объема на крайне малые объемы

– 317 —

назывался в древности «методом исчерпания», ибо такими крохотными объемами мы как бы «исчерпываем» данный объем.

– Значит, – сказал Илюша, – мы будем все делить и делить, и «высота-толщина» цилиндрика-кружка будет изменяться…

– Как и полагается переменной величине! – сообщил многозначительно Радикс.

– Ну да, – отвечал Илюша, – конечно, если она все время меняется, то ясно, что это величина переменная. И так она изменяется, уменьшаясь и приближаясь, – я думаю, здесь можно сказать – к некоторому пределу?

– Разумеется, – отвечал Асимптотос, – так сказать не только можно, но даже и должно. Но вот вопрос: к какому именно пределу стремится эта твоя «высота-толщина»?

– Мне кажется, – осторожно произнес Илюша, – что если она будет уменьшаться все больше и больше, то естественно, что пределом ее будет нуль.

– А мы уже говорили в Схолии Двенадцатой, – заметил Радикс, – что если переменная величина имеет своим пределом нуль, то мы называем ее бесконечно малой. А это обозначает, что какое бы малое положительное число ни задать, в течение ее изменений наступит момент, начиная с которого ее абсолютная величина станет и будет оставаться меньше этого числа.

– Это я понимаю, – отвечал Илюша. – Но ведь это еще не все. А что же делается в это время с числом кружков-цилиндриков?.. Мне кажется, что число их в это время растет безгранично.

– Разумеется. Однако не забудь о том, что я собираюсь получить при помощи такого деления на кружки вовсе не приближенный объем конуса, а совершенно точный! Ведь мы действительно убедились с тобой, что в процентном отношении к искомому объему разница может быть сделана сколь угодно малой, если мы будем уменьшать толщину цилиндриков. Убедились мы также и в том, что если в каждом слагаемом мы сделаем ошибку меньше тысячной процента, то при вычислении всей суммы общая ошибка не может превысить того же самого процентного отношения. Не так ли? Тебе все здесь ясно?

– Как будто так, – отвечал Илюша. – То есть этот множитель-ошибка при суммировании просто выйдет за скобку?

– Ну разумеется! А теперь сообрази-ка, что же получится в пределе. Разницу между истинным объемом конуса и суммой можно сделать меньше 0,001, или меньше 0,000001 процента, то есть одной миллионной, или меньше

– 318 —

0,0000000000000000001, то есть одной десятиквинтиллионной процента.

– Постой-ка! – воскликнул Илюша. – А нельзя ли изображать и десятичные дроби через отрицательные степени «десяти»?

– Разумеется, можно. 101 будет 10; 10-1 – единица, деленная на 10, то есть 0,1, ибо,

10-1 = 10n / 10n+1 = 1 / 10 = 0.1

а следовательно, 10-2 будет 0,01, и так далее.

– А тогда, – сказал Илюша, – эти проценты я запишу так: вместо 0,000001 – 10-6, а вместо 0,0000000000000000001 – 10-19.

Но если делать так, то, значит, можно и здесь воспользоваться самыми громадными делителями единицы, вплоть до того невероятного архимедова числа в сто шестьдесят биллионов километров длиной, о котором мы говорили в Схолии Десятой. Слушай, Радикс! Скажи мне, пожалуйста: может быть, Архимед именно это и имел в виду, когда сочинял «Псаммит»?..

– Весьма вероятно! И очень хорошо, что ты сам теперь это понял.

– Но если, – продолжал далее мальчик, – точность суммы неограниченно возрастает за счет увеличения числа цилиндров и утончения их, то ясно, что в пределе я и получу совершенно точно искомую величину!

– Так, – отвечал Коникос. – Вот выходит, что «чем больше ошибок ты сделаешь, тем лучше окажется твой результат», ибо чем больше ошибок, тем каждая из них меньше. А отсюда ясно, что ты действительно имеешь возможность при вычислении объема конуса разбивать его на тончайшие слои и считать каждый слой цилиндром, пренебрегая теми крохотными колечками (они у нас останутся, если из каждого цилиндрика вычесть соответственный усеченный конусик), которые представляют собой бесконечно малые более высокого порядка. А это уже величины такой малости, что по сравнению с ними бесконечно малые первого порядка, о которых мы до сих пор говорили, суть величины бесконечно большие.

– А все-таки есть одна вещь, которую мне очень трудно усвоить! – вздохнул Илюша. – Как это так можно чем-нибудь пренебрегать в математике?

– Чем можно пренебрегать, а чем нельзя, мы узнаем первоначально, разумеется, из опыта. Замечательный физик и мыслитель девятнадцатого века Больцман утверждал, рас—

– 319 —

суждая о вопросах, близких к тем, о которых мы сейчас говорим, что не логика решает в конце концов, правильна ли данная система размышлений или неправильна. Решает этот вопрос дело, то есть наша человеческая повседневная деятельность. «То, что ведет нас к верному делу, – говорил Больцман, – то и есть истина». И если бы мы с помощью данных рассуждений не могли достигнуть некоторых неоспоримых практических результатов, то никогда и не могли бы установить, как же, наконец, следует рассуждать – так или иначе. Если я путем такого процесса бесконечного уменьшения слагаемых кружков получаю правильное решение, то, следовательно, и способ мой правилен.

Длина окружности не может быть больше периметра описанного многоугольника и меньше перимерта вписанного. Однако если бесконечно удваивать число сторон многоугольников, то оба перимера будут приближаться к длине окружности, как к переделу.

Конечно, затем нужно обсудить теоретически, обосновать и осмыслить все эти операции. Очевидно, что можно так обращаться с конусом только в том случае, если есть возможность убедиться, что этим путем я действительно могу приблизиться к некоторому пределу. И вот так-то, перерешав бесчисленное множество таких задач, люди и научились складывать бесконечно малые величины и узнали постепенно их свойства. Ничего нет удивительного в том, что человек, который никогда не имел дела с бесконечно малыми, не знает, как с ними обращаться. Что же касается понятия предела, то тут вот что можно сказать для выяснения. Ясно, что периметр вписанного многоугольника, если мы будем последовательно удваивать число его сторон, должен безгранично приближаться к длине окружности. Стать больше ее он не может, ибо ведь он вписанный, а не описанный, но, увеличиваясь, он все тесней и тесней приближается к ней по мере новых удвоений его сторон. Отсюда мы можем прийти к определению длины окружности как предела периметров вписанных многоугольников, если мы безгранично удваиваем число их сторон. С другой стороны, и периметр описанного многоугольника при бесконечном удвоении числа сторон также будет стремиться, уменьшаясь, к тому же пределу, то есть к длине окружности. Стать меньше ее он не может, так как он описанный, а не вписанный. Длина окружности лежит всегда между периметром описанного и периметром вписанного

– 320 —

многоугольников. Она меньше первого и больше второго. И оба стремятся к ней. Поэтому можно проверять одно приближенное решение при помощи другого и установить границы, между которыми лежит искомая величина, наподобие того, как Архимед установил, что правильное значение корня квадратного из трех лежит между двумя неправильными дробями.

265/153 и 1351/780

(если взять корень из трех с точностью до семи десятичных знаков, то есть до одной десятимиллионной, то первая дробь дает значение корня из трех с недостатком в 247 десятимиллионных, а вторая с избытком в пять десятимиллионных). Архимед, кстати, при вычислении длины окружности пользовался вписанным и описанным многоугольниками с девяноста шестью сторонами. Однако это касается уже самого вычисления, и там, разумеется, ты волен остановиться на таком приближении, которое кажется нужным. А выкладки дают способ вычисления. А какая нужна точность в каждом данном случае – это уже дело твое. Повторим теперь еще раз знакомый нам из древности пример убывающей геометрической прогрессии. Пусть ее первый член будет равен единице, а знаменатель – половине. Тогда предел, к которому стремится ее сумма, будет равен двум целым. И это очень легко заметить. Вот эта прогрессия:

1; 1/2; 1/4; 1/8; 1/16; 1/32; 1/64…

Теперь запишем последовательные суммы:

– 321 —

Но

откуда ясно, что каждый следующий член этого ряда сумм будет все ближе и ближе к двойке.

– Да-да! – сказал Илюша. – Вот как раз именно так мы с Радиксом делили яблочко в Схолии Двенадцатой. Я сразу сейчас вспомнил.

– Вот именно. Однако самый процесс разыскания пределов отнюдь не так-то прост, и в нем очень легко ошибиться.

Например, не во всякой геометрической прогрессии сумма имеет предел. Если взять геометрическую прогрессию с первым членом, равным единице, а знаменателем минус единице, то получим следующий ряд:

1 – 1 + 1 – 1 + 1 – 1 + 1 – 1 + 1 – …

Попробуем вычислить сумму такого ряда. Если я напишу ряд в таком виде:

S = (1 – 1) + (1 – 1) + (1 – 1) + (1 – 1) + (1 – 1) + …

то очевидно, что сумма его равняется нулю. Однако стоит его изобразить иначе:

S = 1 – (1 – 1) + (1 – 1) + (1 – 1) + (1 – 1) + (1 – 1) + …

и получится в сумме не нуль, а единица! Но я могу придумать еще одно начертание:

S = 1 – ( 1 – 1 + 1 – 1 + 1 -…),

и тогда сумма S будет, очевидно,

S= 1 – S.

– 322 —

Получающееся уравнение, как ты видишь, решить нетрудно, но в таком случае сумма равняется уже и не единице и не нулю, а просто половине! Из ряда подобных «вычислений» можно заключить, что о сумме такого ряда говорить в том же смысле, в каком мы говорим о сумме конечного числа членов, невозможно. Математики бились с этим рядом очень долго, пока не убедились наконец, что прежде чем говорить о сумме бесконечного ряда, надо сперва точно определить, что следует понимать под этими словами. В данном случае то общее определение, согласно которому мы под суммой бесконечного ряда

1 + 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + …

понимали рассмотренный выше предел, то есть двойку, нам совершенно не подходит, так как последовательные суммы нового ряда попеременно равны то единице, то нулю, и ни к какому пределу не стремятся.

Надо найти площадь АВСО. Сумма площадей прямоугольников, начерченных сплошными линиями, будет меньше искомой площади; эта же сумма с добавлением площадей пунктирных прямоугольников будет больше искомой площади. Но если число прямоугольников бесконечно увеличивать, то основания их станут бесконечно малыми и как сумма «входящих», так и сумма «охватывающих» прямоугольников будут обе бесконечно приближаться к искомой площади и в пределе будут ей равны.

В этом смысле мы можем теперь сказать, что такой ряд вовсе не имеет суммы, а следовательно, все рассуждения о том, «чему же равно выражение 1 – 1 + 1 – 1 + 1 – … и так далее до бесконечности», просто бессмысленны. Так вот, если ты установил, что можешь миновать такого рода трудности, то можно пользоваться этим в высшей степени удобным способом. То, что я тебе изложил, в целом есть завоевание уже гораздо более поздних времен. Самый вопрос о бесконечно малых и о пределах настолько сложен, что греки не смогли с ним справиться. Против деления площадей и объемов на бесконечно малые составляющие было выдвинуто очень много возражений, и некоторые из них казались вполне основательными. Говорили, например, что из

– 323 —

целой массы величин, которые почти не отличаются от нуля, нельзя составить конечной величины – «из ничего и выйдет ничего».

– Да, – сказал Илюша, – а ведь это очень похоже на правду!

– Похоже, конечно, – отвечал Радикс, – но есть одно обстоятельство, которое это правдоподобие нарушает. Если взять бесконечно малую величину и повторять ее слагаемым конечное число раз, то, несомненно, получится снова величина бесконечно малая. Но если рассматривать сумму неограниченно возрастающего числа бесконечно малых, то нельзя ручаться, что будет величина бесконечно малая. То есть в одном случае окажется нуль, но в иных можно получить некоторую конечную величину, отличную от нуля. Разумеется, все это должно делать обдуманно и с рядом самых серьезных предосторожностей. Кстати сказать, Паскаль на упрек, выраженный в фразе «из ничего и выйдет ничего», отвечал, что он вовсе не суммирует нули, а разбивает некоторую конечную величину, которая ему дана. Такое разбиение отнюдь не равнозначно уничтожению этой величины.

– Вот именно, – сказал Коникос. – Но такие подробности, в данном случае очень важные, ускользали от внимания древних математиков. И тем не менее начало этого дела было ими положено. А в дальнейшем Архимед, опираясь на работу Демокрита и других развил этот способ. Он нашел площадь сегмента параболы, поверхности шара, сумму квадратов натурального ряда и сделал еще немало других открытий. Историки рассказывают, что он до того был предан геометрии, что его слугам приходилось чуть не насильно отрывать его от занятий и кормить. Он был убит при взятии города Сиракузы римлянами. Говорят, будто это произошло случайно, что предводитель римского войска Марцелл отдал даже особый приказ пощадить великого ученого. Архимед много помогал своим согражданам при осаде города Сиракузы, организовав всю защиту своего родного города.


    Ваша оценка произведения:

Популярные книги за неделю