Текст книги "Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики"
Автор книги: Леонард Сасскинд
сообщить о нарушении
Текущая страница: 7 (всего у книги 28 страниц)
Электромагнитная волна – это пример колебания. В каждой точке пространства электрическое и магнитное поля вибрируют с частотой, которая зависит от цвета излучения. В природе существует множество других колебаний. Вот некоторые широко известные примеры.
♦ Маятник часов. Маятник совершает полное колебание вперёд и назад примерно за секунду. Частота такого маятника – один герц, или один цикл в секунду.
♦ Груз, подвешенный к потолку на пружине. Если пружина достаточно жёсткая, частота колебаний составит несколько герц.
♦ Вибрация камертона или скрипичной струны. И то и другое может давать несколько сотен герц.
♦ Электрический ток в цепи. Он может осциллировать с гораздо большей частотой.
Системы, способные осциллировать, называются – что, в общем, неудивительно – осцилляторами. Все они обладают энергией, по крайней мере когда осциллируют, и в классической физике эта энергия может иметь любую величину. Я имею в виду, что осциллятор можно плавно накачивать энергией до любого желаемого значения. На графике показано, как растёт энергия осциллятора по мере его накачки.
Но оказывается, что в квантовой механике энергия может поступать только маленькими неделимыми порциями. Если попытаться плавно увеличить энергию осциллятора, результатом будет лестница, а не гладкий пандус. Прибавление может осуществляться лишь порциями, кратными единице, называемой квантом энергии.
Какова величина квантовой единицы? Это зависит от частоты осциллятора. Правило здесь в точности то же самое, что было открыто Планком и Эйнштейном для световых квантов: квант энергии Е – это частота осциллятора f, помноженная на постоянную Планка h:
E=h∙f
У обычных осцилляторов, таких как маятник, частота не очень велика и шаг по высоте (квант энергии) чрезвычайно мал. В этом случае ступенчатый график состоит из таких крошечных шагов, что выглядит как гладкий подъём. Именно поэтому мы не замечаем квантования энергии в повседневной жизни. Однако электромагнитные волны могут иметь достаточно высокие частоты, при которых ступеньки лестницы будут значительно выше. В действительности, как вы могли уже догадаться, увеличение энергии электромагнитной волны на одну ступень – это то же, что добавление одного фотона к пучку света.
Для классически настроенного мозга кажется нелогичным тот факт, что энергия может добавляться только неделимыми квантами, но именно это вытекает из квантовой механики.
Квантовая теория поляЛапласовская картина мира восемнадцатого века была довольно унылой: частицы, ничего, кроме частиц, движущихся по орбитам, которые предопределены деспотичными уравнениями Ньютона. Я бы рад сообщить, что современная физика предлагает более тёплую, размытую картину реальности, но боюсь, что это не так. Это по-прежнему частицы, только на современный манер. Железный закон детерминизма заменён более гибким законом квантовой случайности.
Новый математический аппарат, заменивший ньютоновские законы движения, называется квантовой теорией поля, и согласно его диктату, весь природный мир состоит из элементарных частиц, движущихся из одной точки в другую, сталкивающихся, распадающихся и вновь сливающихся. Это колоссальная сеть мировых линий, соединяющих события (точки пространства-времени). Математику этой гигантской паутины из линий и точек нелегко объяснить на обыденном языке, но главные моменты совершенно ясны.
В классической физике частицы движутся от одной точки пространства-времени к другой по строго определённым траекториям. Квантовая механика вносит в их движение неопределённость. Тем не менее мы можем считать, что они проходят между точками пространства-времени, хотя и по неопределённым траекториям. Эти расплывчатые траектории называются пропагаторами. Обычно пропагаторы изображаются линиями между двумя пространственно-временными событиями, но лишь потому, что не существует способа нарисовать неопределённое движение подлинных квантовых частиц.
Пропагатор
Далее следуют взаимодействия, которые говорят нам, как частицы ведут себя при встрече. Базовый процесс взаимодействия называется узлом. Узел подобен дорожной развилке. Частица движется по своей мировой линии, пока не оказывается на развилке. Но вместо того чтобы выбрать одну из двух дорог, частица разделяется на две – по одной для каждой дороги. Лучший известный пример узла – это испускание фотона заряженной частицей, или электроном. В этом случае одинокий электрон спонтанно разделяется на электрон и фотон[49]49
Интуитивно кажется, что, когда нечто разделяется, каждая часть будет меньше оригинала. Это представление унаследовано из повседневного опыта. Разделение электрона на электрон и фотон показывает, насколько обманчивой может быть наша интуиция.
[Закрыть]. (Мировые линии фотонов традиционно изображают либо волнистыми, либо пунктирными.)
Узел с испусканием фотона
Это базовый процесс испускания света: от дрожащих электронов отщепляются фотоны.
Существуют множество узлов другого типа, в которых задействуются другие частицы. В атомных ядрах, например, есть частицы, называемые глюонами. Глюон способен распадаться на два глюона.
Глюонный узел
Любой процесс, способный протекать в прямом направлении, может также протекать и в обратном. Это означает, что частицы могут встречаться и сливаться. Например, два глюона могут встретиться и соединиться в один глюон.
Ричард Фейнман придумал, как объединять пропагаторы и узлы, формируя более сложные процессы. Например, существует фейнмановская диаграмма, изображающая фотон, перепрыгивающий с одного электрона на другой, которая описывает, как электроны сталкиваются и рассеиваются.
Другая диаграмма показывает, как глюоны образуют запутанное, липкое, тягучее вещество, которое удерживает вместе кварки в ядре.
Ньютоновская механика ищет ответы на древний вопрос о предсказании будущего по заданному начальному состоянию, включающему положения и скорости множества частиц. Квантовая Теория поля ставит вопрос иначе: дан начальный набор частиц, движущихся определённым образом, какова вероятность различных исходов?
В какой-то мере здесь используется наивная (и ошибочная) версия квантовой теории поля, которую легко бы понял Лаплас, хотя она бы могла ему не понравиться: поведение частицы не детерминировано; но существует положительная вероятность[50]50
Значения вероятностей в обычной теории вероятности всегда выражаются положительными числами. Трудно представить, что могла бы означать отрицательная вероятность. Попробуйте придать смысл следующей фразе: «Если я брошу монету, то вероятность того, что выпадет решка, составляет минус одну треть». Очевидно, что это недоразумение.
[Закрыть] для каждого маршрута, ведущего в прошлое (два электрона) и в будущее (два электрона и фотон). Отсюда может сложиться впечатление, что для нахождения полной вероятности надо просто сложить индивидуальные вероятности для всех возможных маршрутов. Такое заключение идеально соответствовало бы лапласовскому, классически настроенному мышлению, но на самом деле всё устроено не так. Правильный рецепт выглядит странно – не пытайтесь грокнуть этот результат, просто примите его.
Верный рецепт является одним из следствий странной «квантовой логики», открытой великим английским физиком Полем Дираком сразу вслед за работами Гейзенберга и Шрёдингера. Фейнман следовал идеям Дирака, когда вводил математические правила вычисления амплитуды вероятности для каждой фейнмановской диаграммы. Более того, сложив амплитуды вероятности для всех диаграмм, вы не получите окончательную вероятность. В действительности амплитуды вероятности не обязаны быть положительными числами. Они могут быть положительными, отрицательными и даже комплексными.
Но амплитуда вероятности – это не вероятность. Чтобы найти полную вероятность того, что, скажем, два электрона превратятся в два электрона и фотон, надо прежде всего сложить амплитуды вероятностей для всех фейнмановских диаграмм. Затем, согласно дираковской абстрактной квантовой логике, надо взять полученную величину и возвести её в квадрат! Этот результат всегда положителен, и он даёт вероятность для конкретного исхода.
Это необычное правило лежит в самом основании квантовых странностей. Лапласу это показалось бы абсурдом, и даже Эйнштейн не находил в этом смысла. Но квантовая теория поля невероятно точно описывает всё, что мы знаем об элементарных частицах, включая то, как они соединяются, формируя ядра, атомы и молекулы. Как я уже говорил во введении, квантовым физикам приходится перенастраиваться на новые правила логики[51]51
Я, конечно, не ожидаю, что неподготовленный читатель полностью поймёт этот закон или хотя бы то, почему он так странен. Тем не менее я надеюсь, что у него получится уловить хотя бы запах работы законов квантовой теории поля.
[Закрыть].
Прежде чем завершить эту главу, я бы хотел вернуться к тому, что так глубоко беспокоило Эйнштейна. Я не знаю наверняка, но предполагаю, что это было связано с предельно бессмысленной природой вероятностных утверждений. Меня всегда озадачивало: что же они на самом деле говорят о нашем мире? Насколько я могу судить, они не означают ничего определённого. Чтобы проиллюстрировать эту мысль, я однажды написал приведённую ниже историю, включённую первоначально в книгу Джона Брокмана «Во что мы верим, но не можем доказать»[52]52
Приводимая ниже история цитируется по изданию: Брокман Дж. Во что мы верим, но не можем доказать: Интеллектуалы XXI века о современной науке. – М.: Альпина нон-фикшн, 2011. – С. 137–139. – Прим. перев.
[Закрыть]. История под названием «Беседа со студентом-тугодумом» описывает разговор между профессором физики и студентом, который никак не может уловить суть. Когда я писал эту историю, то отождествлял себя скорее со студентом, чем с профессором.
Студент: Здравствуйте, профессор. У меня проблема. Я решил провести небольшой вероятностный эксперимент – знаете, подбрасывание монетки – и проверить то, чему вы нас учили. Но у меня ничего не вышло.
Профессор: Что ж, я рад, что вы проявили интерес. Что же вы сделали?
Студент: Я подбросил монетку 1000 раз. Помните, вы говорили, что вероятность того, что выпадет «орёл», – одна вторая? Я подсчитал, что если подбросить монетку 1000 раз, то «орёл» должен выпасть 500 раз. Но он выпал 513 раз. Почему?
Профессор: Вы забыли о допустимой погрешности. Если подбросить монетку какое-то число раз, допустимая погрешность будет равняться квадратному корню от количества бросков. Для 1000 бросков допустимая погрешность около 30. Так что вы получили совершенно предсказуемый результат.
Студент: О, теперь я понял! Каждый раз, когда я подброшу монетку 1000 раз, «орёл» выпадет от 470 до 530 раз. Каждый раз! Здорово, теперь я уверен, что это факт!
Профессор: Нет-нет! Это значит, что «орёл», вероятно, выпадет от 470 до 530 раз.
Студент: Вы хотите сказать, что «орёл» может выпасть 200 раз? Или 850 раз? Или выпадать всё время?
Профессор: Вероятно, нет.
Студент: Может быть, проблема в том, что я сделал недостаточно бросков? Может быть, мне нужно пойти домой и подбросить монетку миллион раз? Может быть, тогда результат будет лучше?
Профессор: Вероятно, нет.
Студент: Профессор, пожалуйста, скажите мне что-нибудь, в чём я могу быть уверен. Но вы всё время твердите своё «вероятно». Вы можете мне объяснить, что такое вероятность, но без слова «вероятно»?
Профессор: Гм-гм. Я попробую. Это значит, что я буду удивлён, если «орёл» выпадет чаще, чем предполагает допустимая погрешность.
Студент: О господи! Вы хотите сказать, что всё, что вы рассказывали нам о статистической механике, квантовой механике и математической вероятности, – всё это значит лишь то, что вы будете удивлены, если оно не сработает?
Профессор: Э-э-э…
Если я подброшу монетку миллион раз, то, совершенно точно, «орёл» миллион раз не выпадет. Я не азартен, но я настолько в этом уверен, что, не задумываясь, поставил бы на это свою жизнь или свою душу. Да что там душу, я поставил бы на это свою зарплату за целый год. Я абсолютно убеждён, что законы больших чисел – то есть теория вероятности – сработают и не дадут меня в обиду. На них основана вся наука. Но я не могу этого доказать и на самом деле понятия не имею, почему они работают. Может быть, именно поэтому Эйнштейн говорил, что Бог не играет в кости. Вероятно, всё-таки играет.
Время от времени мы слышим утверждения физиков о том, что Эйнштейн не понимал квантовую механику и потому тратил своё время на наивные классические теории. Я очень сильно сомневаюсь, что это правда. Его аргументы против квантовой механики чрезвычайно изящны, кульминации они достигли в одной из самых сложных и самой цитируемой во всей физической науке статье[53]53
A. Einstein, В. Podolsky, and N. Rosen. «Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?» Physical Review 47 (1935): 777-80. (Русский перевод: Эйнштейн А., Подольский Б., Розен Н. Можно ли считать квантово-механическое описание реальности полным? // Эйнштейн А. Собрание научных трудов: В 4 т. T. III. – М.: Наука, 1966. – С. 604. – Прим. перев)
[Закрыть]. Я считаю, что Эйнштейн был обеспокоен теми же вещами, что и занудный студент-тугодум. Как может окончательная теория реальности касаться чего-то столь маловразумительного, как степень нашего удивления относительно исхода эксперимента?
Я продемонстрировал вам некоторые парадоксальные, почти алогичные вещи, которые квантовая механика вываливает на классически настроенный мозг. Но я предполагаю, что вы не вполне удовлетворены. На самом деле я на это надеюсь. Если вы запутались, так и должно быть. Единственное лекарство, которое от этого помогает, – это доза математического анализа и погружение на несколько месяцев в хороший учебник по квантовой механике. Только очень странный мутант или человек, рождённый в очень необычной семье, может быть естественным образом настроен на понимание квантовой механики. Помните, в итоге даже Эйнштейн не смог её грокнуть.
5
Планк изобретает улучшенный эталонный масштаб
Однажды в стэнфордском кафетерии я заметил группу студентов с моего подготовительного курса физики, которые что-то изучали за столом. «Друзья, чем занимаетесь?» – спросил я. Ответ меня удивил. Они заучивали до последней цифры таблицу постоянных, приведённую на обложке учебника[54]54
Все константы приведены к стандартной системе единиц СИ, на основе метра (м), килограмма (кг) и секунды (с).
[Закрыть]. Таблица наряду с двумя десятками других включала следующие постоянные:
h (постоянная Планка) = 6,626068∙10−34 м2кг/с
Число Авогадро = 6,0221415∙1023
Заряд электрона = 1,60217646∙10−19 кулона
c (скорость света) = 299 792 458 м/с
Диаметр протона = 1,724∙10−15 м
G (гравитационная постоянная) = 6,6742∙10−11 м3с−2кг−1
На других научных предметах абитуриентов натаскивают запоминать огромное количество информации. Они хорошо усваивают физику, но часто пытаются учить её тем же способом, которым учат психологию. Правда состоит в том, что физика весьма незначительно нагружает память. Я не уверен, что многие физики сумеют назвать большинство из этих постоянных даже по порядку величины.
Отсюда возникает интересный вопрос: почему численные значения этих постоянных столь неуклюжие? Почему бы им не быть простыми числами вроде 2, 5 или даже 1? Почему они всё время оказываются то слишком маленькими (постоянная Планка, заряд электрона), то слишком большими (число Авогадро, скорость света)?
С физикой ответ связан слабо, гораздо больше – с биологией. Возьмём число Авогадро. Оно выражает число молекул, содержащихся в определённом количестве газа. Каком количестве? В таком, с которым было удобно работать химикам начала девятнадцатого века; иными словами, это количество, которое помещается в колбе или другом сосуде, более или менее сопоставимом с человеком по размерам. Фактическое значение числа Авогадро больше связано с числом молекул в теле человека, чем с глубокими физическими принципами[55]55
Хорошо, тогда почему люди состоят из такого большого числа молекул? Опять это больше связано с природой разумной жизни, а не с фундаментальной физикой. Нужно очень много молекул для построения машины, Достаточно сложной, чтобы думать и задавать вопросы по химии.
[Закрыть].
Ещё один пример – диаметр протона. Почему он так мал? И вновь ключ к ответу в человеческой психологии. Численное значение в таблице выражено в метрах, но что такое метр? Это принятый в метрической системе единиц аналог английского ярда, который связан с расстоянием от носа до кончика пальца вытянутой руки. Очень вероятно, что это удобная единица для измерения ткани или верёвки. Малость протона говорит лишь о том, что нужно очень много протонов, чтобы составить человеческую руку. С точки зрения фундаментальной физики в этом числе нет ничего особенного.
Так почему бы нам не изменить единицы, чтобы эти числа стало проще запоминать? На практике часто так и делается. Например, в астрономии, где для измерения длины используется световой год. (Ненавижу, когда световой год ошибочно используют в качестве единицы времени: «Эгей! Целый световой год прошёл, как мы с тобой не виделись!») Скорость света не так велика, если выразить её в световых годах в секунду. На самом деле она очень мала – всего около 3∙10−8. Но что, если также заменить единицу времени и вместо секунды взять год? Поскольку свет тратит ровно один год на то, чтобы пройти один световой год, скорость света составит один световой год в год.
Скорость света – одна из фундаментальных величин в физике, так что есть смысл использовать такие единицы, в которых она равна единице. Но вот, скажем, радиус протона – вещь не особо фундаментальная. Протоны – сложные объекты, состоящие из кварков и других частиц, так зачем предоставлять им почётное первое место? Гораздо осмысленнее выбрать константы, которые управляют глубочайшими и самыми универсальными законами физики. Нет больших разногласий, какие именно это законы.
♦ Максимальная скорость любого объекта во Вселенной равна скорости света c. Этот предел скорости – закон не только для света, но для всего в природе.
♦ Все объекты во Вселенной притягивают друг друга с силой, пропорциональной произведению их масс и гравитационной постоянной G. «Все объекты» означает все объекты без исключения.
♦ Для любого объекта во Вселенной произведение его массы на неопределённости положения и скорости никогда не бывает меньше постоянной Планка h.
Курсив здесь подчёркивает всеобщий характер данных законов. Они применимы ко всем объектам вместе и к каждому в отдельности – ко всему сущему. Эти три закона природы действительно заслуживают того, чтобы их называли универсальными, – в куда большей мере, чем законы ядерной физики или свойства конкретных частиц вроде протона. Это может казаться тривиальным, но одно из самых глубоких озарений относительно структуры физики снизошло на Макса Планка, когда в 1900 году он понял, что можно так выбрать единицы длины, массы и времени, что сделать все три фундаментальные постоянные – c, G и h – равными единице.
Фундаментальный масштаб – это планковская единица длины. Она намного меньше метра и даже диаметра протона. В действительности она примерно в сто миллиардов миллиардов раз меньше протона (в метрах это примерно 10−35). Даже если протон увеличить до размеров Солнечной системы, планковская длина будет не больше вируса. Нетленная заслуга Планка в том, что он догадался: этот невозможно крошечный размер должен играть фундаментальную роль в любой окончательной теории физического мира. Планк не знал, что это будет за роль, но он понял, что наименьшие строительные блоки материи будут «планковского размера».
Единица времени, которая потребовалась Планку, чтобы сделать c, G и h равными единице, тоже оказалась чрезвычайно малой, а именно 10−42 секунды, – время, которое требуется свету, чтобы пройти одну планковскую длину.
Наконец, существует планковская единица массы. Учитывая, что планковская длина и планковское время столь невероятно малы (в обыденных, биоориентированных единицах), было бы естественно ожидать, что планковская единица массы окажется много меньше массы любого обычного объекта. Но тут-то вы и ошибётесь. Оказывается, самая фундаментальная единица массы в физике не так уж страшно мала по биологическим меркам и составляет массу примерно десяти миллионов бактерий. Это примерно равно массе мельчайшего объекта, ещё различимого невооружённым глазом, пылинки например.
Эти единицы – планковские длина, время и масса – имеют экстраординарное значение: это размер, время полураспада и масса самой маленькой возможной чёрной дыры. В следующих главах мы ещё вернёмся к этому вопросу.
E=m∙c2Возьмём сосуд, наполним его кубиками льда, крепко запечатаем и взвесим на кухонных весах. Теперь поставим его на горелку и расплавим лёд, превратив его в горячую воду. Взвесим снова. Если вы сделаете это достаточно тщательно, добившись, чтобы в сосуд ничего не попадало извне и из него ничего не выходило наружу, то конечный вес окажется равным исходному, вплоть до очень высокой точности взвешивания. Но если бы вы могли измерять вес с погрешностью не больше одной триллионой, то заметили бы различие; горячая вода весила бы немного больше, чем лёд. Иначе говоря, нагревание добавляет к весу несколько триллионных долей килограмма.
Что происходит? Ну, просто тепло – это энергия. Но согласно Эйнштейну, энергия – это масса, так что добавление тепла к содержимому сосуда увеличивает его массу. Знаменитое уравнение Эйнштейна E=m∙c2 выражает тот факт, что масса и энергия – это одна и та же вещь, измеренная в разных единицах. В сущности, это подобно переводу миль в километры; расстояние в километрах – это расстояние в милях, помноженное на 1,61. В случае массы и энергии переводной коэффициент равен квадрату скорости света.
Стандартная физическая единица для энергии – джоуль. Сто джоулей – это энергия, требуемая для работы 100-ваттной лампочки в течение одной секунды. Один джоуль – это кинетическая энергия двухкилограммового груза, движущегося со скоростью один метр в секунду. Пища ежедневно даёт вам около 10 миллионов джоулей энергии. В то же время стандартная международная единица массы – килограмм – равна массе литра воды.
Формула E=m∙c2 говорит нам, что масса и энергия – это взаимозаменяемые понятия. Если удастся уничтожить немного массы, она превратится в энергию, часто в форме тепла, хотя и не обязательно. Представьте, что килограмм массы исчез и заменён теплом. Чтобы понять, сколько получится тепла, умножьте один килограмм на очень большое число c2. Результатом будет около 1017 джоулей. На таком запасе вы сможете прожить 30 миллионов лет или создать очень мощную ядерную боеголовку. К счастью, преобразовать массу в другие формы энергии очень трудно, но Манхэттенский проект[56]56
Так называлась разработка атомной бомбы в Лос-Аламосе, штат Нью-Мексико, во время Второй мировой войны.
[Закрыть] доказал, что это возможно.
Для физиков понятия массы и энергии стали настолько близкими, что мы редко вообще их различаем. Например, массу электрона часто выражают определённым числом электронвольт – единиц энергии, применяемых в атомной физике.
Выяснив это, вернёмся к планковской массе – массе пылинки, – которую также можно назвать планковской энергией. Представим, что эта пылинка благодаря некоему открытию превратилась в тепловую энергию. По величине она была бы примерно равна полному баку бензина. Вы могли бы пересечь Соединённые Штаты, затратив десять планковских масс.
Невообразимая малость объектов планковского масштаба и невероятная сложность их непосредственного наблюдения служат источником глубокой печали для теорфизиков. Даже сам факт, что мы просто способны поставить эти вопросы, уже есть триумф человеческого воображения. Но именно в этом далёком мире нам следует искать ключ к парадоксам чёрных дыр: из-за планковского размера битов информации, которые плотными «обоями» покрывают горизонт чёрной дыры. В действительности горизонт имеет самую высокую плотность информации, которая только допускается законами природы. Далее мы разберёмся, каков смысл термина «информация» и тесно связанной с ним концепции энтропии. И тогда мы будем готовы к тому, чтобы понять, за что велась Битва при чёрной дыре. Но сначала я хочу объяснить, почему квантовая механика подрывает один из самых надёжных выводов общей теории относительности – вечное существование чёрных дыр.