355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Сергей Виноградов » Последние исполины Российского Императорского флота » Текст книги (страница 29)
Последние исполины Российского Императорского флота
  • Текст добавлен: 7 октября 2016, 12:13

Текст книги "Последние исполины Российского Императорского флота"


Автор книги: Сергей Виноградов


Жанр:

   

История


сообщить о нарушении

Текущая страница: 29 (всего у книги 35 страниц)

1. Для толщин элементов бронирования: барбеты – выше/ниже броневой палубы, башни – лоб/борта/тыл/крыша, рубка – борта/крыша, дымоходы – выше/ниже броневой палубы, противоторпедная переборка – число и толщины слоев.

2. Качество броневого материала плит барбетов, башен и боевых рубок не указывается, поскольку во всех случаях они выполнялись из поверхностно-упрочненной (КЦ) стали.

3. Высота поясного бронирования «Мериленда» и «Нельсона» составляла на одно межпалубное расстояние меньше, нежели у русских проектов; у «Нагато» броневой пояс набирался из плит разной толщины – в районе ватерлинии 300 мм (кубрик – нижняя палуба) и 230 мм (между нижней и средней палубами).

4. «Нельсон», в соответствии с общей идеей компоновки, имел дифференцированную защиту жизненных частей – погреба боезапаса 16" артиллерии защищались 356мм поясной и 160мм палубной броней, на участках машинно-котельных отделений ее толщина понижалась до соответственно 330 и 93 мм.

Источники по табл. прил.1.1.:

1. Проект «линкора 1915 г.» (1914 г.): РГАВМФ, ф.876, оп.178, дд.172–179.

2. Переработанный проект «линкора 1915 г.»: расчеты автора по: А.А. Гордон. Проектирование военных кораблей. Справочник по судостроению. Т.9. 4.1. -М.-Л.: Военмориздат, 1939.

3. Переработанный проект линейного крейсера «Бородино» (1922 г.): РГАВМФ, ф. р-26, оп.1, д.29, лл.1-26.

4. Проект линкора «Мериленд» (1916 г.): N. Friedman. U.S. Battleships – An Illustrated Design History. – Annapolis: Naval Institute Press, 1985.

5. Проект линкора «Нагато» (1916 г.): M. Skwiot. Nagato. -A.J. Press. 1996.

6. Проект линкора «Нельсон» (1922 г.): A. Raven, J. Roberts. British Battleships of World War Two. – Annapolis: Naval Institute Press, 1976.

Табл. прил.1.2. Изменение состава нагрузки модифицированного проекта «линкора 1915 г.»


вес, т%вес, т%Δ, %
1. Корпус с устройствами1100030,91099030,9
2. Вооружение877024,6694019,4– 21
3. Бронирование1166032.81330037,4+14
4. Машинно-котельная установка28708,128708,1
5. Запас топлива13003,615004,2+15
Итого:35600100,035600100,0

В том числе:


– 40 тподкрепления под 130мм орудия
– 80 тсетевое заграждение
– 50 тсистема активного успокоения качки
+160 тфорштевень
– 10



– 200 тторпедные аппараты
– 683 т130мм артиллерия
– 7760 ттри четьфехорудийные 16"/45 установки
+ 680 т6" артиллерия
+ 6133 т три трехорудийные 16"/45 установки
– 1830 т



– 30 тсрезы на средней палубе
– 60 тразделительные переборки между 130мм орудиями на средней палубе
– 150т вес от замены барбетов четырехорудийных 16" установок на трехорудийные
+ 745 тдополнительное бронирование средней палубы
+ 935 тброневая противоторпедная переборка
+ 200 твес возвышенного барбета средней 16" установки
+ 1640 т



Боковой вид (А), продольный разрез (Б), верхний вид (Б) и план трюма (Г) варианта модернизации «линкора 1915 г.». Д – план трюма оригинального проекта (1914 г.). приведенный для сравнения компоновки внутренних отсеков. Заштрихованные участки – отсеки защиты корпуса от подводных взрывов, по величине которых представляется возможным судить о резервах совершенствования этой составляющей конструкции «линкора 1915 г.». Приведенные эскизы демонстрируют значительное изменение облика спроектированного в 1914 г. сверхдредноута, что свидетельствует о заложенном в его первоначальной конструкции значительном резерве модернизации. В целом ее характеристики, рассчитанные автором для проекта русского 16" линкора, не превосходят уровня, достигнутого зарубежными флотами в 20-30-е гг. при реконструкции их тяжелых военно-морских единиц эпохи первой мировой войны.

Возможный итоговый вариант проекта сверхдредноута с 16" артиллерией на корпусе «линкора 1915 г.» в свете пост-ютландских требований:

• четырехорудийная установка 16" орудий замена на трехорудийную,

• экономия в весе вследствие уменьшения состава главной артиллерии, отказа от торпедного вооружения, противоминных сетей и ряда непринципиальных элементов конструкции высвобождает около 2020 т водоизмещения,

• 24 130мм/55 орудия в казематах заменены 12 6750 орудиями в четырех трехорудийньгх башнях,

• за счет полученного резерва водоизмещения толщина средней (главной броневой) палубы доведена до 110мм, а суммарная горизонтальная защита – до 145 мм,

• конструктивная подводная защита усовершенствована введением трехкамерной системы с использованием «жидкого слоя» и трюмной 40мм броневой переборки, а также предусмотрено устройство развитой системы переборок и бортовых отсеков в районе концевых башен главного калибра,

• резервное котельное отделение включено в штатный состав котельной установки, повышающее ее паропроизводительность на 33 %,

• для увеличения соотношения «длина/ширина» носовая оконечность удлинена на 15 м, что повышает длину корпуса до 225 м, a L/B с 6,44 до 7,0,

• с целью снижения волнового сопротивления изменено очертание форштевня, нижняя часть которого оснащена бульбовой наделкой.


Фок-мачта линейного корабля «Марат» (до 1921 г. – «Петропавловск») после его модернизации в 1927–1928 гг. В ходе ее первоначальная мачта шестового типа была заменена мощной цилиндрической мачтой-колонной с командно-дальномерным постом на вершине, дальномерны-ми постами вспомогательной артиллерии правого и левого борта ярусом ниже, прожекторной площадкой, вахтенной сигнальной рубкой и верхней боевой рубкой. Новая конструкция отражала взгляды отечественных морских специалистов на проблему оснащения тяжелого артиллерийского корабля дополнительными средствами управления, контроля огня, наблюдения и связи по опыту минувшей войны. Так или почти так мог выглядеть комплекс носовых надстроек на линкорах с 16" артиллерией в случае их постройки и ввода в строй в середине 20-х гг.

Из собрания автора.

Приложение 2
Реконструкция проекта линейного корабля 1917 г.

Проект перспективного линкора, созданный корабельными инженерами завода «Наваль» в 1916–1917 гг., является наиболее интересным примером проработки идеи 16" сверхдредноута в России последних лет царской власти. Однако недоступность каких-либо его чертежей, спецификаций и иных проектных материалов долгое время создавало трудности для выяснения того, как именно эти корабля могли выглядеть. В конечном итоге лишь обращение к личному архиву В.П. Костенко, в конце 1916 – начале 1917 гг. в должности начальника технического отдела завода «Наваль» руководившего их проектированием, позволило получить представление об основных характеристиках разрабатывавшихся вариантов и увидеть их примерные эскизы. Эти далеко не полные сведения дали возможность провести расчеты наиболее вероятных пропорций планировавшихся кораблей, об общем облике которых, таким образом, необходимо говорить только как о реконструкции.

В основу ее были положены следующие характеристики: известные длина и водоизмещение всех четырех вариантов (табл.9.1), а также ширина, которая во всех случаях была единой и составляла 30,0 м. Высота надводного борта принималась в соответствии с тогдашней отечественной практикой конструирования тяжелых артиллерийских кораблей, и для всех проектов русских дредноутов составляла 6,15 м. Эта цифра наиболее точно соответствует и фрагменту поперечного сечения проекта линкора 1917 г., сохранившемуся в бумагах В.П. Костенко, на котором указаны несколько межпалубных расстояний. Их высота не носит никакого отступления от практиковавшихся в прежних русских дредноутах конструктивных решений. Высота полубака принята равной 8,85 м («Измаил», «Император Николай I», проект линкора с 16" артиллерией 1914 г. И.Г. Бубнова).

При наличии точных данных по длине, ширине и водоизмещению особенное значение приобретал вопрос о неизвестной осадке судна. На имеющихся в собрании бумаг В.П. Костенко эскизах отдельных видов и узлов проекта 1917 г. эта величина отсутствует, а произвести точный отсчет по масштабу (на эскизах – как правило, примерному) не представлялось возможным. Не фигурирует величина осадки (как, впрочем, и данные по проекту 1917 г. вообще) и в сохранившихся довольно полно расчетных тетрадях В.П. Костенко – обстоятельство, косвенно указывающее на изъятие этих расчетов в 30-е гг. для использования их при вариантном проектировании «Советского Союза».

Расчет значения осадки проекта линкора 1917 г. – весьма непростой вопрос, поскольку неизвестной является не только ее величина, но и значение коэффициента полноты корпуса б (или коэффициента полноты водоизмещения), составляющее часть соотношения:

D(V) = L x В x T x δ, где -

D(V) – объемное водоизмещение,

L – длина,

В – ширина,

Т – осадка,

δ – коэффициент общей полноты.

Таким образом, в данном случае мы имеем дело с уравнением с двумя неизвестными, и приблизиться к возможному решению возможно лишь путем тщательного анализа всего комплекса возможных решений (в данном случае – Т и 5 в соотношении с известными значениями L и В).

Первый подход состоял в рассмотрении параллели неизвестных характеристик осадки (Т) и коэффициента общей полноты (5) проекта 1917 г. с подобными значениями проектов русских дредноутов 1908–1914 гг., которые видны из таблицы:

Табл. прил. 2.1. Основные характеристики формы проектов русских дредноутов, 1909–1914 гг.


3
«Севастополь» (1909)22840180,026.98,400,5626,69231,72
«Екатерина II» (1911)23400169,528,18,360,5886,03211,61
«Измаил» (1912)31860223,930,58,810,5307,34281,87
«Император Николай I» (1914)27280182,029,09,000,5746,27211,55
Путиловского завода, вариант № 8 (1914)46170237,636,89,300,5686,46231,62
ГУК (1914)34900210,032,69,150.5576,44251,72

D(V) – объемное водоизмещение, или объем вытесненной судном воды, т. е. объем его подводной части с выступающими частями (рулями, винтами, кронштейнами и т. п.).

Из таблицы видно, что корабль с наибольшей скоростью обладает наименьшим δ («Измаил» – 28 уз, δ – 0,530), а при понижении скорости δ пропорционально возрастает. Соотношения L/B и V/√L распределяются примерно в такой же зависимости:

Табл. прил. 2.2. Распределение основных характеристик формы проектов русских дредноутов, 1909–1914 гг.


«Измаил» (1912)280,5307,341,87
ГУК (1914)250,5576,441,72
«Севастополь» (1909)230,5626,691,72
Путиловского завода, вариант № 8(1914) 230,5686,461,62
«Император Николай I» (1914)210.5746,271,55
«Екатерина II» (1911)210,5886,031,61

Если принять выделенную тенденцию за основу, то проект быстроходного линкора «Наваль» с его 30-узловым уровнем скорости полного хода и значениями L/B и v/Vl, превышающими значения «Измаила» (8,0 и 1,94 против 7,34 и 1,87 соответственно), должен был бы иметь его 8 по крайней мере не больше 0,530. Однако даже подобное соотношение приводит к осадке 11,30 м, что является по целому ряду причин недопустимой величиной.

Во втором подходе в качестве отправной точки был использован тот признак, что при рассмотрении основных характеристик предшествующих классов русских дредноутов просматривается явная зависимость между водоизмещением корабля и его осадкой. Остальные размерные характеристики – длина, ширина, высота борта – являются величинами, в значительно меньшей мере пропорциональными водоизмещению, поскольку они гораздо более подвержены искусственным ограничениям: по маневренным качествам, возможности докования и соображениям расчетной продольной прочности корпуса (длина), удобству компоновки (размеры машинно-котельных отделений и требуемая глубина бортовых отсеков конструктивной противоторпедной защиты) параллельно с необходимостью обеспечения желаемой пропульсивности (ширина), возможно меньшей видимости силуэта из тактических соображений в сочетании с достаточной мореходностью (высота надводного борта).

Осадка в подобном сочетании основных размерных характеристик корпуса линейного судна играет, как правило, отнюдь не первостепенную для ограничения роль, и обычно лимитируется лишь соображениями возможности входа в существующие доки или необходимостью оперирования в относительно мелководных районах закрытых морских театров типа Балтийского и, отчасти, Черного или Японского морей. Так, в частности, получилось при разработке проекта линкора с 16" артиллерией в 1914 г., когда первоначальные планы создания мощного артиллерийского корабля нового поколения для неглубокой Балтики жестко лимитировали осадку проекта (9,15 м) и наложили значительный отпечаток на всю конструкцию корабля, сильно стеснив его разработчиков. Что же касается "послевоенной" дивизии 16" сверхдредноутов, к проектированию которых приступили на заводе «Наваль», то эта серия кораблей должна была стать сердцевиной будущей русской эскадры Средиземного моря, с возможностью посылки ее, в случае необходимости, в любую точку океана. Подобное исходное условие ограничивало осадку проектируемых линкоров лишь возможностями Суэцкого и Панамского каналов (глубина первого 12 м, габариты шлюзовых камер второго 320 x 32,2 x 12,2 м).

Таким образом, осенью 1916 г. русские конструкторы имели гораздо большую свободу действий, нежели в марте 1914 г., и это исходное условие означало переход вопроса проектирования в новое качество, заключавшееся в свободном ориентировании на наиболее оптимальное решение. Объективно рассуждая, корабельные инженеры «Наваля» во главе с В.П. Костенко были даже заинтересованы в возможно большей осадке, так как при этом увеличивалась общая высота борта судна и уменьшалось отношение к ней ширины корпуса. Это обстоятельство позволяло существенно улучшить работу длинного корпуса на волне как расчетной коробчатой балки, поскольку с развитием сечения этой балки в высоту, то есть в направлении восприятия момента от огромного собственного веса корабля при расчетах постановки его на гребень или подошву волны, можно было значительно уменьшить толщину продольных связей (килевая балка, днищевые стрингеры, продольные переборки и бимсы, ширстреки и скуловые поясья обшивки) и сэкономить значительный вес на конструкции корпуса – до 1,0–1,5 тыс. т, который мог быть использован на усиление вооружения или защиты.

Статистическая зависимость осадки от водоизмещения аппроксимировалась прямой линией по методу наименьших квадратов, дающему минимальную сумму квадратов отклонений заданных точек от искомой прямой. Метод заключается в установлении уравнения осредненной прямой, проходящей через область точек, нанесенных в координатной плоскости в системе «водоизмещение/осадка» и обеспечивает, таким образом, наилучшее приближение. Для составления уравнения были взяты характеристики нормального водоизмещения четырех классов русских дредноутов, а также официального проекта ГУК 1914 г., и величины осадки, соответствующие этим значениям водоизмещения (табл. прил. 2.3). Расчет осадки для водоизмещения 44000 т свелся к нижеприведенным вычислениям:

Значение осадки для расчета водоизмещения («х») определяется следующим уравнением:

у = а1х + а0

а1 = (nΣxy – ExEy)/(nΣx2 – [Σx]2),

а= у – а1х,

у = Σy/n x = Σx/n, где -

х – значения водоизмещения,

у – значения осадки,

а1 – tg угла наклона осредненной прямой.

при этом «х» – безразмерная характеристика водоизмещения в тоннах, умноженная для удобства вычислений на 104, «у» – безразмерная характеристика осадки в метрах, умноженная на 10 -1.

Значения х, у, х2, ху, Σx, Σу. Σx2, Σху помещены в нижеприведенной таблице. Расчет осадки для водоизмещения 44000 т по этому методу свелся к следующим вычислениям:

а1 = (5 х 12,5781 – 14,31 х 4,372)/[5 х 42,1078 – (14,31)2] = 0,05678

у = 4,372/5

х = 14,31/5

а = 0,8744 – 0,05678 х 2,862 = 0,7119

у = 0,05678х + 0,7119

с учетом размерности (х-4) получаем окончательное значение осадки:

Т = 0,0000568 х D(т) + 7,119 = 9,62 м

Табл. прил. 2.3. Значения для расчета по методу наименьших квадратов (русские проекты)


2
«Севастополь» (1909)2,3300,8405,42891.9572
«Екатерина II» (1911)2,3870.8365,69781,9955
«Измаил» (1912)3,2500,88110,56252,8632
«Император Николай I» (1914)2,7830,9007,74512,5047
Проект ГУК (1914)3,5600,91512,67363,2574
 14,3104,37242,107812,5781

Полученное значение осадки (9,62 м), отражающее соотношение размере-ний для русского типа дредноута, было сопоставлено со значением, полученным из уравнения «водоизмещение/осадка» для восьми зарубежных проектов тяжелых артиллерийских кораблей, вооруженных 16" артиллерией:

Табл. прил. 2.4. Значения для расчета по методу наименьших квадратов (зарубежные проекты)


2
«Мериленд» (1916)3,430,9311,76493,1899
«Саут Дакота» (1919)4,321,0118,66244,3632
«Лексингтон» (1919)4,350,9518,92254,1325
«Нагато» (1916)3,380,9111,42443,0758
«Тоза» (1919)4,000.9416.00003,7600
«Амаги» (1919)4,120,9416,97443,8728
«Овари» (1919)4,260,9718,14764,1322
«Джи-3» (1921)4,850,9923,52254,7916
 32,7007,64135,418731,318

а1 = (8 х 31,318 – 32,70 х 7,64)/[8 х 135,4187 – (32.70)2]= 0,0509264

у = 0,955

х = 4,0875

а = 0,955 – 0,0509264 х 4,0875 = 0,747

у = 0,0509

х + 0,747

с учетом размерности (х-4) получаем окончательное значение осадки:

Н = 0,0000509 х D(т) + 7,47 = 9,71 м

Таким образом, значение осадки, полученной из уравнения, выведенного по характеристикам водоизмещения и осадки восьми зарубежных проектов 1916–1921 гг., получилось практически таким же. Сопоставление обоих результатов демонстрирует их совпадение (9,62 и 9,71 м, погрешность 0,9 %), что доказывает весьма высокую степень совершенства метода.

Однако для рассматриваемого нами случая с осадкой проекта русского линкора 1917 г. эта величина требует более критической оценки, поскольку необходимо наличие ее допустимого соотношения с другими характеристиками формы. Так, осадка в 9,70 м приводит к весьма значительному коэффициенту полноты корпуса δ (δ = D(V)/L х В х Т = 0,617), слишком большому дли тяжелого артиллерийского корабля быстроходного типа, воплощенному в проекте В.П. Костенко, что подтверждается соответствующими характеристиками его зарубежных аналогов периода 1916–1921 гг. (см. табл. 10.14). Соотнесенное с ними, значение δ для проекта завода «Наваль» не могло превышать 0,590, что дает осадку 10,10 м. Таким образом, пара значений δ и Т, зафиксированная соответственно как 0,590 и 10,10 м, могла дать наиболее оптимальное соотношение всех коэффициентов формы для проекта 1917 г. Требовалась всесторонняя проверка данного значения осадки путем составления обводов корпуса судна и, на их основе, реконструкция основных внутренних объемов (артиллерийских погребов, машинно-котельных отделений) в пределах цитадели корабля, что должно подтвердить как возможность обеспечения компоновки, так и достаточную глубину отсеков конструктивной противоторпедной защиты у бортов в районе цитадели.

Для понимания исходной точки в вопросе выбора характера обводов тяжелого артиллерийского корабля быстроходного типа необходимо принять во внимание следующие рассуждения. Эффективность пропульсивных качеств корабля подобного типа определяло в значительной степени применение особых обводов корпуса, позволявших существенно снижать сопротивление на скоростях свыше 26–27 уз. Эта форма подводной части корпуса характеризовалась острыми ватерлиниями как в носу, так и в корме, что позволяло достигнуть плавного рассечения набегавшего потока и относительно безвихревого (ламинарного) схода его с кормы. В русском флоте к подобной форме ватерлиний в корме впервые обратились в 1908 г., когда при разработке формы корпуса для «Севастополя» были предложены кормовые обводы заостренного типа. Одна из подготовленных и испытанных в бассейне моделей (в пору заведования им создателем проекта «Севастополя» И.Г. Бубновым) имела именно такие обводы, обеспечивавшие при ее буксировке значительное уменьшение сопротивления, эквивалентное увеличению скорости на натуре по меньшей мере на 1 уз. Эта форма не была принята для итогового проекта линкора, поскольку зауженный в корме корпус вызывал большие сложности с размещением погребов боезапаса четвертой 12"/52 башни, отнесенной в компоновке «Севастополя» далеко в корму. В целом, форма напоминала в плане двойной клин, обе половины которого соприкасаются друг с другом их тыльными сторонами, в отличие от очертания ватерлиний относительно тихоходных «эскадренных» линкоров, имевших довольно полные веретенообразные контуры. Использование подобных обводов приводило к необходимости максимальной концентрации цитадели в средней части корпуса, поскольку только там имелись достаточные объемы вдоль бортов для устройства глубокой конструктивной защиты жизненных частей корабля от минно-торпедных ударов.

Впоследствии обводы этого типа были применены в проекте «Измаила», запланированные скоростные характеристики которого требовали повышенного внимания к обеспечению наиболее эффективной с точки зрения снижения волнового сопротивления формы корпуса. Узкие ватерлинии в носу сопровождались значительным развалом боковых ветвей шпангоутов в надводной части, что в сочетании с высоким полубаком должно было сообщать судну хорошую всхожесть на волну и мореходность.

В связи с тем, что в габаритах корпусов «Измаила» и проекта николаевского линкора просматривается явная параллель (длина 224 и 240 м, ширина 30,5 и 30,0 м соответственно), а оба они принадлежат к единому типу быстроходного тяжелого корабля со сходными скоростными характеристиками (28 и 30 уз), правомерным является вопрос о преемственности обводов «Измаила» для проекта линкора 1917 г. При реконструкции теоретического чертежа последнего недостающие 16 м длины корпуса (6,25 %) были получены путем добавления в чертеж обводов «Измаила» соответствующей цилиндрической вставки по миделю. Подобное добавление, не изменяя принципиально характера обводов тяжелого корабля быстроходного типа, позволяет получить наиболее вероятные пропорции подводной части корпуса, прямо влияющие на возможность развития им заданных порядков скорости. Фактически, расчет водоизмещения подобного корпуса сводится к суммированию трех его составляющих: нормального водоизмещения собственно «Измаила», его дополнительного водоизмещения, полученного увеличением осадки с 8,81 до 10,10 м, а также водоизмещения, полученного добавлением цилиндрической вставки у миделя (габарит ниже ватерлинии – 16,1 х 30 х 10,1 м). Соответствующие расчеты, проделанные автором (не приводятся здесь полностью за недостатком места), полностью подтвердили возможность развития корпуса проекта 1917 г. на основе обводов «Измаила».

Следующий важный аспект оценки полученных на основе «Измаила» обводов в отношении их приемлемости для проекта 1917 г. – достаточная полнота подводной части баланс-шпангоутов (геометрических торцов цитадели), допускающая устройство отсеков конструктивной противоторпедной защиты корпуса необходимой глубины в основании погребов концевых 16" башен. Решение этой задачи требует проведения реконструкции общего расположения цитадели корабля. Она подразделяется на две части: определение компоновки артиллерийских погребов из расчета требуемого количества боезапаса на одно орудие, и подсчета площади и объема отсеков машинно-котельных отделений, для чего требуется предварительно рассчитать требуемую мощность на валу (SHP) для каждого из четырех вариантов проекта, обеспечивающую развитие заданной скорости хода. Решение этой задачи представляется осуществимым как в силу наличия необходимых исходных данных для расчетов, так и соответствующих методик расчета требуемых параметров тяжелых артиллерийских кораблей рассматриваемого периода, а также исчерпывающих данных по современникам русского проекта 1917 г., как отечественных, так и зарубежных («расчет по аналогу»).

В основу решения первой из этих задач положена сравнительная оценка взятых за основу обводов и габаритов погребов боезапаса кольцевого типа 16" установок, разработанных техбюро АО ГУК весной 1914 г. Она приводит к выводу о неприемлемости в проекте 1917 г. погребов кольцевого типа, имевших слишком большой диаметр, сводящий практически на нет возможность устройства надежной бортовой конструктивной защиты в районе концевых башен. Несомненно, что «деликатная» форма корпуса быстроходного линкора с зауженными в оконечностях ватерлиниями должна была потребовать пристального внимания к вопросу разработки погребов концевых 16" башен, ширина которых не могла превышать диаметра погона установки, т. е. 10–11 м. С подобной проблемой столкнулись все флоты, проектировавшие быстроходные линкоры в 20-30-е гг. XX столетия. Эта проблема решалась (как правило, успешно) смещением погребов концевых установок в направлении середины корпуса. Подача боезапаса осуществлялась от ячеек хранения по горизонтальным линиям до основания подачной трубы («Худ», «Джи-3», «Витторио Венето»). Расчет артиллерийского погреба подобной конструкции представленный на прилагаемом чертеже, подтверждает его принципиальную приемлемость для 16" установки проекта русского линкора 1917 г.

Реконструкция группы из двух трехорудийных башен главного калибра линкора 1917 г. (варианты 2, 4) привела к виду, воспроизведенному на стр.333. Данная комбинация является оптимальной с точки зрения наиболее компактного взаиморасположения обеих башен при выполнении условия обеспечения им заданных секторов горизонтальной наводки (по 65° за траверз). При этом погребам боезапаса сообщена минимальная ширина (9200 мм), фактически не превышающая диаметра загрузочных площадок вокруг нижней части ствола подачной трубы, что обеспечивает возможно более глубокую конструктивную подводную защиту погребов с бортов. Расчеты показывают, что при размещении погребов боезапаса трехорудийных башен между установками возможно выполнение условия создания погребов требуемой вместимости (по 80 выстрелов на орудие, как и в проекте ГУК 1914 г., разработанном под руководством И.Г. Бубнова). Расстояние между осями установок в этом случае составляет 26,4 м. Протяженность погребов по высоте – от уровня трюма до уровня нижней палубы – соответствует практике прежних проектов русских дредноутов. Укладка снарядов и зарядов в погребах – в индивидуальных (отдельных) ячейках.

Согласно дальнейшим расчетам, в группах, состоящих из двух двухорудийных установок, или из трехорудийной и двухорудийной установки, возможна дальнейшая оптимизация габаритов их артиллерийских погребов, теоретически позволяющая, при сохранении требуемых секторов горизонтального наведения (по 65° от траверза), сближение осей установок в первом случае на 4 шп (4,8 м), а во втором на 2 шп (2,4 м). При этом сохраняется требуемая вместимость погребов трехорудийных башен, а для двухорудийных она даже повышается до 90 выстрелов на орудие. Однако перспектива подобного выигрыша для проекта линкора 1917 г. парируется практической невозможностью сближения установок по причине превышения допустимого габарита их вращающихся частей.

(На рис. условно не показаны: на плане – пламянепроницаемые захлопки подачи боезапаса из погребов к площадке тележек, кольцевой погон тележек в погребах: на разрезе – башенные дальномеры, подцапфенные кронштейны станков орудий, зубчатые сектора вертикальной наводки, электромеханическое оборудование установок, тележки в погребах)


Цифрами обозначены (план):

1 – зарядники подачной трубы

2 – выгородки трубопроводов систем

Последовательность операций по подаче боезапаса к орудию (разрез):

1 – загрузка в нижний зарядник двух полузарядов.

2 – подъем нижнего зарядника по стволу подачной трубы к позиции загрузки снаряда.

3 – загрузка снаряда,

4 – подъем нижнего зарядника в перегрузочное отделение,

5 – перегрузка боезапаса на один выстрел из нижнего зарядника в верхний,

6 – подъем верхнею зарядника в боевое отделение к орудию,

7 – сцепление с качающейся частью орудия, досылка снаряда и заряда в камору.

Реконструкция компоновки погребов боезапаса по чертежам вращающейся части трехорудинной 16"/45 установки, разработанной АО ГУК в марте 1914 г. (РГАВМФ, ф.876, оп. 195. дд. 102. 104, 106).

Вторая часть задачи реконструкции компоновки цитадели проекта 1917 г. заключается в оценке требуемых габаритов его машинно-котельной установки, в основе чего лежит расчет значения ее мощности. Как и при определении величины необходимой мощности МКУ проекта линкора Ревельского завода (1914 г.) (см. гл.8), расчет проводился на основе общепринятого для того времени метода адмиралтейских коэффициентов, основанного на положении о том, что сопротивление судна пропорционально квадрату его скорости и квадрату линейных размеров, т. е. что

R=L2V2/ m, где -

L – линейное размерение корабля, м,

V – скорость хода, уз,

m – численный коэффициент, зависящий от формы судна.

Адмиралтейский коэффициент Cw от мощности на валу (SPH, л.с.) по водоизмещению (D, т) имеет вид:

Cw= D2/3V3/ SHP

Для расчета адмиралтейского коэффициента по этой формуле был выбран близкий по типу к проекту 1917 г. "Измаил", обводы которого взяты за основу при реконструкции формы корпуса проекта николаевского линкора. Несколько меньшая скорость хода прототипа по сравнению с более быстроходными вариантами 1 и 2 проекта компенсируется их увеличенным относительным удлинением (отношение L/B составляет соответственно 8,40 и 8,00 против 7,37 у «Измаила»). Значение Cw «Измаила» составляет 285. Вычисленные на его основе значения мощности всех четырех вариантов проекта 1917 г. следуют из нижеприведенной таблицы. Она показывает также и наиболее вероятный состав его котельной установки, сформированной на основе единой для всех четырех вариантов проекта модели котла. Эта модель, с учетом тенденции к дальнейшему совершенствованию предшествующей модели нефтяного котла треугольного типа, расчет на которую велся в официальном проекте 1914 г., при повышении ее эквивалентной расчетной мощности по паропроизводи-тельности с 7500 л.с. до 8000 л.с. (на 7 %) могла обеспечить полное покрытие необходимой мощности на валу при числе котлов, кратном трем. Именно такое их число, согласно источникам, должно было располагаться в один ряд в каждом котельном отделении всех вариантов проекта 1917 г. Вероятность применения усовершенствованного котла подтверждается и практикой британского флота, перешедшего после «Худа» в проекте «Джи-3» к новой, более совершенной, модели котла того же типа (треугольного, тонкотрубного, типа Яр-роу) в 8000 л.с. против прежнего, рассчитанного на 6290 л.с. (увеличение на 21 %). Подобный рост мощности нельзя считать чрезмерным и в абсолютном исчислении, поскольку в рассматриваемый период японский флот также успешно работал над созданием нефтяного котла мощностью свыше 10000 л. с, спустя несколько лет примененного в проектах «Тоза», «Амаги» и «Овари».

Табл. прил.2.5. Характеристики мощности МКУ проекта 1917 г.


Водоизмещение, т42360440004360045000
Главная артиллерия8 16"/459 16"/4510 16"/4512 16"/45
SHP по Сw «Измаила», л.с.1329001180009572069520
Число котлов1815129
Эквивалентная мощность котла, л.с.8000800080008000
Эквивалентная общая мощность МКУ, л.с.1440001200009600072000
Относительная мощность МКУ на 1 м площади, л.с.102,56102,5691,9586,11

Методика расчета использована по: Л.А. Гордон. Проектирование военных кораблей // «Справочник по судостроению» под ред. В.Л. Поздюнина. т. IХ, ч.1. -М.-Л., 1939.


    Ваша оценка произведения:

Популярные книги за неделю