Текст книги "Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики"
Автор книги: Леонард Сасскинд
сообщить о нарушении
Текущая страница: 26 (всего у книги 28 страниц)
22
Южная Америка выигрывает сражение
Большинство людей не вспоминают о Южной Америке, когда думают о выдающихся физиках. Даже сами южноамериканцы удивляются, когда узнают, сколько замечательных физиков вышли из Аргентины, Бразилии и Чили. Даниэль Амати, Альберто Сирлин, Мигель Вирасоро, Гектор Рубинштейн, Эдуардо Фрадкин и Клаудио Тейтельбойм – это лишь некоторые из тех, кто серьёзно повлиял на нашу науку.
Тейтельбойм, сменивший недавно имя на Клаудио Бунстер (см. сноску на с. 148), – особый человек, не похожий ни на кого из знакомых мне физиков. Его семья была очень близка к чилийскому социалистическому президенту Сальвадору Альенде и поэту-активисту, обладателю Нобелевской премии Пабло Неруде. Брат Клаудио Цезарь Бун стёр возглавлял 7 сентября 1986 года группу, пытавшуюся убить бывшего фашистского диктатора генерала Аугусто Пиночета.
Клаудио – высокий темноволосый человек, с могучим, атлетически сложенным телом и свирепым пронизывающим взглядом. Несмотря на лёгкое заикание, он обладает обаянием и харизмой, которые могли бы сделать его великим политическим вождём. Он и в самом деле был антифашистским лидером небольшой группы учёных, помогавших в мрачные годы сохранить в живых чилийскую науку. Я не сомневаюсь, что в то время его жизнь находилась под угрозой.
Клаудио – человек потрясающих способностей и с лёгкой сумасшедшинкой. Будучи врагом военного режима в Чили, он любит всевозможную милитаристскую атрибутику. Живя в Техасе, перед возвращением в Чили он часто посещал выставки ножей и огнестрельного оружия и даже сегодня часто носит военную униформу.
Когда я в первый раз посетил его в Чили, он до смерти напугал меня, прикинувшись солдатом.
Это было в 1989 году, и вся власть ещё принадлежала Пиночету. Когда мы с женой и нашим другом Вилли Фишлером сошли с самолёта в Сантьяго, до зубов вооружённые люди в форме грубо согнали всех в длинную очередь на паспортный контроль. Клерки на контроле были военными, все при оружии, некоторые с автоматами. Пройти паспортный контроль было нелегко: длинная очередь едва двигалась и мы очень устали.
Вдруг, совершенно неожиданно, я увидел высокую фигуру в тёмных очках и военной униформе (или в чём-то похожем на униформу), прошедшую через оцепление и направляющуюся прямо к нам. Это был Клаудио, и он отдавал приказы солдатам так, словно был генералом.
Подойдя к нам, он взял меня за руку и, сделав надменный вид, провёл нас мимо охраны, с властным видом махнув им рукой. Он подхватил наш багаж и быстро вывел нас из аэропорта к своему неправильно припаркованному джипу цвета хаки. Мы рванули из аэропорта в Сантьяго с такой скоростью, что порой машина вставала на два колеса. Каждый раз, проезжая мимо группы солдат, Клаудио отдавал им честь. «Клаудио, – прошептал я, – что это за безумие? Ты же нас убьёшь». Но никто нас не остановил.
Последний раз я был в Чили уже после того, как на смену режиму Пиночета давно уже пришло демократическое правительство. У Клаудио были отличные связи с военными, особенно в авиации. Поводом для визита была конференция по чёрным дырам, организованная Клаудио и его небольшим институтом. Он использовал всё своё влияние в военно-воздушных силах, чтобы свозить нашу компанию, включая Хокинга на самолёте на чилийскую антарктическую базу. Мы получили массу удовольствия, но самым замечательным было то, как чилийские авиационные генералы, включая начальника штаба, нас обслуживали. Один генерал разливал чай, другой подносил закуску. Очевидно, Клаудио действительно обладал большим влиянием в Чили.
Но именно в 1989 году, во время автобусной экскурсии в чилийские Анды, Клаудио впервые рассказал мне о неких антидеситтеровских чёрных дырах. Сегодня их называют БТЗ-чёрными дырами по инициалам Банадоса, Тейтельбойма и Занелли. Макс Банадос и Йорг Занелли входили в ближайший круг Клаудио и сделали тогда открытие, оказавшее долгосрочный эффект на ход Битвы при чёрной дыре.
Ангелы и демоныФизики, занимающиеся чёрными дырами, всегда мечтали уложить чёрную дыру в запечатанную шкатулку, надёжно сохранив её, подобно драгоценному украшению. Сохранив от чего? От испарения. Запечатывание в шкатулке – это что-то вроде закрывания крышкой котла с водой. Вместо того чтобы улетать в космос, частицы будут ударяться в стенки шкатулки (или в крышку котла) и падать обратно в чёрную дыру (или в котёл).
Конечно, никто на практике не сможет поместить чёрную дыру в шкатулку, но такой мысленный эксперимент представляет интерес. Стабильная, неизменная чёрная дыра была бы намного проще испаряющейся. Но есть проблема: никакая реальная шкатулка не сможет вечно удерживать чёрную дыру. Как и всё на свете, реальные шкатулки подвержены квантовой дрожи, и рано или поздно случится авария. Шкатулка войдёт в контакт с чёрной дырой и – упс! – окажется в неё затянутой.
Здесь-тο и появляется антидеситтеровское пространство (АДС). Прежде всего, надо отметить, что, несмотря на своё название, антидеситтеровское пространство в действительности является пространственно-временным континуумом, одним из измерений которого служит время. Виллем де Ситтер был голландским физиком, математиком и астрономом, который открыл четырёхмерное решение уравнений Эйнштейна, носящее его имя. Математически пространство де Ситтера – это экспоненциально расширяющаяся вселенная, которая растёт во многом подобно тому, как это проис– [147]147
В последние годы астрономы и космологи обнаружили, что наша Вселенная расширяется в ускоренном темпе, удваивая свой размер примерно за десять миллиардов лет. Это экспоненциальное расширение связывают с космологической постоянной, или «тёмной энергией», как её называют в популярной прессе.
[Закрыть] ходит с нашей реальной Вселенной[147]147
В последние годы астрономы и космологи обнаружили, что наша Вселенная расширяется в ускоренном темпе, удваивая свой размер примерно за десять миллиардов лет. Это экспоненциальное расширение связывают с космологической постоянной, или «тёмной энергией», как её называют в популярной прессе.
[Закрыть]. Пространство де Ситтера долгое время считалось не более чем математической диковиной, но в последние годы оно приобрело огромное значение для космологов. Это искривлённый пространственно-временной континуум с положительной кривизной, то есть сумма углов треугольника в нём больше 180 градусов. Но всё это к делу не относится. В этот раз нас интересует не пространство де Ситтера, а антидеситтеровское пространство.
Антидеситтеровское пространство не было открыто антиматериальным двойником де Ситтера. Приставка «анти» указывает на то, что кривизна этого пространства отрицательная, а значит, сумма углов треугольника меньше 180 градусов. Самая интересная особенность АДС состоит в том, что оно обладает многими свойствами внутреннего пространства сферической шкатулки, но такой, которая не может быть проглочена чёрной дырой. Дело в том, что сферические стены АДС наделены мощной силой – непреодолимым отталкиванием, действующим на всё, что к ним приближается, включая и горизонт чёрной дыры. Это отталкивание столь сильное что контакт между стенкой и чёрной дырой совершенно невозможен.
Обычное пространство-время имеет четыре измерения – три пространственных и одно временнóе. Физики иногда называют его четырёхмерным, но это скрывает различие между пространством и временем. Более точно описывать пространство-время как (3 + 1) – мерное.
Флэтландия и Аайнландия – это тоже пространственно-временные континуумы. Флэтландия – мир лишь с двумя измерениями пространства, но его обитатели имеют чувство времени. Они должны корректно описывать свой мир как (2+1) – мерный. Лайнландцы, которые могут двигаться только вдоль одной оси, но также ощущают время, живут в (1 + 1) – мерном пространстве-времени. Замечательная особенность размерностей (2+1)и(1 + 1) состоит в том, что мы легко может изображать такие пространства на картинках, что помогает нашей интуиции.
Конечно, ничто не мешает математическим физикам изобретать миры с любым числом пространственных измерений, несмотря на неспособность мозга их визуализировать. Однако интересно, можно ли изменить число временных измерений? В чисто абстрактном математическом смысле ответ – да, но он, похоже, не имеет большого смысла с физической точки зрения. Одно измерение выглядит вполне подходящим значением.
Антидеситтеровские пространства могут быть разной размерности. У них может быть любое число пространственных направлений, но только одно временнбе. То АДС, с которым работали Банадос, Тейтельбойм и Занелли, было (2 + 1) – мерным, что позволяет легко всё объяснить на картинках.
Физика в разных измеренияхТрёхмерное пространство (не пространство-время) – это одна из тех вещей, которая кажется жёстко прошитой в нашей когнитивной системе. Никто не может визуализировать четырёхмерное пространство без опоры на абстрактную математику. Может показаться, что одно– и двумерные пространства изобразить проще, и, в определённом смысле, так и есть. Но если вы на мгновение задумаетесь, то поймёте, что, визуализируя линии и плоскости, вы всегда представляете их вложенными в трёхмерное пространство. Это почти наверняка связано с тем, как эволюционировал наш мозг, и не имеет никакого отношения к особым математическим свойствам трёх измерений[148]148
Может ли физический мир быть одно– или двумерным (я имею в виду пространство, не пространство-время)? Я твёрдо не знаю – нам известны не все принципы, от которых это может зависеть, – но с математической точки зрения квантовая механика и специальная теория относительности остаются столь же непротиворечивыми в одном и двух измерениях, как и в трёх. Я не утверждаю, что в этих альтернативных мирах может существовать разумная жизнь, а лишь говорю, что некоего рода физика в них возможна.
[Закрыть].
Квантовая теория поля – теория элементарных частиц – столь же осмысленна в мире с меньшим числом измерения, как в трёхмерном пространстве. Судя по всему, элементарные частицы вполне возможны в двумерном пространстве (Флэтландии) и даже в одномерном (Аайнландии). Фактически уравнения квантовой теории поля упрощаются, когда уменьшается число измерений, и многое из того, что мы знаем об этой науке, было первоначально открыто путём изучения квантовой теории поля в подобных модельных мирах. Так что ничего необычного в том, что Банадос, Тейтельбойм и Занелли изучали вселенную всего с двумя измерениями, не было.
Антидеситтеровское пространствоЛучший способ объяснить АДС – тот, что предложил Клаудио во время чилийской автобусной экскурсии: на картинках. Не будем пока думать о времени и начнём с обычного пространства внутри пустой круглой шкатулки. В трёх измерениях её внутренняя область будет сферической; в двух измерения она ещё проще и имеет форму круга.
Теперь добавим время. Когда оно отложено по вертикальной оси, пространственно-временной континуум напоминает внутреннюю область цилиндра. На рисунке АДС – это незакрашенная внутренность цилиндра.
Представим себе срезы АДС (напоминаю, они имеют два измерения) по аналогии с тем, как мы нарезали чёрную дыру при построении диаграммы вложения. Нарезание выделяет сечения, о которых можно сказать, что они именно пространственные.
Давайте изучим двумерный срез немного внимательнее. Как и следовало ожидать, он искривлён в чём-то подобно земной поверхности. Это означает, что, рисуя его на плоскости (на листе бумаги), вы будете растягивать и искажать поверхность. Невозможно нарисовать карту Земли на плоском листе бумаги без серьёзных искажений. Области, близкие к северному и южному краям карты в проекции Меркатора, значительно увеличены сравнительно с областями вблизи экватора. Гренландия выглядит такой же большой, как Африка, хотя в действительности площадь Африки примерно в пятнадцать раз больше.
Пространство (а также пространство-время) в АДС искривлено, но в отличие от земной поверхности его кривизна отрицательна. Растягивание его на плоскости даёт «антимеркаторовский» эффект: области на краях выглядят слишком маленькими. Знаменитый рисунок Эшера «Предел – круг 4»[149]149
Полное название рисунка Эшера: «Предел – круг 4 (Рай и Ад)»; по-английски: Circle Limit IV (Heaven and Hell). – Прим. перев.
[Закрыть] – это «карта» пространства с отрицательной кривизной, которая показывает, как именно выглядит двумерный срез АДС.
Я нахожу «Предел – круг 4» по меньшей мере гипнотическим. (Он напоминает мне бесконечный поиск последней видимой собаки персонажами романа «Мышонок и его отец», см. главу 20.) Ангелы и демоны нескончаемо повторяются, переходя в бесконечный фрактальный край. Заключил ли Эшер сделку с дьяволом, позволившую ему нарисовать бесконечное число ангелов? Или, если я как следует пригляжусь, то смогу заметить последнего видимого ангела?
Задержимся на мгновение для перепрошивки своих представлений: вам должно стать видно, что все ангелы и демоны имеют одинаковые размеры. Это не просто маленькое ментальное упражнение, оно помогает запомнить, что Гренландия почти в точности равна по размерам Аравийскому полуострову, несмотря на то что в проекции Меркатора выглядит в восемь раз крупнее. По-видимому, в голове у Эшера эти ментальные упражнения были прошиты очень хорошо, но, попрактиковавшись, вы тоже смажете приобрести такой навык.
Теперь добавим время и сведём воедино всю картину антидеситтеровского пространства. Как обычно, отложим время по вертикальной оси. Каждый горизонтальный срез представляет собой обычное пространство в определённый момент. Рассматривайте АДС как бесконечное число слоёв пространства – тонкую нарезку бесконечной салями, – которая, будучи сложена в стопку, образует пространственно-временной континуум.
Пространство в АДС причудливо искривлено, но не более чем время. Напомню, что, как мы узнали в главе 3, часы, находящиеся в разных местах, согласно общей теории относительности, часто идут в разном темпе. Например, замедление хода часов вблизи горизонта чёрной дыры позволяет использовать её в качестве машины времени. Часы в АДС тоже ведут себя странно. Представьте, что у каждого эшеровского демона есть наручные часы. Если ближайшие к центру демоны оглянутся на своих чуть более далёких соседей, они заметят нечто странное: часы у тех идут примерно вдвое быстрее. Если предположить, что у демонов есть метаболизм, то у внешних соседей обмен веществ тоже будет протекать быстрее. Каждый следующий ряд будет быстрее предыдущего, пока вблизи границы часы не станут идти так быстро, что для центральных демонов всё сольётся в кружащийся туман.
Кривизна пространства-времени в АДС создаёт гравитационное поле, которое притягивает объекты к центру, даже если там ничего нет. Одно из проявлений этого призрачного гравитационного поля состоит в том, что если массу сместить в сторону границы, её будет тянуть назад, почти как если бы она была на пружине. Предоставленная самой себе масса будет бесконечно колебаться вперёд и назад. Другой эффект, по сути, является оборотной стороной медали: притяжение к центру ничем не отличается от отталкивания границей. Это отталкивание – непреодолимая сила, которая удерживает всё, включая чёрные дыры, от соприкосновения с границей.
Шкатулки делаются для того, чтобы класть в них вещи, поэтому положим внутрь несколько частиц. Оказавшись внутри, они станут притягиваться к центру. Отдельная частица будет вечно колебаться вокруг него, но при наличии двух или более частиц они могут сталкиваться. Гравитация – не призрачная гравитация АДС, а обычное гравитационное взаимодействие между частицами – может заставить их собраться в сгусток. Добавление частиц будет увеличивать давление и температуру в центре, и сгусток может зажечься, образовав звезду. Добавление ещё большей массы приведёт в конце концов к катастрофическому коллапсу: образуется чёрная дыра – чёрная дыра, заключённая в шкатулку.
Банадос, Тейтельбойм и Занелли были не первыми, кто изучал чёрные дыры в АДС; эта честь принадлежит Дону Пейджу и Стивену Хокингу. Однако БТЗ открыли их простейший пример, который просто визуализировать, поскольку пространство имеет только два измерения. Вот воображаемый снимок БТЗ-чёрной дыры. Край чёрной области – это горизонт.
За одним исключением антидеситтеровские чёрные дыры обладают всеми свойствами обычных. Как всегда, противная сингулярность скрывается за горизонтом. Добавление массы увеличивает размеры чёрной дыры, приближая её горизонт к внешней границе.
Добавьте массы, и АДС-чёрная дыра вырастет
Но, в отличие от обычных чёрных дыр, АДС-версия не испаряется. Горизонт – это бесконечно горячая поверхность, которая постоянно испускает фотоны. Но фотонам некуда уходить. Вместо испарения в пустое пространство они падают обратно в чёрную дыру.
Ещё немного об АДСПредставьте, что вы всматриваетесь в граничную точку рисунка «Предел – круг 4» и затем раздуваете рисунок так, что его край выглядит совершенно прямым.
Мы можем повторять это снова и снова, никогда не исчерпав ангелов и демонов, пока в пределе край не станет выглядеть совершенно прямым и бесконечным. Я – не Эшер и не буду пытаться рисовать его изящных созданий. Я упрощу их настолько, что демоны превратятся в квадраты, а картина станет напоминать решётку из всё уменьшающихся по мере приближения к границе квадратов. Думайте об АДС как о бесконечной кирпичной стене. При спуске вниз по стене кирпичи удваиваются в размерах с каждым новым рядом.
Конечно, в антидеситтеровском пространстве не будет реальных линий, так же как нет линий долготы и широты на поверхности Земли. Они проведены здесь лишь для того, чтобы наглядно показать, как искажаются размеры из-за кривизны пространства.
Эшеровский рисунок и моя грубая версия представляют двумерное пространство, но реальное пространство – трёхмерно. Нетрудно представить, как будет выглядеть пространство, если добавить ещё одно измерение (не временное). Всё, что нужно сделать, – это заменить квадраты сплошными трёхмерными кубами. На следующей картинке я изобразил небольшой участок такой трёхмерной «кирпичной стены». Но не забывайте, что она тянется бесконечно как в горизонтальном, так и в вертикальном направлении.
Добавление к этой картине времени производится так же, как и раньше: каждый квадрат или куб оснащается своими собственными часами. Скорость хода часов зависит от того, в каком слое они расположены. Каждый раз, когда мы придвигаемся на один слой ближе к границе, часы ускоряются в два раза. И напротив, когда мы спускаемся вниз по стене, часы замедляются.
С математической точки зрения нет причин останавливаться на трёхмерном пространстве. Складывая друг на друга четырёхмерные кубы меняющихся размеров, можно построить (4+1) – мерное антидеситтеровское пространство и так далее для любого числа измерений. Но нарисовать даже один четырёхмерный куб весьма сложно. Вот одна такая попытка.
Если сложить их друг на друга и попытаться нарисовать четырёхмерную версию АДС, получится ужасная мешанина.
Мир в шкатулкеПрекращение испарения чёрных дыр – достойная причина для изучения физики внутри шкатулки. Но идея мира в шкатулке гораздо интереснее. Подлинная цель состоит в понимании голографического принципа и доведении его до математической точности. Вот как я объяснял голографический принцип в главе 18: «Трёхмерный мир нашего обыденного опыта – Вселенная, заполненная галактиками, звёздами, планетами, домами, камнями и людьми, – это голограмма, образ реальности, закодированной на далёкой двумерной поверхности. Этот новый закон физики, называемый голографическим принципом, утверждает, что всё, находящееся внутри некоторой области пространства, можно описать посредством битов информации, расположенных на её границе».
Отчасти неточность формулирования голографического принципа связана с тем, что предметы могут проходить через границу. В конце концов, это ведь воображаемая математическая поверхность безо всякой реальной материи. Сама возможность для объектов входить в рассматриваемую область и покидать её затуманивает смысл слов «всё, находящееся внутри некоторой области пространства, можно описать посредством битов информации, расположенных на её границе». Но мир в шкатулке с идеально непроницаемыми стенами избавлен от этой проблемы. Новая формулировка будет такой:
Всё, находящееся внутри шкатулки с непроницаемыми стенами, можно описать посредством битов информации, хранящихся в пикселах на её стенах.
Во время чилийской автобусной экскурсии 1989 года я не понял, почему Клаудио Тейтельбойм так восхищался антидеситтеровским пространством. Чёрные дыры в шкатулке – ну и что? Мне понадобилось восемь лет, чтобы уловить суть, – восемь лет и ещё один южноамериканский физик, на этот раз аргентинский.
Удивительные открытия МалдасеныХуан Малдасена – полная противоположность Клаудио Тейтельбойму. Он невысок и гораздо хладнокровнее. Я не могу себе представить его гоняющим на автомобиле по Сантьяго в поддельной военной форме. Но как у физика у него нет недостатка в храбрости. В 1977 году он поставил себя под удар, сделав невероятно смелое заявление, которое казалось почти таким же сумасшедшим, как моя дикая поездка с Клаудио. Фактически Малдасена доказывал, что два математических мира, которые кажутся совершенно непохожими, на самом деле являются в точности и одним и тем же. Один мир имел четыре пространственных измерения и одно временное (4 + 1), другой был (3 + 1) – мерным и больше напоминал мир нашего повседневного опыта. Я возьму на себя смелость упростить эту историю, с тем чтобы её было проще визуализировать, и в каждом случае уменьшу количество измерений на одно. Поэтому я буду говорить, что некоторая воображаемая версия Флэтландии – (2 + 1) – мерного мира – в определённом смысле эквивалентна антидесситтеровскому миру с (3 + 1) измерениями.
Как такое вообще возможно? Самое явное свойство пространства – это количество его измерений. Неспособность распознавать размерность пространства означала бы крайне опасную степень нарушения восприятия. Безусловно, нельзя перепутать два измерения с тремя, находясь в здравом уме. По крайней мере, так кажется. Путь, который привёл Малдасену к его открытию, был запутанной и извилистой тропинкой, которая проходила через экстремальные чёрные дыры, D-браны и нечто, называемое матричной теорией[150]150
Матричная теория в этом контексте не имеет ничего общего с S-матрицей. Это теория предшествовала открытию Малдасены и была с ним тесно связана, и она тоже включала загадочный рост размерностей. Это был первый пример математической связи, подтверждающий голографический принцип. Матричная теория была открыта Томом Бэнксом, Вилли Фишлером, Стивом Шейкером и мной в 1996 году.
[Закрыть], и в конце приводила к голографическому принципу.
Отправной точкой были D-браны Полчински. Напомню, что D-брана – это материальный объект, который в зависимости от размерности может быть точкой, линией, поверхностью или объёмом, заполняющим пространство. Главное свойство, отличающее D-браны от всего остального, состоит в том, что на них могут заканчиваться фундаментальные струны. Для определённости давайте сосредоточимся на D2-бpaнax[151]151
В своей оригинальной работе Малдасена концентрировался на случае с четырёхмерным пространством. Его можно назвать (4+1) – мерным АДС. Причина выбора четырёхмерного пространства вместо обычных трёх измерений – чисто техническая и не важна для этой главы. Но она имеет отношение к части эпилога.
[Закрыть]. Представьте себе плоскую двумерную поверхность, плавающую в трёхмерном пространстве, подобно магическому паркету. Открытые струны могут присоединяться к этой D-бране обоими своими концами. Они способны скользить вдоль D-браны, но не могут свободно перепрыгивать в третье измерение. Кусочки струн, словно на коньках без трения, катятся по метафорическому льду, будучи неспособным оторвать от него ноги. Издали каждый кусочек струны выглядит как частица, движущаяся в двумерном мире. Если струн больше одной, они могут сталкиваться, рассеиваться друг на друге и даже сливаться в более сложные объекты.
D-браны могут существовать по отдельности, но они липкие. Если аккуратно их сблизить, они сцепятся и образуют составную брану из нескольких слоёв, как на следующем рисунке.
Я нарисовал D-браны на некотором расстоянии друг от друга. Но когда они сливаются, промежуток исчезает. Группу слипшихся вместе D-бран называют D-бранной стопкой.
Свойства открытых струн, движущихся по D-бранной стопке, богаче и разнообразнее, чем у струн, движущихся по одиночной D-бране. Два конца струны могут присоединиться к разным элементам стопки, как если бы два конька двигались по двум немного разным уровням. Чтобы различать браны, им можно дать имена. Например, в нарисованной выше стопке можно назвать браны красной, зелёной и синей.
Концы струн, которые катятся по D-бранной стопке, должны быть всегда присоединены к D-бране. Например, струна может быть обоими концами присоединена к красной бране. Тогда это будет красно-красная струна. Аналогично могут быть сине-синие и зелёно-зелёные струны. Но возможно также, что два конца струны присоединены к разным бранам. Так получаются красно-зелёные струны, красно-синие и т. д. Всего имеется девять разных возможностей для движения струн по этой D-бранной стопке.
Интересные вещи начинаются, когда к бранам присоединено несколько струн.
Струны на Б2-бранной стопке очень похожи на обычные частицы, но только в мире, имеющем два пространственных измерения. Они взаимодействуют друг с другом, рассеиваются при столкновениях и оказывают силовое воздействие на находящиеся поблизости струны. Одна струна может распасться на две. На следующей серии рисунков показано, как струна на одиночной бране разделяется и превращается в две струны.
Точка на исходной струне соприкасается с браной, что позволяет струне разделиться, но непременно так, чтобы все концы были присоединены к бранам. Предыдущий рисунок можно также просматривать снизу вверх, и тогда получится, что пара струн сливается и образует одну.
А вот последовательность кадров со струнами на стопке из трёх D-бран. Здесь показано, как красно-зелёная струна сталкивается с зелёно-синей. Две струны сливаются и образуют одну красносинюю струну.
Красно-красная струна не может слиться с зелёно-зелёной, поскольку их концы никогда не соприкоснутся.
Не правда ли, мы уже видели нечто подобное? Ну конечно, если вы прочли главу 19. Правила, управляющие поведением струн, присоединённых к стопке D-бран, в точности такие же, что управляют глюонами в квантовой хромодинамике (КХД). В главе 19 я объяснял, что глюон подобен небольшому линейному магниту с двумя концами, каждый из которых помечен своим цветом. Сходство на этом не заканчивается. Приведённый выше рисунок, показывающий соединение двух струн в одну, очень похож на диаграмму глюонного узла в КХД.
Эта параллель между «физикой на D-бране» и обычным миром элементарных частиц – замечательный факт, который, как мы увидим в следующей главе, оказался чрезвычайно полезным. Когда физики находят два разных способа описания одной системы, они называют такие два описания «дуальными». Пример тому дуальное описание света как волн или частиц. Физика полна дуальностей, и не было ничего особенно неожиданного или нового в самом факте, что Малдасена открыл два дуальных описания струн на D-бране. Что было новым, почти неслыханным[152]152
Почти неслыханным, но не совсем. Матричная теория даёт более ранний подобный пример.
[Закрыть], так это то, что эти две картины описывали миры с разным числом пространственных измерений.
Я уже намекал на одно такое описание: (2-1-1) – мерная флэтландская версия КХД. Она описывает плоские протоны, мезоны и глюболы, но, как и настоящая КХД, не содержит и следа гравитации. Другая сторона этой дуальности – альтернативного способа представления одних и тех же вещей – описывает мир трёхмерного пространства, причём не любого, а именно антидесситтеровского. Малдасена доказал, что флэтландская КХД дуальна (3 + 1) – мерной антидесситтеровской вселенной. Более того, в этом трёхмерном мире материя и энергия служат источником гравитационных сил, так же как и в реальном мире. Другими словами, мир (2 + 1) измерений, включающий КХД, но без гравитации, эквивалентен вселенной с (3 + 1) измерением и гравитацией.
Как такое возможно? Как может мир всего с двумя измерениями быть в точности таким же, как трёхмерный? Откуда появляются дополнительные измерения пространства? Ответ кроется в искажениях антидесситтеровского пространства, заставляющих объекты вблизи границы выглядеть маленькими по сравнению с такими же объектами во внутренней части пространства. Эти искажения воздействуют на воображаемых демонов, но также и на реальные объекты при их движении в пространстве. Например, если взять букву «А» метрового размера и заставить её отбрасывать тень на границу, то получаемое изображение будет сжиматься или увеличиваться по мере приближения и удаления объекта от границы.
С точки зрения трёхмерной внутренней области это – иллюзия, не более реальная, чем огромные размеры Гренландии на карте в проекции Меркатора. Но в дуальном описании – флэтландской теории – нет понятия расстояния в перпендикулярном, третьем измерении, заменой ему служит понятие размера. Это очень неожиданная математическая связь: рост и уменьшение размеров во флэтландской половине дуальности – это в точности то же самое, что движение вперёд и назад вдоль третьего измерения в другой составляющей этой дуальности.
И вновь мы видим нечто знакомое, на этот раз из главы 18, где мы открыли, что наш мир – это что-то вроде голограммы. Два дуальных описания Малдасены являли собой голографический принцип в действии. Всё, что происходит во внутренней области антидеситтеровского пространства, – «это голограмма, образ реальности, закодированной на далёкой двумерной поверхности». Трёхмерный мир с гравитацией – это эквивалент двумерной квантовой голограммы на границе пространства.
Я не знаю, провёл ли Малдасена параллель между своим открытием и голографическим принципом, но Эд Виттен вскоре её заметил. Всего через два месяца после статьи Малдасены Виттен опубликовал в Интернете свою собственную статью под заголовком «Антидеситтеровское пространство и голография».
Из всего содержания виттеновской статьи моё особое внимание привлёк раздел о чёрных дырах. Антидеситтеровское пространство, его оригинальная версия, а не уплощённая стена из кирпичей, – подобно консервной банке с супом. Горизонтальные срезы банки представляют пространство; вертикальная ось банки – это время. Этикетка на её внешней поверхности – это граница, а внутренняя область – это сам пространственно-временной континуум.
Чистое АДС-пространство подобно пустой консервной банке, но его можно сделать интереснее, наполнив «супом», то есть материей и энергией. Виттен объяснял, что, закачав в банку достаточное количество массы и энергии, можно создать чёрную дыру. Отсюда возникает вопрос. Согласно Малдасене, должно быть и второе – дуальное – описание, которое не упоминает о том, что содержится внутри банки. Это альтернативное описание формулируется в терминах двумерной квантовой теории поля для частиц, подобных глюонам, которые движутся по этикетке. Наличие чёрной дыры в супе может быть эквивалентно определённой особенности граничной голограммы, но что это за особенность? В граничной теории Виттен доказал, что чёрная дыра в супе эквивалентна обычной горячей жидкости из элементарных частиц – в сущности, просто глюонов.
В момент, когда я увидел статью Виттена, я понял, что Битва при чёрной дыре окончена. Квантовая теория поля – это частный случай квантовой механики, а информация в квантовой механике никогда не уничтожается. Что ещё сделали Малдасена и Виттен, так это доказали, не оставив ни тени сомнения, что информация никогда не должна теряться за горизонтом чёрной дыры. Струнные теоретики могли понять это сразу; релятивистам понадобилось немного больше времени. Но война завершилась.
Хотя Битва при чёрной дыре должна была окончиться ещё в начале 1998 года, Стивен Хокинг уподобился тем несчастным солдатам, которые годами скрывались в джунглях, не зная, что военные действия прекратились. Но на этот раз он стал трагической фигурой. Пятидесятишестилетний, уже прошедший пик своей интеллектуальной формы и почти неспособный общаться, Стивен не улавливал сути дела. Уверен, что это не было связано с ограниченностью его интеллекта. Из тех контактов, которые у меня были с ним после 1998 года, стало ясно, что его разум остаётся исключительно острым. Но его физические возможности настолько ослабли, что он оказался почти полностью замкнут в собственной голове. Не имея возможности записывать уравнения и испытывая колоссальные трудности при общении с коллегами, он должен был столкнуться с тем, что не может проделать те вещи, которые обычно выполняют физики, чтобы разобраться в новой, незнакомой им работе. Поэтому Стивен ещё некоторое время продолжал борьбу.