355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Леонард Сасскинд » Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики » Текст книги (страница 21)
Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики
  • Текст добавлен: 21 сентября 2016, 18:22

Текст книги "Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики"


Автор книги: Леонард Сасскинд


Жанры:

   

Физика

,

сообщить о нарушении

Текущая страница: 21 (всего у книги 28 страниц)

Элементарно, мой дорогой Ватсон

Есть старый анекдот о двух еврейских дамах, которые встретились на углу в Бруклине. Одна говорит другой: «Tы должна уже знать, что мой сын стал доктором. А между прочим, кем стал твой сын, у которого вечно были трудности с математикой?» Другая ей отвечает: «О, мой мальчик стал гарвардским профессором по физике элементарных частиц». Первая с сочувствием отвечает: «Да, дорогая, ужасно жаль, что он так и не дослужился до физики высших частиц».

Что в точности имеется в виду под элементарными частицами и какими они ещё могут быть? Простейший ответ: частица элементарна, если она столь мала и проста, что её нельзя разделить на меньшие части. Их противоположность – не высшие, а составные частицы – те, что состоят из более простых частей меньшего размера.

Редукционизм – это научная философия, которая приравнивает понимание к разбиранию вещей на части. До сих пор это очень хорошо работало. Молекулы объясняются как состоящие из атомов; в свою очередь атомы – это совокупности отрицательно заражённых электронов, обращающихся вокруг центрального положительно заряженного ядра; ядра оказались сгустками нуклонов; наконец, каждый нуклон состоит из трёх кварков. Сегодня все физики согласны, что молекулы, атомы, ядра и нуклоны – составные объекты.

Однако некоторое время назад каждый из них считался элементарным. В действительности термин «атом» происходит от греческого слова, означающего «неделимый», которое было в ходу около 2500 лет. Лишь недавно Эрнест Резерфорд открыл атомное ядро. Оно казалось настолько маленьким, что могло считаться просто точкой. Как видите, то, что одно поколение называет элементарным, потомки могут счесть составным.

Всё это поднимает вопрос о том, как мы решаем – по крайней мере в данный момент, – является некая частица элементарной или составной? Вот один из возможных ответов: столкните два таких объекта с достаточной силой и посмотрите, что разлетится. Если что-то вылетит, оно должно было находиться внутри одной из первоначальных частиц. В действительности, когда сталкиваются два очень быстрых электрона, во все стороны разлетается куча всевозможного мусора. Особенно много будет фотонов, электронов и позитронов[120]120
  Позитроны – антиматериальные близнецы электронов. Они имеют в точности такую же массу, как и электроны, но противоположный электрический заряд. У электронов заряд отрицательный, а у позитронов – положительный.


[Закрыть]
. Если столкновение очень сильное; то появятся также протоны, нейтроны и их античастицы[121]121
  Все частицы имеют антиматериальных двойников с противоположными значениями электрического заряда и других подобных свойств. Так что существуют антипротоны, антинейтроны и античастицы электронов, называемые позитронами. Кварки – не исключение. Античастица кварка называется антикварком.


[Закрыть]
. И для полноты картины иногда может появиться целый атом. Означает ли это, что электроны состоят из атомов? Очевидно, нет. Столкновения с огромными энергиями помогают разобраться в свойствах частиц, но, оказывается, то, что при этом вылетает, не всегда позволяет судить, из чего эти частицы состоят.

Вот более удачный метод выяснения, состоит ли нечто из частей. Начнём с очевидно составного объекта – камня, баскетбольного мяча или куска теста для пиццы. С таким предметом можно много чего сделать – сжать его до меньшего объёма, деформировать, придав ему новую форму, или закрутить его вокруг собственной оси. На сжатие, изгиб или закручивание требуется энергия. Например, вращающийся мяч обладает кинетической энергией; чем быстрее он крутится – тем больше энергия. А поскольку энергия – это масса, быстро вращающийся мяч становится массивнее. Мерой вращения служит угловой момент, который учитывает скорость вращения мяча, его размер и массу. Приобретая всё больший и больший угловой момент, мяч накапливает энергию. На следующем графике показано, как нарастает энергия вращающегося баскетбольного мяча.

Вращающийся баскетбольный мяч

Но почему эта кривая неожиданно обрывается? Догадаться нетрудно. Материал, из которого сделан мяч (кожа или резина), не может выдержать слишком большого натяжения. В какой-то момент мяч будет разорван на части центробежными силами.

Теперь представьте себе частицу размером не больше точки в пространстве. Как заставить математическую точку вращаться вокруг своей оси? Или что бы могло означать изменение её формы? Возможность придать объекту вращение или заставить его пульсировать – это признак того, что он состоит из меньших частей, частей, которые движутся друг относительно друга.

Молекулы, атомы и ядра тоже можно раскрутить, но в случае этих микроскопических шариков материи центральную роль играет квантовая механика. Как и во всех колебательных системах, энергия и угловой момент могут увеличиваться только дискретными шагами. Раскручивание ядра – это не процесс постепенного накачивания его энергией. Это больше похоже на подталкивание вверх по лестнице. Так что график энергии и углового момента представляет собой последовательность отдельных точек[122]122
  Итальянский физик Туллио Редже первым исследовал свойства подобных графиков, и эта цепочка точек получила название траектории Редже.


[Закрыть]
.

Вращающееся ядро

Если не считать дискретности шагов, график выглядит в основном так же, как и для баскетбольного мяча, включая и внезапный обрыв. Как и мяч, ядро выдерживает лишь определённую центробежную силу, а потом разлетается на части.

А что можно сказать об электронах? Можно ли их раскрутить? Несмотря на все усилия, а они на протяжении многих лет были довольно значительными, никому не удалось увеличить угловой момент электрона. Мы ещё вернёмся к электронам, но сначала давайте займёмся адронами – протонами, нейтронами, мезонами и глюболами.

Протоны и нейтроны очень похожи. У них почти одинаковая масса, а силы, которые связывают их в ядра, практически идентичны. Единственное существенное различие состоит в том, что протон имеет небольшой электрический заряд, а нейтрон, как и указывает его название, электрически нейтрален. Как будто нейтрон – это протон, которому каким-то образом удалось скрыть свой заряд. Именно это сходство привело физиков к тому, чтобы терминологически объединить эти частицы в один объект – нуклон. Протон – это положительный нуклон, а нейтрон – нейтральный нуклон.

В эпоху зарождения ядерной физики нуклон, хотя он почти в 2000 раз тяжелее электрона, также считался элементарной частицей. Но по части простоты нуклон не имеет ничего общего с электроном. По мере развития ядерной физики объекты размером в 100 000 раз меньше атомов стали считаться не такими уж маленькими. Тогда как электрон остаётся точкой в пространстве – по крайней мере, на современном уровне знаний, – нуклон демонстрирует богатую, сложную внутреннюю механику. Оказывается, у нуклонов гораздо меньше общего с электронами, чем с ядрами, атомами и молекулами. Протоны и нейтроны – это конгломераты из множества меньших объектов. Мы знаем об этом, поскольку они вращаются, вибрируют и могут менять свою форму.

Точно так же как для баскетбольного мяча, для атомного ядра можно построить график, на котором по горизонтальной оси отложено вращение, то есть угловой момент нуклона, а его энергия – по вертикальной. Когда сорок лет назад это было сделано впервые, получившийся график удивил своей простотой: последовательность точек легла почти точно на прямую линию. Ещё удивительнее было то, что у неё не наблюдалось конца.

Вращающийся нуклон

Такая диаграмма несёт важную информацию о внутреннем устройстве нуклона. Две отмеченные особенности имеют огромное значение для тех, кто знает, как прочитать скрытое в них послание.

Сам факт, что нуклон может вращаться вокруг своей оси, указывает на то, что это не точечная частица; он состоит из частей, способных двигаться друг относительно друга. Но тут скрывается нечто большее. Вместо того чтобы неожиданно обрываться, последовательность, похоже, продолжается неограниченно, а значит, нуклон не разваливается, когда вращается слишком быстро. То, что удерживает его части вместе, намного мощнее сил, скрепляющих атомное ядро.

Неудивительно, что при вращении нуклон растягивается, но делает он это не так, как вращающийся кусок теста для пиццы, который превращается в двумерный блин.

Расположение точек в виде прямой линии указывает на то, что нуклон растягивается в длинный тонкий эластичный струноподобный объект.

Полвека экспериментов с нуклонами принесли уверенность в том, что это эластичные струны, которые могут растягиваться, вращаться и вибрировать, когда возбуждаются дополнительной энергией. На самом деле все адроны можно растянуть в длинные струноподобные объекты. Очевидно, все они сделаны из одной и той же липкой, тягучей, растяжимой материи – чего-то наподобие кошмарно прочной жевательной резинки, которая совершенно не рвётся. Ричард Фейнман использовал термин «партоны» для описания частей нуклона, однако закрепились термины «кварки» и «глюоны», которые предложил Мюррей Гелл-Манн. Глюоны – это как раз тот липкий материал, который образует струны и не даёт кваркам разлетаться[123]123
  Слово «глюон» происходит от английского glue – клей. – Прим. перев.


[Закрыть]
.

Мезоны – это простейшие адроны. Открыто множество разных типов мезонов, но все они имеют одно и то же строение: один кварк и один антикварк, соединённые липкой струной.

Мезон может вибрировать, как пружина, крутиться вокруг своей оси, как чирлидерский жезл, изгибаться и складываться разными способами. Мезоны – это пример открытых струн, то есть струн, имеющих концы. В этом отношении они отличаются от резиновых колец, которые мы будем называть замкнутыми струнами.

Нуклоны состоят из трёх кварков, каждый из которых присоединён к струне, а три струны сходятся в центре, как у боласа индейцев гаучо. Они тоже могут крутиться и вибрировать.

Быстрое вращение и вибрация адрона добавляют струне энергию, растягивают её и увеличивают её массу[124]124
  Поначалу физики не догадывались, что многие адроны – это вращающиеся или вибрирующие варианты нуклонов и мезонов; они считались совершенно новыми различными частицами. Публиковавшиеся в 1960-х годах таблицы элементарных частиц были длинными списками, для которых не хватало букв в греческом и латинском алфавитах. Но со временем прояснилось понятие «возбуждённых состояний», и стало ясно, что всё это в основном вращающиеся и вибрирующие мезоны и нуклоны.


[Закрыть]
.

Существует ещё один тип адронов – семейство «бескварковых» частиц, состоящих только из струн, замкнутых на себя и образующих петлю. Физики называют их глюболами, но для струнного теоретика это просто замкнутые струны.

Не похоже, чтобы кварки состояли из ещё меньших частиц. Подобно электронам, они столь малы, что их размеры неизмеримы. Но струны, которые связывают кварки между собой, определённо состоят из других объектов, и эти объекты – не кварки. Липкие частицы, которые соединяются в струны, называются глюонами.

По сути, глюоны – это очень маленькие кусочки струны. Будучи чрезвычайно малыми, они тем не менее имеют два «конца» – положительный и отрицательный, – почти как если бы они были маленькими магнитами[125]125
  Концы магнита обычно называют северным и южным полюсами. Я не хочу, чтобы создалось впечатление, будто глюоны ориентируются подобно стрелкам компаса, поэтому я называю полюса глюонов положительным и отрицательным.


[Закрыть]
.


Математическая теория кварков и глюонов называется квантовой хромодинамикой (КХД). Может показаться, что это название связано с цветной фотографией, а не с элементарными частицами. Но терминология скоро прояснится.

Согласно математическим правилам КХД, глюон не может существовать сам по себе. По математическим законам его положительный и отрицательный концы должны быть присоединены либо к другим глюонам, либо к кваркам: каждый положительный конец должен присоединиться к отрицательному концу другого глюона или к кварку; каждый отрицательный конец должен присоединиться к положительному концу другого глюона или к антикварку; наконец, три положительных или три отрицательных конца могут соединиться вместе. По этим правилам легко можно собрать нуклоны, мезоны и глюболы.

Теперь рассмотрим, что происходит, если кварк в мезоне подвергся воздействию очень большой силы. Такой кварк начинает быстро удаляться от антикварка. Если бы всё было так, как с электроном в атоме, то он бы улетел прочь, но здесь случается совсем другое. При удалении кварка от своего партнёра между глюонами возникают зазоры, как между молекулами резиновой ленты, когда её слишком сильно растягивают. Но вместо разрыва глюоны клонируют себя, порождая новые глюоны для заполнения зазоров. Так формируется струна между кварком и антикварком, которая предотвращает убегание кварка. На следующем рисунке показана временная последовательность состояний при такой высокоскоростной попытке убегания кварка от антикварка в мезоне.

В конце концов кварк исчерпает свою энергию, остановится и вернётся обратно к антикварку. То же самое случится и с разогнавшимся кварком в нуклоне.

Струнная теория нуклонов, мезонов и глюболов – это не досужие спекуляции. За прошедшие годы она была исключительно точно подтверждена и рассматривается как часть стандартной теории адронов. Что вызывает путаницу, так это вопрос, следует ли рассматривать струнную теорию как вытекающую из квантовой хромодинамики, иными словами, должны ли струны считаться длинными цепочками долее фундаментальных глюонов или же предпочесть другой способ объяснения: что глюоны – не более чем короткие сегменты струн. Возможно, что оба подхода верны.

Кварки кажутся столь же маленькими и элементарными, как электроны. Они не могут раскручиваться, сжиматься или деформироваться. Но, несмотря на то что в них не видно внутренних частей, они обладают степенью сложности, которая выглядит парадоксальной. Существует много типов кварков с разными электрическими зарядами и массами. Что вызывает эти различия, остаётся загадкой; внутренние механизмы, лежащие в основе этих различий, слишком малы, чтобы можно было их различить. Поэтому мы называем кварки элементарными, по крайней мере пока, и, как ботаники, даём им разные названия.

Перед Второй мировой войной, когда физикой в основном занимались европейцы, для именования частиц использовали греческий язык. Фотоны, электроны, мезоны, барионы, лептоны и даже адроны происходят из греческого языка. Но потом порывистые, непочтительные и порой глупые американцы взяли верх, и названия упростились. «Кварк» – это бессмысленное слово из романа Джеймса Джойса «Поминки по Финнегану», но с этой литературной высоты всё покатилось вниз. Отличия между кварками разных типов стали обозначать совершенно неприемлемым термином аромат. Мы могли бы говорить о шоколадных, клубничных, ванильных, фисташковых, вишнёвых и мятных кварках, но всё оказалось не так. Шесть ароматов кварков: верхний, нижний, странный, очарованный, боттом и топ. В какой-то момент названия «боттом» и «топ» показались слишком рискованными, и довольно быстро они превратились в «прелестный» и «истинный»[126]126
  По-английски ароматы первоначально назывались: up, down, strange, charmed, bottom, top. Кварки обозначались по первым буквам этих слов. Однако во многих других языках (в частности, в русском) трудно подобрать удачные переводы, позволяющие различать названия up (направленный вверх, верхний) и top (самый верхний), down (направленный вниз, нижний) и bottom (самый нижний). Это могло вызывать путаницу или неудобные переводы вроде транслитераций «боттом» и «топ». Новые названия для последних двух ароматов beauty и true позволили уйти от этой проблемы, сохранив обозначения по первым буквам. – Прим. перев.


[Закрыть]
.

Главная цель моего рассказа об ароматах в том, чтобы просто проиллюстрировать, как мало мы знаем о строительных блоках материи и насколько условным может быть применение термина элементарные частицы. Но есть и другое различие, очень существенное для работы КХД. Каждый кварк – верхний, нижний, странный, очарованный, прелестный, истинный – может быть трёх цветов: красного, голубого и зелёного. Отсюда и возникает «хромо» в квантовой хромодинамике.

Притормозим на минуту. Естественно, кварки слишком малы, чтобы отражать свет в обычном нашем понимании. Цветные кварки – вещь лишь незначительно менее глупая, чем шоколадные, клубничные или ванильные кварки. Однако людям нужны названия для обозначения вещей; называть кварки красными, зелёными или синими не более смешно, чем называть либералов – синими, а консерваторов – красными[127]127
  Примерно с 2000 года в американской политической жизни красный цвет ассоциируется с республиканской партией, синий – с демократической. В 2010 году партии приняли логотипы, выполненные в этих цветах. – Прим. перев.


[Закрыть]
. И хотя мы понимаем происхождение цвета кварков не лучше, чем происхождение их аромата, цвет играет намного более важную роль в КХД.

Глюоны, согласно КХД, не имеют аромата, но по отдельности они даже ещё более цветные, чем кварки. Каждый глюон имеет положительный и отрицательный полюса, а каждый полюс обладает цветом – красным, зелёным или голубым. Можно сказать, что существует девять типов глюонов (это несколько избыточное упрощение, но по сути корректное)[128]128
  Эксперты, прочитав это, отметят, что существует только восемь различимых типов глюонов. Одна квантово-механическая комбинация – глюон, с равной вероятностью являющийся красно-красным, сине-синим, зелёно-зелёным, – избыточна.


[Закрыть]
.

Почему существует три цвета, а не два, не четыре, не какое-то другое число? Тут нет никакой связи с тем, что цветное зрение опирается на три основных цвета. Как я уже отметил, цветные метки произвольны и не имеют ничего общего с цветами, которые мы видим. На самом деле никто не знает, почему их именно три; это одна из тех загадок, которые указывают, как далеки мы ещё от полного понимания элементарных частиц. Однако по тому, как они сочетаются в нуклонах и мезонах, мы знаем, что существует три, и только три цвета кварков.

Девять типов глюонов

Тут я должен сделать признание. Несмотря на то что я занимаюсь физикой элементарных частиц более сорока лет, я на самом деле не очень люблю этот раздел физики. Слишком много тут всего намешано: шесть ароматов, три цвета, десятки произвольных числовых постоянных – трудно это назвать примером простоты и элегантности. Почему я продолжаю этим заниматься? Причина (и, я думаю, не только для меня) в том, что сама эта мешанина говорит нам о природе что-то важное. Трудно поверить, что бесконечно малые точечные частицы могут обладать таким числом свойств и такой сложной структурой. На некотором, ещё не открытом уровне должен скрываться механизм, поддерживающий все эти так называемые элементарные частицы. Любопытство относительно этого скрытого изрядной сложности механизма и его влияния на фундаментальные законы природы – вот что заставляет меня брести через ужасное болото физики частиц.

Как водится, кварки стали хорошо известны широкой публике. Но если бы меня попросили предсказать, какие из частиц дают нам лучшие подсказки относительно скрытого в глубине механизма, я бы сделал ставку на глюоны. О чём пытаются рассказать нам эти липкие парочки положительных и отрицательных концов?

В главе 4 я объяснял, что в квантовой теории поля есть нечто большее, чем список частиц. Два других «ингредиента» – это пропагаторы, мировые линии, показывающие движение частиц из одной точки пространства-времени в другую, и узлы. Займёмся сначала пропагаторами. Поскольку глюоны имеют два полюса, каждый своего цвета, физики часто изображают их мировые линии двойными. Чтобы обозначить конкретный тип глюона, будем подписывать его цвета рядом с отдельными линиями[129]129
  Для некоторых моих коллег так называемые двойные пропагаторы – это просто приём для отслеживания математических возможностей теории. Для других, в том числе и для меня, это важное указание на особенности микроскопического строения, которые слишком малы, чтобы сегодня их обнаружить.


[Закрыть]
.

Последний «ингредиент» квантовой теории поля – это список узлов. Наиболее важны для нас те узлы, которые описывают распад одного глюона на два[130]130
  Вас, возможно, удивит, откуда мы знаем, что глюоны могут распадаться на пары глюонов. Ответ кроется глубоко в дебрях математики КХД. Согласно математическим правилам квантовой теории поля, глюоны могут делать только две вещи: распадаться на два глюона и испускать кварк. В действительности они делают и то и другое.


[Закрыть]
. Схема исключительно проста: когда глюон с двумя концами распадается, возникает два новых конца. Согласно математическим правилам КХД, они должны быть одинакового цвета. Рассмотрим два примера. При просмотре снизу вверх видно, что сине-красный глюон распадается на сине-синий и сине-красный; на второй схеме сине-красный глюон распадается на сине-зелёный и зелёно-красный.

Эти узлы можно перевернуть вниз головой, чтобы показать, как два глюона могут слиться в один.

Хотя всё это неочевидно и требует времени для полного понимания, глюоны имеют сильную тягу к слипанию друг с другом и образованию длинных цепочек: положительный конец к отрицательному, красный к красному, синий к синему, зелёный к зелёному. Эти цепочки и есть струны, которые связывают кварки, придавая адронам их струнные свойства.

Струны в фундаменте

Идея эластичных струн вновь всплыла при изучении квантовой гравитации, с той лишь разницей, что они оказались меньше и быстрее примерно на двадцать порядков величины. Эти крошечные, гибкие и невероятно мощные нити энергии называются фундаментальными струнами[131]131
  Дискуссионным остаётся вопрос о том, являются фундаментальные струны окончательным объяснением элементарных частиц или просто очередной ступенью редукционистского марша ко всё меньшего размера объектам. Независимо от их природы, в настоящее время для удобства используется термин «фундаментальные струны».


[Закрыть]
.

Позвольте мне во избежание недоразумений ещё раз повторить, что в современной физике теория струн имеет два совершенно различных приложения. В применении к адронам она используется в масштабах, которые кажутся крошечными по обычным человеческим меркам, но являются гигантскими с точки зрения фундаментальной физики. То, что три типа адронов – нуклоны, мезоны и глюболы – являются струнообразными объектами, которые описываются математикой теории струн, – это признанный факт. Лабораторным экспериментам, лежащим в основе теории адронных струн, уже почти полвека. Струны, которые связывают адроны, а сами состоят из глюонов, называются КХД-струнами. Фундаментальные же струны, связываемые с гравитацией и физикой около-планковского масштаба, как раз и вызвали все волнения, споры, перепалки в блогах и выход в последнее время полемических книг.

Фундаментальные струны могут быть настолько же меньше протона, насколько протон меньше штата Нью-Джерси. Но для них гравитация играет первостепенную роль.

Гравитационные силы во многих отношениях очень похожи на электрические. Формула, описывающая силу взаимодействия между электрически заряженными частицами, называется законом Кулона; формула для сил гравитации – законом всемирного тяготения Ньютона. Обе эти силы – и электрические, и гравитационные – подчиняются закону обратных квадратов. Это значит, что величина силы убывает как квадрат расстояния. Удвоение расстояния между частицами приводит к уменьшению силы в четыре раза; утроение расстояния снижает силу в девять раз; на учетверённом расстоянии сила станет меньше в шестнадцать раз и т. д. Кулоновская сила между двумя частицами пропорциональна произведению их электрических зарядов; ньютоновская сила притяжения пропорциональна произведению их масс. Это сходства, но есть и различия: электрическая сила может быть отталкивающей (между одинаковыми зарядами) или притягивающей (для противоположных зарядов), но гравитация всегда только притягивает.

Одно важное сходство состоит в том, что оба типа сил могут порождать волны. Представьте себе, что происходит с силой, действующей между двумя отдалёнными заряженными частицами, когда одна из них неожиданно перемещается, скажем, вдаль от другого заряда. Можно подумать, что сила, действующая на вторую частицу, при смещении первой мгновенно изменится. Но в этой картине кое-что ошибочно. Если сила, действующая на далёкую частицу, действительно менялась бы сразу, без задержки, можно было бы использовать этот эффект для отправки мгновенных сообщений в дальние районы космоса. Но мгновенные сообщения нарушают глубочайшие принципы физики. Согласно специальной теории относительности, никакой сигнал не может распространяться быстрее света. Нельзя передать сообщение за меньшее время, чем требуется свету на то, чтобы пройти то же расстояние.

В действительности сила, действующая на дальнюю частицу, не меняется мгновенно при резком движении ближней частицы. Вместо этого от переместившейся частицы начинает распространяться (со скоростью света) возмущение. Только когда оно достигнет дальней частицы, действующая на неё сила изменится. Распространение этого возмущения напоминает волновые колебания. Когда волна наконец приходит, она толкает вторую частицу, заставляя её вести себя подобно пробке, качающейся на волнах в пруду.

Ситуация аналогична тому, как если бы гигантская рука сдвинула Солнце. Его смещение не ощущалось бы на Земле в течение восьми минут – времени, которое требуется свету, чтобы пройти путь от Солнца. «Послание» распространяется, опять же со скоростью света, в форме колебаний кривизны, или гравитационных волн. Гравитационные волны являются для массы тем же, чем электромагнитные волны – для электрического заряда.

Теперь добавим немного квантовой теории Как мы знаем, энергия колеблющихся электромагнитных волн приходит неделимыми квантами, которые называются фотонами Планк и Эйнштейн имели очень серьёзные причины считать, что колебательная энергия может поступать лишь дискретными порциями, и если только мы очень крупно не заблуждаемся, те же аргументы применимы и к гравитационным волнам. Кванты гравитационного поля называются гравитонами.

Здесь я должен сказать, что существование гравитонов, в отличие от фотонов, – это экспериментально не проверенная догадка. Она, как считает большинство физиков, базируется на надёжно установленных принципах, но тем нем менее остаётся гипотезой. Но даже если это так, рассуждения, приводящие к выводу о существовании гравитонов, убедительны для большинства физиков, которые задумывались над этим вопросом.

Сходство между фотонами и гравитонами поднимает интересные вопросы. Электромагнитное излучение объясняется (в квантовой теории поля) фейнмановской диаграммой, в которой заряженная частица – электрон, например, – испускает фотон.

Узел испускания фотона

Естественно ожидать, что гравитационные волны возникают, когда частицы испускают гравитоны. Поскольку в гравитационном взаимодействии участвует всё, то все частицы должны быть способны испускать гравитоны.

Узел испускания гравитона

Даже гравитоны могут испускать гравитоны.

К сожалению, включение гравитонов в фейнмановские диаграммы приводит к математической катастрофе. Почти полвека физики-теоретики пытались придать смысл квантовой теории поля в применении к гравитонам и раз за разом терпели поражение, так что многие из нас пришли к выводу, что это бесполезное дело.


    Ваша оценка произведения:

Популярные книги за неделю