355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Сергей Бобров » Волшебный двурог » Текст книги (страница 27)
Волшебный двурог
  • Текст добавлен: 30 марта 2017, 07:30

Текст книги "Волшебный двурог"


Автор книги: Сергей Бобров



сообщить о нарушении

Текущая страница: 27 (всего у книги 31 страниц)

Для решения этой задачи – для удвоения куба – можно пользоваться так называемым «прибором Платона», который легко представить тебе в виде двух плотничьих наугольников, то есть деревянных прямых углов, как бы прямоугольных треугольников без гипотенузы. Начинаем с чертежа, где изображены две прямые, пересекающиеся под прямым углом. Затем берутся два угольника и прикладываются друг к другу так, чтобы они образовывали два прямых угла. Нетрудно рассудить, что если даны длины отрезков а и b, то из двойной пропорции Гиппократа, которую я только что привел, можно получить:

х3 = a2b; у3 = ab2;

и, положивши b = 2а, получаем:

Все это так сложно формулируется потому, что у Евклида в его Началах (книга IX) степени – квадраты, кубы и так далее – так и вводятся, через пропорции, и опираются на известные свойства геометрической прогрессии:

1, x, x2, x3, x4xn

где ясно, что каждый член является средней геометрической

– 428 —

между двумя своими соседями справа и слева, как например:

а четыре последовательных члена связаны двойной непрерывной пропорцией:

1 : х = х : х2 = х2 : х3,

которой и пользуется Гиппократ. Теперь возвращаюсь к построению: циркуль дает одну среднюю пропорциональную, которую мы разбирали в Схолии Пятнадцатой, тогда как два прямых угла действуют словно два объединившихся циркуля, они дают нам разом две средних, как это ясно из другого чертежа. Прямой угол мы всегда можем себе представить опирающимся на диаметр некоторой окружности, не так ли?.. А если у нас имеются два прямых угла, причем их всегда можно сдвигать и раздвигать так, что эти диаметры воображаемых окружностей могут изменяться (и при этом независимо друг от друга), то мы получаем особый прибор вроде двоякого циркуля, который может дать нам сразу две средние пропорциональные, те самые, которые требуются для пропорции Гиппократа.

Принцип прибора Платона.

– 429 —

– По-моему, – сказал Илья, внимательно осмотрев чертежи Радикса, – как будто все правильно. Какой интересный этот способ двух прямых углов! И если а = 1, то икс и будет корнем кубическим из двух. Все верно.

– Прекрасно! – похвалил Мнимий. – Итак, после этого поучительного примера я могу продолжать свой рассказ. Алгебра дала ученым формулу (а формула – это ведь и есть самое значительное завоевание алгебры!) для решения любого квадратного уравнения. В шестнадцатом веке ученые заинтересовались алгебраическим решением кубического уравнения, о котором еще в начале того же века Лука Пачиоли, итальянец, говорил, что эта задача столь же непосильна для науки, как и квадратура круга. Конечно, надо все-таки принимать во внимание, что наука, развиваясь, ставит себе все более и более сложные задачи, а для их разрешения, понятно, требуются все более сложные способы. Вот с одной такой необычайной сложностью ученые и столкнулись в шестнадцатом веке. Понадобилось без малого триста лет, чтобы разгрызть этот орешек! О нем-то и будет идти речь. Задачка была особенная. Древние почти ничего здесь не сделали, европейцам все пришлось изучать и рассматривать заново. Арабы тоже брались за этот вопрос, старательно изучали частные случаи, многое изучили и придумали, но по части именно алгебраической у них не получилось. Пачиоли прямо говорил, что решение таких уравнений невозможно, ибо они «диспропорциональны», то есть невыразимы с помощью пропорций, что, разумеется, неосновательно, как это ясно из Гиппократова решения задачи о двоекубии. Как неосновательны были и сетования Пачиоли насчет квадратуры круга, но Архимед тогда еще очень был мало известен… И, наконец, в городе Болонье в шестнадцатом веке напали на алгебраическое решение. Оно…

– А какое это было решение?

– А вот сейчас его продемонстрируем. Сперва надо сказать еще несколько слов об одном особом способе решать квадратные уравнения, вам хорошо известные. Вы знаете способ, который построен на выделении точного квадрата. Но можно действовать еще и по-иному. Выходит не хуже. Если уравнение представлено в двучленной форме, то есть вот так:

xn = a

то решить его нетрудно (разумеется, мы полагаем, что а больше нуля, то есть положительное число), какова бы ни была его степень. Надо только извлечь корень данной степени, а это вопрос разрешимый…

– 430 —

– С логарифмами… – подсказал Илюша.

– Точно, – отвечал Мнимий, – именно с логарифмами. Следовательно, если мы сумеем данное уравнение привести к такому виду, мы уже никаких особых препятствий не встретим. Уравнение первой степени приводится к двучленному виду проще простого: сделай приведение, перенеси известные в одну сторону, неизвестные в другую – и готово. Посмотрим теперь, как этого достигнуть с квадратным уравнением, которое нам тоже хорошо знакомо. Любое квадратное уравнение можно представить в таком виде:

х2 + рх + q = 0,

ибо, если коэффициент при х2 не равен единице, делим вес уравнение на этот коэффициент – и дело в шляпе! Как быть далее? А что, если уничтожить второй член уравнения с иксом в первой степени? Тогда останется икс в квадрате и свободный член, а нам как «раз и надо получить двучленное уравнение. Введем новую неизвестную, допустив, что наш икс таков:

x = y + h.

– А что такое h? – с удивлением спросил Илюша.

– Пока что h совершенно произвольное число, но мы сейчас выясним точно, в каком виде оно может нам помочь. Подставим в уравнение новое значение икса и сделаем приведение. Это нетрудно! Получаем:

(y + h)2 + p (y + h) + q = 0;

y2 + y(2h + p) + h2 + hp + q = 0.

Теперь становится ясно: чтобы уничтожить второй член уравнения, надо положить, что коэффициент при иксе в первой степени равен нулю, то есть:

2h + р = 0;

h = – p/2

Подставим в полученное уравнение. Получаем:

y2 + y(—2p/2 + p) + p2/4 – p2/2 + q;

после приведения:

y2 = p2 / 4 – q

– 431 —

по так как х + у = h, то находим и решение:

x = – p/2 ± √(p2/4 – q)

Следовательно, наш этот способ – уничтожить один из членов уравнения – вполне целесообразен. Теперь попробуем разобрать, как было решено впервые алгебраически, или, как говорится, «в радикалах», то есть с помощью извлечения корней необходимой степени, кубическое уравнение. Сделано было это в шестнадцатом веке в Италии учеными города Болоньи Ферро, Тарталья и Кардано. Между двумя последними шел долгий спор о том, кто первый сделал это открытие, но мы в эти ненужные споры забираться не будем, тем более что с современной точки зрения все решение не так уж сложно.

– А все-таки, наверно, трудно… – грустно заметил Илюша.

– Не очень! Конечно, поскольку само кубическое уравнение сложнее квадратного, то весь ход решения похитрей. Но тут дело в том, что выясняются некоторые особые подробности… Итак, у нас имеется кубическое уравнение, где коэффициент при старшем члене уже превращен в единицу:

х3 + ах2 + + с = 0.

Цель снова будет та же самая: придумать такие преобразования, чтобы превратить данное уравнение в уравнение с меньшим числом членов, ибо, как мы видели на примере квадратного, этот прием упрощает задачу. Сперва мы будем поступать так же, как с квадратным уравнением. Положим снова:

х = у + h

и подставим это в наше уравнение. Получим после небольших переделок

у3 + (3h + а) у2 + (3h2 + 2ah + b) у + h3 + ah2 + bh + с = 0.

Теперь снова постараемся обратить коэффициент второго члена (при игреке в квадрате) в нуль, то есть положим, что

(3h + a) = 0; h = – a/3,

откуда

у3 + (—3a/3 + а) у2 + (3a2/9 – 2a2/3 + b) у + h3 + ah2 + bh + с = 0.

– 432 —

или, сделав приведение:

у3 + (—a2/3 + b) у + (2a3/27 – ab/3 + с) = 0.

Теперь для сокращения письма положим:

(—a2/3 + b) = p; (2a3/27 – ab/3 + с) ] = q

и запишем окончательно результат в таком виде:

y3 + py + q = 0.

(Если q = 0, то все просто: y1 = 0, у2,3 = ±√—p)

При q ≠ 0 результат, как ты видишь, разумеется, несколько менее утешителен, чем в случае квадратного уравнения, ибо у нас не два, а три члена. Но как-никак определенное упрощение достигнуто. Как же теперь быть далее? Ясно, что нужно придумать способ, который дал бы возможность обратить выражение ру в нуль, после чего мы и получим двучленное уравнение, то есть то же самое, что было получено для квадратного. И вот как раз на этом месте болонцам пришла в голову счастливая мысль сделать еще одну подстановку: положить, что у в последнем уравнении можно представить в виде суммы:

у = u + v.

И опять-таки эти величины ими пока что совершенно произвольные. Мы только одно можем сказать, что сумма их есть корень нашего уравнения, который не равен нулю.

– А почему он не равен нулю?

– Сейчас рассмотрим! Попробуем подставить. Получаем:

(u + v)3 + р (u + v) + q = 0.

Смотрите-ка! Теперь видно, что сумма (u+ v) не может быть равна нулю, потому что тогда и число q будет равно нулю, а число q, свободный член уравнения, не равно нулю. Теперь откроем скобки и кое-что сгруппируем:

(u3 + v3) + (u + v) (3uv + p) + q = 0.

Такая форма уравнения уже подает нам некоторые надежды! Может быть, нам удастся уничтожить второй член? Положить,

– 433 —

что u + v = 0, мы, как сказано, не можем, но зато спокойно можем допустить, что

3uv + р = 0;

uv = —p/3

но в таком случае наше уравнение превращается в такое:

u3 + v3 = – q.

Следовательно, мы получили два уравнения. Одно из них дает произведение новых чисел u и v, а другое их сумму. Правда, они в разных степенях, но никто не помешает возвести это произведение тоже в куб. Далее это создаст нам некоторые затруднения, но мы как-нибудь их одолеем. И вот перед нами два уравнения:

u3v3 = – p3/27; u3 + v3 = – q.

А теперь скажите, юноша, как бы вы дальше поступили с этими уравнениями? Отвечайте, куда они просятся?

– В квадратное уравнение! – вдруг выпалил почти в отчаянии Илюша. – Сумма и произведение даны, значит, это квадратное уравнение… по теореме Виеты.

– Очень хорошо! – отозвался Мнимий. – Так вот: теперь должно быть ясно, что болонцы действительно напали на очень счастливую мысль. Разумеется, им не удалось свести кубическое уравнение к линейному (то есть первой степени), как сводили квадратное, но ведь этого и ожидать было бы странно, ибо куб все-таки постарше квадрата и, конечно, поупрямей его! Но вы должны еще иметь в виду, что открытие этого решения кубического уравнения в Италии шестнадцатого века было поистине важным историческим событием! Оно означало, что новая Европа вышла на новый рубеж, она уже освоила наследие древних ученых и теперь сама делает недоступные для древности открытия. Общественные условия настолько изменились, что возникла возможность для новой науки. Разумеется, ученый работает прежде всего в интересах науки. Но он может работать для ее развития только тогда, когда общество, в котором он живет, поддерживает его, другими словами, когда люди верят в необходимость его трудов. Мы уже говорили с вами, как бились древние греки с двоекубием, то есть задачей удвоить куб. И как мы увидим далее, задача трисекции угла тоже сводится к кубическому уравнению. Но так или иначе болонцы все-таки степень кубического уравнения на единицу понизили, а это облегчило задачу – квадратные уравнения мы решать умеем!

– Вавилоняне догадались, – заметил Радикс, – да и нас научили.

– 434 —

– И теперь уже мы можем составить окончательное уравнение, которое будет:

t2 + qtp3/27 = 0

Одно значение корня этого уравнения даст u3, а другое v3. Решим это уравнение!

Илюша схватил мел и сразу написал:

– Вот-вот, – поддакнул Мнимий, – совершенно правильно. На пятерку! Но теперь, поскольку мы знаем, что у = u + v, пишите уж и самое решение.

И наш герой написал следующее:

– Ну вот, – произнес Мнимий, – и появилась эта знаменитая формула Кардана для решения кубического уравнения.

– Так, – сказал Илюша, любуясь своим произведением, – это я теперь как будто сообразил. Но при чем же тут мнимые человечки?

– А-а-а, – важно протянул Мнимий, – вот вас что интересует! Ну что же? Мы постараемся приподнять завесу этой трудной научной тайны.

– Жаль, что в науке есть еще тайны!

– Н-да… – протяпул Мнимий. – В общем, конечно, досадно. Но ведь эти тайны исходят не от науки, они, скорее, принадлежат природе. Человек начинает с самого простого, а затем идет все дальше, все время углубляет свои знания, раскрывает тайну за тайной, похищая их у Природы! И вот вы сами видите в наши дни, как увеличивается могущество человека. А те тайны науки, о которых вы сокрушаетесь, – это уж не совсем тайны, это ее трудности, но опыт показывает, что их можно одолеть. Вы могли видеть сами на примере решения кубического уравнения, как осторожное расширение способа двучленного уравнения позволяет добиться новых результатов. Трудность основная в том, что при всяком таком расширении области, где применяется данный способ, дело усложняется новыми обстоятельствами и обычно такими, которые ранее невозможно было не только предвидеть, но даже и пред-

– 435 —

ставить себе. С развитием науки приходится решать более сложные и запутанные задачи. К примеру: обычное уравнение имеет одно решение; квадратное уже дает два, причем бывает, что оба имеют смысл самый простой, а случается и другое! А кубическое уравнение, вообще говоря, должно давать три решения, но, даже и получив все элементы, из которых легко составить эти решения, надо еще сперва сообразить, как их составлять. Мы недавно любовались на график квадратного уравнения, но ведь график кубического уравнения, то есть кубической параболы, гораздо сложнее и все случаи решения кубического уравнения много хитрее. Кубическое уравнение может иметь три действительных корня, либо один действительный и два комплексных корня. Переходя к графику, мы видим, что кубическая парабола может иметь различные формы: 1) парабола пересекает ось абсцисс однажды (все три действительных корня равны друг ДРУГУ); 2) парабола пересекает ось абсцисс однажды и однажды ее касается (три действительных корня, причем два из них равны друг другу); 3) парабола пересекает ось абсцисс трижды (три разных действительных корня); 4) парабола пересекает ось абсцисс однажды, а кроме того, у нее имеются еще два сопряженных комплексных корня.

– По-моему, я такую параболу видел, – вспомнил Илюша, – в Схолии Шестнадцатой, там еще была и такая, которая у вас здесь под номером третьим.

– Это верно, – подтвердил Радикс, – так и было.

– В этом последнем случае, значит, – продолжал Илюша, – эти комплексные корни будут: один а + bi, а другой, ему сопряженный, аbi.

– Конечно, – подтвердил Мнимий. – Но ведь это еще отнюдь не все. Самое удивительное качество решения кубического уравнения, которое крайне поразило алгебраистов шестнадцатого века, заключается в том, что иногда попадается такое кубическое уравнение, что если мы станем решать его по Кардановой формуле, то, невзирая на то что все три корня его вещественны, формула Кардана выражает эти корни мнимыми радикалам и, и можно доказать, что ничего иного из формулы Кардана вообще получить невозможно. То есть истинное решение словно прячется за мнимостями! Это тот случай, который Кардан называл «неприводимым» (Кардан уже знал, что у кубического уравнения три корня). Тут болонские алгебраисты впервые убедились, что наши мнимые человечки действительно существуют, активно участвуют в алгебраических построениях и при решении самой вещественной задачи невозможно обойтись без того, чтобы с ними не встретиться. Тут надо вот что еще иметь в виду: обычные чи-

– 436 —

сла человек придумал для счета. Всякого рода задачи, которые пришлось решать, привели неизбежно к понятию различных математических образов, которые получаются по крайней мере из пары чисел, как, например, сумма, разность, произведение, частное или дробь. А затем уже пошли еще более сложные построения, как и мы, мнимые человечки, которые выросли из задач, связанных с квадратным уравнением. Счет – одно, а расчет – другое! Но именно для того, чтобы наши расчеты не противоречили простому счету, чтобы правильность счета нигде и никогда не нарушалась, и приходится вводить такие сложные и хитрые построения, где из пары чисел получается одно особенное число. Но ведь зато и результаты получаются обширные и замечательные! Однако самая суть дела в том, что кубическое уравнение с его необычайными сложностями заставило математиков понять, что мы, мнимые хитроумные человечки (от которых до той поры, встречаясь с нами в квадратных уравнениях, просто отмахивались!), вовсе не случайные призраки, а самые настоящие граждане и деятели математического мира!

– Все-таки трудно… – признался Илюша.

– Разумеется, не очень просто, – согласился Мнимий. – Но вы подумайте еще о том, что в те времена все это было еще трудней, потому что нашей удобной алгебры с буквенными знаками еще не существовало. Тарталья, кстати сказать, изложил формулу Кардана в стихах, а потребовалось ему для этого двадцать пять строк!

– Ого, – отозвался Илюша, – целая поэма!

– Вот именно. И что было делать с этой формулой, как рассудить о ее странностях, долгое время не знали. Пока кубическое уравнение таково, что у него только один действительный корень, выражение под квадратным корнем

(q/2)2 + (p/3)3

больше нуля, и тогда вычисления не так трудны. Но в другом случае – и как будто в самом простом, ибо тогда все три корня действительны! – это выражение становится меньше нуля, и как быть с формулой, неясно. Только через четверть века Рафаэль Бомбелли, последователь Кардана, нашел выход из положения. Начал он, как нередко в таких случаях бывает, с частного случая, с численного примера. Он взял такое кубическое уравнение:

x3 – 15x = 4

Решить его ничего не стоит без всякой формулы… Как вы скажете?

– 437 —

Илюша в ужасе уставился на уравнение. Наконец еле выдавил из себя:

– Четыре в квадрате – шестнадцать, а здесь пятнадцать, а четыре в кубе – шестьдесят четыре… Мне кажется, что решение равно четырем, потому что:

64 – 15 · 4 = 64 – 60 = 4.

– Вы совершенно правы! – весело воскликнул Мнимий. – Как видите, решить совсем нетрудно. А теперь попробуйте с формулой Кардана. И тотчас получается:

Как тут быть, неизвестно. Из (+ 121), конечно, квадратный корень извлечь небольшая хитрость, но ведь здесь минус.

Однако попробуем переписать теперь это по-нашему:

Из этого выражения Бомбелли получил (как мы теперь пишем!) такие равенства:

Если вы возведете каждое из этих равенств в куб, пользуясь формулой сокращенного умножения, вам хорошо известной, вы убедитесь, что равенства эти справедливы. Поскольку искомый икс равняется сумме этих двух выражений, то мы получаем…

Илюша немедленно написал ответ:

х = (2 + i) + (2 – i) = 2 + 2 = 4.

– Выходит, – решил он, – что искомый корень представился в виде суммы двух сопряженных комплексных чисел, а эта сумма, как мы уж знаем, есть действительное число! Значит, оно только спряталось за мнимыми числами. Но ведь должны быть и другие корни? Их ведь два еще должно быть как будто? Как их найти? Один корень мы нашли, – рассуждал Илюша, – левая часть уравнения должна состоять из трех

– 438 —

множителей. Но из нашего решения ясно, что один из множителей будет равен

(x – 4);

значит, если я перенесу все члены нашего уравнения влево и разделю затем эту левую часть на этот одночлен, получится квадратное уравнение, а из него можно раздобыть остальные два корня:

(x3 – 15x – 4) / (x – 4) = x3 + 4x + 1

Илюша еще немного покопался с вычислениями и написал:

x1 = 4,000; x2 = —2 + √3; x3 = —2 – √3

или приближенно:

х2 = —0,268; х3 = —3,732.

– По теореме Виеты выходит. И сумма корней равна нулю! Попробую проверить значения корней. Для этого я буду придавать иксу целочисленные значения от минус шести до плюс шести и посмотрю, где кривая пересечет ось абсцисс.

Илюша так и сделал. Получилась табличка, а за ней и кривая, которую можно разглядеть на чертеже[38]38
  А чертеж сам сделай! Да смотри не ленись!


[Закрыть]
.


x x3 – 15x Свободый член Сумма
– 6– 216+ 90– 4– 130
– 5– 125+ 75– 4– 54
– 4– 64+ 60– 4– 8
– 3– 27+ 45– 4+ 14
– 2– 8+ 30– 4+ 18
– 1– 1+ 15– 4+ 10
000– 4– 4
+ 1+ 1– 15– 4– 18
+ 2+ 8– 30-4– 26
+ 3+ 27– 45– 4– 22
+ 4+ 64– 60– 40
+ 5+ 125– 75– 4+ 46
+ 6+ 216– 90– 4+122

– 439 —

– Ишь как хорошо вес выходит! – воскликнул Илюша, закончив табличку. – На четверке нуль…

– Сделаешь верно, и получается хорошо, – заметил Радикс.

– А те два других корня по чертежу тоже очень хорошо подходят. В порядке! И действительно, кривая три раза пересекает ось абсцисс.

– Как ей и положено, – закрепил Радикс. – Рафаэль Бомбелли был человек способный, ученый и даже удачливый: говорят, именно ему удалось разыскать на полках громадной Ватиканской библиотеки рукопись творений грека Диофанта Александрийского, с которых и началась теория чисел, высшая арифметика. Возможно, что Диофант в решении с Кардановой формулой навел Рафаэля Бомбелли на кое-какие полезные мысли.

Тут Радикс продекламировал такой стишок:


 
Вдоль по плоскости кривая
Очень правильно бежит,
Ось абсцисс пересекая,
Где корням быть надлежит!
 

– Там, где быть им надлежит, там как раз и пробежит! – поддакнул Мнимий.

Радикс проговорил скороговоркой еще стишок:


 
Как-нибудь уж, в самом деле,
Разберемся еле-еле
И рассмотрим все точь-в-точь,
Если нам синьор Бомбелли Догадается помочь…
 

И все весело рассмеялись. А Мнимий добавил:

– Надо вам знать еще, что неожиданные и своеобразные разоблачения Бомбелли в те времена скорее привели в недоумение ученых, чем направили их к новым исследованиям. И когда через некоторое время Виета обнаружил, что «неприводимый» случай Кардана можно разрешить тригонометрическим путем (как решение задачи о трисекции угла), то это, наверно, показалось облегчением (впрочем арабские математики нашли это решение примерно еще за целый век до Виеты). Однако трудно сказать, имело ли это какое-нибудь значение, ибо замечательная работа Бомбелли в свое время не была напечатана, хотя была известна и ее изучали крупные ученые. Любопытно, что в те времена были уверены, что

– 440 —

Виета открыл что-то совершенно новое, хотя на самом деле в решении Виеты новыми были только подстановки.

– Но я не знаю, как у Виеты получилось с трисекцией угла и с тригонометрическим решением.

– Неужто? – удивился Радикс. – Так сейчас узнаешь! Виета напал на счастливую мысль привлечь к вопросу о решении кубического уравнения тригонометрические функции. Мы как будто в прошлой схолии рассматривали, что получается, если возвести комплексное число в квадрат. Из этого примера ясно, кстати, что одно равенство комплексных чисел равносильно двум равенствам действительных, ибо действительную и мнимую часть правой части равенства можно рассматривать по отдельности. Согласен?

Илюша задумался.

– Кажется… да!

– Если так, то мы начнем с формулы для косинуса двойного угла. Так или нет? Помнишь?

– Так, как будто. И она будет:

cos 2α = cos2 α – sin2 α.

– Хорошо. Не спорю. А теперь перемножение комплексных чисел (единичных комплексных векторов) из предыдущей схолии повторим еще раз с тем отличием, что наши комплексные множители будут иметь разные аргументы, то есть разные углы. Что мы получим?

Илюша тотчас выполнил это умножение и получил.

cos (α + β) = cos α cos β – sin α sin β.

– Ну, а теперь у нас есть все для того, чтобы на основании этих двух формул написать еще формулу для косинуса троекратного угла, то есть для cos (2α + α), или в результате cos Зα.

На этот раз Илюша не очень долго возился, но все-таки помучился. Радикс напомнил ему, что ведь «без труда и рыбку не вытащишь из пруда», а не то что косинус троекратный!

И наконец получилась вот какая формула:

cos Зα = 4 cos3 α – 3 cos α.

– Вот теперь все, что надо, у нас есть, и мы можем спокойно продолжать наши рассуждения. Попрошу вас только еще заменить cos a на х и написать в обычном для уравнения виде так, чтобы правая часть равнялась нулю, тогда как cos За будет у нас называться а.

– 441 —

Это задание было совсем уж простое, и Илюша написал.

4x3 – 3xa = 0

– Так ведь это получилось кубическое уравнение и как раз такое, какое мы получали, когда уничтожили член с неизвестным во второй степени.

– Совершенно правильно! – отвечал Мнимий. – Представьте, эта же самая блестящая мысль пришла в голову и славному Франциску Виете! У вас, прямо скажу, был довольно способный предшественник!.. Теперь смотрите внимательно. Ведь из этого уравнения мы по данному углу можем найти угол в три раза меньший, а следовательно, перед нами способ для решения задачи древности – трисекции угла, или деления любого угла на три равные части. Заметьте: любого, ибо некоторые утлы, как, например, прямой угол, делятся на три части очень просто, циркулем и линейкой. Правда, обычно берут не косинус, а синус, но перейти от того к другому не так трудно. А в общем, получается доступный способ для решения кубического уравнения, вернее, одного из его видов. Вот какие разнообразные выводы получаются при рассмотрении решения кубического уравнения. При этом очень важно еще и то, что решение Виеты как раз и есть то самое, которое разъясняет этот трудный случай, когда действительные корни скрываются под личиной мнимых (этот случай, как мы уж говорили, Кардан называл «неприводимым»). И отсюда Виета вывел, что либо кубическое уравнение получается наподобие двух пропорциональных (как при двоекубии!), и тогда у него только один действительный корень, либо они сводятся к трисекции угла, и тогда все три корня действительные. Входить в большие подробности я не буду; скажу только, что этим тригонометрическим способом Виеты можно пользоваться именно тогда, когда под квадратными корнями в формуле Кардана стоят отрицательные числа. В таком случае свободный член уравнения q можно выразить через синус некоторого троекратного угла, а затем, пользуясь тригонометрическими таблицами, без особого труда найти и самые корни. Все это, разумеется, на практике не очень удобно, но тут смысл не в том, чтобы добиться решения кубического уравнения (которое с помощью методов высшего анализа находится скорей и проще), а в том, чтобы рассудить о сути соотношений в алгебраических вопросах.

– Хорошо! – сказал Илюша. – Конечно, все это не очень легко… Но все-таки интересно, когда такую историю с разными алгебраическими чудесами разберешь подробно. Только вот еще что: ведь у древних был уже способ трисекции угла?

– 442 —

Невсис Паппа.

DE = 2AB

FH || АС

АН = НЕ

– Да, – отвечал Радикс, – такой способ был, даже не один. Интересен способ так называемого невсиса, или способ «линейки с двумя метками», с которым мы познакомились уже в Схолии Пятой, способ полезный и чрезвычайно поучительный. Архимед в своих трудах нередко пользуется этим способом. И в древности были такие чудаки, которые его за это поругивали! На линейке можно поставить две метки, а вообще при построениях циркулем и линейкой линейка служила только для того, чтобы провести прямую! И этих меток уже вполне достаточно, чтобы получить возможность решать кубическое уравнение. Вот как решает этим способом Папп Александрит задачу на трисекцию. На нашем чертеже дан угол ABC, который надо разделить на три части. Пусть AC _|_ ВС; проведем через А прямую АЕ, параллельную ВС, возьмем отрезок, который, как мы уже знаем, будет вдвое больше АВ (для этого-то и нужны отметки на линейке!), так, чтобы его левый конец D лежал на АС, правый, то есть точка Е, на АЕ, а продолжение его проходило бы через точку В.

В таком случае угол CBD будет равен одной трети угла ABC. Это надо доказать.

– Попробую, – отозвался Илюша. – Для начала найдем середину отрезка DE, поставим там точку F и соединим ее с точкой А. Значит, этот треугольник EAD прямоугольный.

– 443 —

Вокруг него можно описать окружность, рассматривая отрезок DE как диаметр. Но если точка F будет его центром, то все три отрезка, то есть FD, AF и EF, равны друг другу, как радиусы этого описанного круга, и каждый равен половине отрезка DE или отрезку АВ. Дальше: треугольник ABF, очевидно, тоже равнобедренный в силу этого последнего равенства, а значит, его углы ABF и AFD равны друг другу. Треугольник AFE, конечно, тоже равнобедренный, это ясно из тех же равенств отрезков. Но угол AFD по отношению к треугольнику AFE есть его внешний угол, и следовательно…

– Ну хватит, пожалуй!– сказал Радикс. – Я вижу, ты понял. Доказательство не такое уж хитрое. Правильно ты начал рассуждать.

– Так и есть! – согласился Мнивши. – Очень похожее решение этой задачи даст примерно тем же методом и Архимед. Ученые полагают, что именно раздумья над этим невсисом Архимеда[39]39
  См. АЛ-Н, XVI, 2; там показаны дна невсиса, Архимеда и Неморария. В книге Н. Ф. Четверухина «Геометрические построения и приближения», М., 1935, есть рассказ о геометрических приближениях трисекции угла при помощи «улитки Паскаля» (это не Блез Паскаль, а его отец, Этьен).


[Закрыть]
и привели Виету к открытию тригонометрического решения кубического уравнения, так что невсис оказал немалые услуги нашей науке. Виета выяснил, что задача трисекции угла, над которой так мучились в древности, тем и трудна, что сводится к кубическому уравнению.

– Хорошо! – сказал с удовольствием Илья, который был в прекрасном настроении, поскольку ему удалось перескочить через длинное доказательство насчет невсиса и трисекции. – Но мне хочется, чтобы вы еще сказали несколько слов насчет этого знаменитого «правила циркуля и линейки».

– Видишь ли, – отвечал Радикс, – один из крупнейших древнегреческих ученых, Аполлоний Пергейский, современник Архимеда, в своем сочинении о конических сечениях говорит о том, что все геометрические построения должны выполняться только с помощью циркуля и линейки. Вообще в Древней Греции этого правила, конечно, не придерживались, но ему придавали очень большое значение в эпоху возрождения наук в Европе. Этот интерес несколько ослаб, когда Виете удалось впервые обнаружить, что именно это требование означает алгебраически: в таком случае нельзя пойти дальше построения корня квадратного, то есть решения квадратного уравнения либо такой задачи, которая сводится к последовательному извлечению ряда квадратных корней. Среди средневековых работ есть одна замечательная трисекция угла, выполненная очень простыми средствами Гиясэддином ал-Каши, талантли-

– 444 —

Трисекция Гиясэддина ал-Каши.

Хорды – двойные синусы. По теореме Птолемея (если четыре вершины четырехугольника лежат на окружности, сумма произведений противоположных сторон равна произведению диагоналей), из четырехугольника AEGH, АЕ = EG = GH и EH = AG, выводим, что AG2 = АЕ2 + АЕ · АН. По теореме Евклида (произведение отрезков хорды равно произведению отрезков диаметра, проходящего через точку пересечения диаметра с хордой), так как AG = GC, получаем AG2 = BG (2RBG), где R – радиус большого круга; затем но теореме Пифагора из треугольника ABG выводим: AG2 = 4 AE– (4 AE4: R2).

Приравнивая два выражения для AG, получаем: АЕ2 + · АН = 4 АЕ2 – (4 АЕ4 : R2). Полагая, что АЕ = sin а и что АН = sin За (ибо хорда АН стягивает утроенную дугу), а R = 1, получаем для любого угла выражение 3 sin а – 4 sin3 a = sin За.


    Ваша оценка произведения:

Популярные книги за неделю