355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Большая Советская Энциклопедия » Большая Советская Энциклопедия (МЕ) » Текст книги (страница 85)
Большая Советская Энциклопедия (МЕ)
  • Текст добавлен: 9 октября 2016, 11:43

Текст книги "Большая Советская Энциклопедия (МЕ)"


Автор книги: Большая Советская Энциклопедия


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 85 (всего у книги 105 страниц)

Метеоритный дождь

Метеори'тный дождь , группа метеоритов, одновременно выпадающая на грунт. М. д. образуется вследствие раскола метеорного тела во время движения в атмосфере. См. Метеориты .

Метеориты

Метеори'ты , железные или каменные тела, падающие на Землю из межпланетного пространства; представляют собой остатки метеорных тел , не разрушившихся полностью при движении в атмосфере.

  Общие сведения . М. подразделяются на три главных класса: железные, железокаменные и каменные, однако можно проследить непрерывный переход от одного класса к другому. Характерные признаки М.: угловатая форма со сглаженными выступами, кора плавления, покрывающая в виде тонкой оболочки М. (рис. 1 ) и своеобразные ямки, называемые регмаглиптами (рис. 2 ). В изломе каменные М. имеют пепельно-серый цвет, реже – чёрный, или – почти белый (рис. 3 ). Обычно видны многочисленные мелкие включения никелистого железа белого цвета и минерала троилита бронзово-жёлтого цвета; нередко бывают видны тонкие тёмно-серые жилки. Железокаменные М. содержат значительно более крупные включения никелистого железа. После полировки поверхность железных М. приобретает зеркальный металлический блеск. Иногда падают М., имеющие более или менее правильную конусообразную, т. н. ориентированную, форму (рис. 4 ) или многогранную, напоминающую форму кристалла. Такие формы возникают в результате атмосферной обработки (дробления и абляции) метеорного тела во время движения в атмосфере.

  М. получают названия по наименованиям населённых пунктов или географических объектов, ближайших к месту их падения. Многие М. обнаруживаются случайно и обозначаются термином «находка», в отличие от М., наблюдавшихся при падении и называемых «падениями».

  М. имеют размеры от немногих мм до нескольких м и весят, соответственно, от долей г до десятков т. Самый крупный из уцелевших от раскола – железный метеорит Гоба, найденный в Юго-Западной Африке в 1920, весит около 60 т. Второй по размерам – железный метеорит Кейп-Йорк, найденный в Гренландии в 1818, весит 34 т. Известно около 35 М., масса каждого из которых превосходит 1 т.

  Вследствие дробления метеорных тел одновременно падает группа М., в которой число отдельных М. достигает десятков, сотен и даже тысяч. Такие групповые падения называют метеоритными дождями (рис. 5 ), причём каждый метеоритный дождь считается за один М. В Приморском крае СССР 12 февраля 1947 выпал Сихотэ-Алинский железный метеоритный дождь (см. Сихотэ-Алинский метеорит ) общей массой около 70 т. Ещё раньше, 30 июня 1908, в центральной части Сибири наблюдалось явление, предположительно вызванное падением и взрывом т. н. Тунгусского метеорита . Ежегодно на Землю выпадает не менее тысячи М. Однако многие из них, падая в моря и океаны, в малонаселённые места, остаются необнаруженными. Только 12—15 М. в год на всём земном шаре поступают в музеи и научные учреждения (см. табл.).

  На территории СССР до 1 января 1974 было собрано 146 М. (падений и находок).

Число метеоритов, зарегистрированных к 1 января 1966 (по М. Хею)


Класс Падения Находки Итого
Железные Железокаменные Каменные 43 12 724 584 58 413 627 70 1137
Всего 779 1055 1834

  Явления, сопровождающие падения метеоритов. Падения М. на Землю сопровождаются световыми, звуковыми и механическими явлениями. По небу стремительно проносится яркий огненный шар, называемый болидом , сопровождаемый хвостом и разлетающимися искрами. По пути движения болида на небе остаётся след в виде дымной полосы. След, первоначально прямолинейный, быстро искривляется под влиянием воздушных течений, направленных на разных высотах в разные стороны, и принимает зигзагообразную форму (рис. б ). Ночью болид освещает местность на сотни километров вокруг. Через несколько десятков секунд после исчезновения болида раздаются удары, подобные взрывам, за ними следует грохот, треск и постепенно затихающий гул, вызываемые ударными (баллистическими) волнами. Вдоль проекции траектории болида на земную поверхность ударные волны иногда вызывают более или менее значительное сотрясение грунта и зданий, дребезжание и даже раскалывание оконных стекол, распахивание дверей и т.д.

  Появление болида вызывается вторжением в земную атмосферу метеорного тела, скорость которого достигает полутора и более десятков км/сек. Вследствие сопротивления воздуха метеорное тело тормозится, кинетическая энергия его переходит в теплоту и свет. В результате поверхностные части метеорного тела и образующаяся вокруг него воздушная оболочка нагреваются до нескольких тысяч градусов. Вещество метеорного тела вскипает, испаряется, а частично в расплавленном состоянии срывается воздушными потоками и разбрызгивается на мельчайшие капельки (рис. в ), немедленно затвердевающие и превращающиеся в шарики метеорной пыли (рис. г ). Из продуктов, образуемых в результате этого процесса (называется абляцией), формируется пылевой след болида. Метеорное тело начинает светиться на высоте около 130—80 км, а на высоте 20—10 км его движение обычно полностью затормаживается (см. схему). В этой части пути, называемой областью задержки, прекращаются нагревание и испарение метеорного тела (его обломков), болид исчезает, а тонкий расплавленный слой на поверхности обломков быстро затвердевает, образуя кору плавления. Под микроскопом на коре обнаруживаются сложная структура, в которой отражён след воздействия атмосферы; часто наблюдаются струйки (рис. д ), разбрызганные капли и пористая или шлакообразная структура коры. После области задержки тёмные, покрытые затвердевшей корой обломки метеорного тела падают почти отвесно под влиянием притяжения Земли. Падая, они остывают и при достижении грунта оказываются только тёплыми или горячими, но не раскалёнными. При встрече М. с поверхностью Земли образуются углубления, размеры и форма которых зависят в значительной мере от скорости падения М. (см. Метеоритные кратеры ). Зарегистрировано около 40 случаев попаданий М. в строения, при которых, однако, никаких существенных разрушений не произошло.

  Химический состав. В М. не содержится каких-либо новых, неизвестных на Земле, химических элементов, и в то же время в них обнаружены почти все известные элементы. Наиболее распространёнными химическими элементами в М. являются: Al, Fe, Ca, О, Si, Mg, Ni, S. Химический состав отдельных М. может значительно отклоняться от среднего. Так, например, содержание Ni в железных М. колеблется от 5 до 30% и даже более. Среднее содержание в М. драгоценных металлов и редких элементов (в г на 1 т вещества М.): Ru10, Rh5, Pd10, Ag5, Os3, lr5, Pt20, Au5. Установлено, что содержание некоторых химических элементов тесно связано с содержанием других элементов. Так, оказалось, что чем выше содержание Ni в М., тем меньше в нём Ga, и т.п. Изотопный состав многих исследовавшихся химических элементов М. оказался тождественным изотопному составу тех же элементов земного происхождения. Наличие в М. радиоактивных химических элементов и продуктов их распада позволило определить возраст вещества, слагающего М., оказавшийся равным 4,5 млрд. лет. В межпланетном пространстве М. подвергаются воздействию космических лучей, и в них образуются стабильные и нестабильные космогенные изотопы. По их содержанию определён т. н. космический возраст М., т. е. время их самостоятельного существования, составляющее для разных экземпляров от немногих миллионов до сотен миллионов лет. Измерения космогенных изотопов позволяют также определять земные возрасты давно упавших М., т. е. промежутки времени с момента падения М. на Землю, достигающие десятков и сотен тысяч лет.

  Содержание в М. космогенных изотопов, а также присутствие треков, образуемых частицами высоких энергий, позволяют изучать вариации интенсивности космических лучей в пространстве и во времени, а также определять первичные (до падения на Землю) массы М.

  Минеральный состав. В отличие от химического, минеральный состав М. своеобразен: в М. обнаружен ряд неизвестных или очень редко встречающихся на Земле минералов. Таковы: шрейберзит, добреелит, ольдгамит, лавренсит, меррилит и др., которые присутствуют в М. в незначительных количествах. За последние годы в М. открыто несколько десятков новых, ранее неизвестных минералов, многие из которых названы по имени метеоритологов, например: фаррингтонит, юриит, найнинджерит, криновит и др. Наличие этих минералов указывает на своеобразие условий образования М., отличающихся от условий, при которых образовались земные горные породы. Наиболее распространёнными в М. минералами являются: никелистое железо, оливин, пироксены – безводные силикаты (энстатит, бронзит, гиперстен, диопсид, авгит) и иногда плагиоклаз.

  Некоторые специфические метеоритные минералы, например лавренсит, очень нестойки в условиях Земли и быстро вступают в соединения с кислородом воздуха. В результате на М. появляются обильные продукты окисления в виде ржавых пятен, что приводит к разрушениям М. В некоторых редких типах М. присутствует кристаллическая космическая вода, а в других, столь же редких М. встречаются мелкие зёрна алмаза. Последние представляют собой результат ударного метаморфизма, которому подвергся М. В М. были выделены разные газы, встречающиеся в разных количественных соотношениях. Минеральный состав М. убедительно свидетельствует об общности происхождения М. различных классов и типов.

  Структура метеоритов. Отполированные и протравленные раствором азотной или какой-либо др. кислоты поверхности большинства железных М. показывают сложный рисунок, называемый видманштеттеновыми фигурами. Этот рисунок состоит из пересекающихся полосок-балок, окаймленных узкими блестящими лентами. В отдельных промежуточных участках наблюдаются многоугольные площадки-поля (рис. е ). Видманштеттеновы фигуры появляются в результате неодинакового действия травящего раствора на поверхность М. Дело в том, что никелистое железо состоит из двух фаз-минералов: камасита с малым содержанием Ni и тэнита с высоким содержанием Ni. Поэтому балки, состоящие из камасита, травятся сильнее, чем поля, заполненные тонкой механической смесью зёрен камасита и тэнита. Узкие ленты, окаймляющие балки и состоящие из тэнита, совсем не поддаются травлению. Балки-пластинки камасита расположены в М. вдоль плоскостей восьмигранника (октаэдра). Поэтому М., в которых обнаруживаются видманштеттеновы фигуры, называемые октаэдритами. Реже встречаются железные М., состоящие целиком из камасита и показывающие при травлении тонкие параллельные линии, называемые неймановыми (рис. ж ). Внутренняя микроструктура таких М. показывает кристаллическое сложение по кубу, шестиграннику (гексаэдру). Поэтому этот тип М. называется гексаэдритами. Столь же редко встречаются железные М. (атакситы ), которые не показывают никакого рисунка; они содержат наибольшее количество Ni. Железокаменные М. (палласиты ) представляют собой как бы железную губку, пустоты которой заполнены прозрачным минералом жёлто-зелёного цвета – оливином. Другой тип железокаменных М., называется мезосидеритами , в изломе показывает обильные включения никелистого железа в основной каменистой массе. Каменные М. подразделяются на две основные группы. Одну группу, объединяющую около 85% падений каменных М., составляют М., в которых присутствуют своеобразные шарики, называемые хондрами , размерами от микроскопических зёрен до горошины (рис. з ). Хондры представляют собой, по-видимому, быстро затвердевшие капли. М. этой группы назыывают хондритами . Вторая, значительно более редкая группа заключает в себе М., совершенно не содержащие хондры и называемые ахондритами .

  Происхождение метеоритов. Наиболее распространена точка зрения, согласно которой М. представляют собой обломки малых планет . Установлено, что метеорные тела движутся по эллиптическим орбитам, подобным орбитам малых планет. Огромное количество мелких малых планет, диаметром много меньше километра, составляют группу, переходную от малых планет к метеорным телам. Вследствие соударений, происходящих между мелкими малыми планетами при их движении, идёт непрерывный процесс их дробления на всё более мелкие части, пополняющие состав метеорных тел в межпланетном пространстве. М. являются образцами твёрдого вещества внеземного происхождения, доступными для непосредственного изучения и доставляющими многообразную информацию о ранней стадии образования Солнечной системы и её дальнейшей эволюции. Т. о. изучение М., открывающее всё новые и новые факты, имеет важное космогоническое значение. Оно имеет также значение и для изучения глубинных частей Земли.

  Некоторые исследователи относят к М. и тектиты , своеобразные стеклянные тела, которые находят в разных местах земной поверхности. Однако условия образования тектитов и вообще их природа отличают их от М. См. также Метеоритика .

  Лит.: Кринов Е. Л., Основы метеоритики, М., 1955; Мэйсон Б., Метеориты, пер. с англ., М., 1965; Вуд Дж., Метеориты и происхождение солнечной системы, пер. с англ., М., 1971; Заварицкий А. Н., Кваша Л. Г., Метеориты СССР, М., 1952; Метеоритика. Сб. ст., в. 1—30, М., 1941—70; Heide P., Kleine Meteoritenkunde, В., 1957; The Solar System, ed. G. P. Kniper, B. Middlehurst, v. 4, [N. Y.], 1963; Hey М. Н., Catalogue of Meteorites, 3 ed., L., 1966.

  Е. Л. Кринов.

Каменный метеорит Венгерово, массой около 10 кг , упавший 11 октября 1950 в Новосибирской обл. Видна тонкая кора плавления, покрывающая метеорит, и пепельно-серое внутреннее вещество на поверхности излома.

Каменный метеорит Старое Борискино (слева), упавший 20 апреля 1930 в Оренбургской обл., и каменный метеорит Старое Песьяное (справа), упавший 2 октября 1933 в Курганской обл. В изломах видно чёрное внутреннее вещество у первого метеорита и светло-серое – у второго.

Поверхность раскола каменного метеорита (хондрита) Саратов, упавшего 6 октября 1918; видны отдельные хондры разного размера.

Схема траекторий метеоритов в земной атмосфере.

Железный метеорит Богуславка, состоящий из двух частей, общей массой 257 кг , упавший 18 октября 1916 в Приморском крае. Видны резко выраженные регмаглипты.

Разбрызганные капли на поверхности одного из экземпляров Сихотэ-Алиньского железного метеоритного дождя.

Шарики, капельки и другие частицы пылевого следа, извлеченные из грунта в районе падения Сихотэ-Алиньского метеоритного дождя.

Видманштеттовы фигуры на протравленной поверхности железного метеорита Чабанкол, найденного в 1938 в Новосибирской обл.

Струйчатая структура коры плавления, наблюдаемая на поверхности железного метеорита Репеев Хутор, упавшего 8 августа 1938 в Астраханской области.

Неймановы линии на протравленной поверхности железного метеорита Богуславка.

Каменный метеорит Каракол, массой 2,8 кг , упавший 9 мая 1840 в Семипалатинской обл. Метеорит имеет конусообразную (ориентированную) форму.

Обломки каменного метеоритного дождя, выпавшего 26 декабря 1933 в Ивановской обл. Всего собрано 97 экземпляров, общей массой 49 кг .

Пылевой след, оставшийся по пути движения болида, наблюдавшегося 19 октября 1941 на Чукотке (через полчаса после пролета). Фотоснимок Д. Дебабова.

Пылевой след, оставшийся по пути движения болида, наблюдавшегося 19 октября 1941 на Чукотке. Фотоснимок Д. Дебабова.

Метеорная астрономия

Метео'рная астроно'мия , раздел астрономии, посвященный изучению структуры, происхождения и эволюции метеорного вещества в межпланетном пространстве. Исследование структуры и движения метеорного вещества ведётся путём оптических и радиолокационных наблюдений метеоров, наблюдений Зодиакального Света , регистрации ударов метеорных тел с помощью датчиков, установленных на искусственных спутниках Земли и космических зондах, изучения движения метеорных потоков методами небесной механики. В СССР работы по М. а. ведутся в Москве, Душанбе, Киеве, Одессе, Харькове, Казани; за рубежом в США (Гарвардская и Смитсоновская обсерватории), в ЧССР, Великобритании, Австралии.

Метеорная ионизация

Метео'рная иониза'ция , ионизация в верхней атмосфере, обусловленная вторжением в неё метеорного вещества . Активная М. и. происходит в основном при столкновениях испарившихся и распылённых метеорных атомов с молекулами воздуха. Среднее число свободных электронов, порождаемых одним метеорным атомом, пропорционально примерно 4-й степени его скорости и в интервале метеорных скоростей 11—73 км/сек изменяется от 0,001 до 1. Активная М. и. наиболее интенсивна на высотах 80—120 км, где в основном испаряются метеорные тела. Выше 120 км активная М. и. вызывается распылёнными метеорными атомами и отлетающими после столкновения с метеорным телом атмосферными молекулами. Др. источником ионов метеорного происхождения является ионизация постоянно присутствующих в верхней атмосфере метеорных атомов под действием солнечного излучения и в результате перезарядки ионов .

  При масс-спектрометрических измерениях ионного состава верхней атмосферы, выполненных с помощью ракет, обнаружены метеорные ионы Mg+ , Si+ , Ca+ , Fe+ и др. на высотах 80—180 км. Наибольшая концентрация метеорных ионов (102 —104 в 1 см3 ) наблюдается на высотах 80—120 км, где она может быть сравнимой с концентрацией основных атмосферных ионов NO+ и O2+ . Рекомбинация атомарных метеорных ионов протекает значительно медленнее, чем молекулярных атмосферных ионов, поэтому М. и. играет существенную роль в поддержании ночной ионизации области Е ионосферы и в образовании спорадических слоев Es (в слоях Es с высокой электронной концентрацией метеорные ионы могут быть доминирующими). М. и. обусловлена в основном спорадическими метеорными телами и во время действия ежегодных метеорных потоков увеличивается незначительно. М. и. сильно возрастает во время метеорных дождей; например, во время метеорного дождя Драконид 10 октября 1946 ионосферными станциями было отмечено образование слоя Es .

  После пролёта метеора остаётся ионизованный след длиной до нескольких десятков км с начальным диаметром до нескольких м. Ионизованный метеорный след быстро расширяется под действием диффузии. Электронная концентрация в следе уменьшается также вследствие рекомбинации и прилипания электронов к нейтральным атомам атмосферы. Ионизованные метеорные следы отражают радиоволны ультракоротковолнового и коротковолнового диапазонов, что используется в системах метеорной радиосвязи , а также для радиолокационных исследований метеоров и верхней атмосферы. См. также Метеоры .

  Лит.: Истомин В. Г., Ионы внеземного происхождения в ионосфере Земли, «Искусственные спутники Земли», 1961, в. 11, с. 98; Кащеев Б. Л., Лебединец В. Н., Лагутин М. Ф., Метеорные явления в атмосфере Земли, М., 1967.

  В. Н. Лебединец.

Метеорная пыль

Метео'рная пыль , мельчайшие твёрдые частицы, размером от нескольких мкм до долей мм, возникающие в результате абляции метеорных тел при прохождении их через земную атмосферу. Из М. п. состоят следы болидов. См. Метеориты .

Метеорная радиосвязь

Метео'рная радиосвя'зь , вид радиосвязи, при которой используется отражение радиоволн от ионизованных следов метеорных частиц. М. р. применяется сравнительно редко, главным образом для передачи информации (например, телеграфных сообщений) двоичным кодом и для сверки разнесённых устройств точного времени путём встречного обмена контрольными сигналами (см. Служба времени ).

  Пролетая в атмосфере, метеорные частицы оставляют следы ионизованного газа, часть которых имеет концентрацию электронов, достаточную для эффективного отражения радиоволн метрового диапазона (см. Распространение радиоволн ).

  Это явление позволяет осуществлять М. р. при помощи относительно маломощных передатчиков (порядка 1 квт ) и простых антенн с усилением 6—18 дб на расстояния до 1700—1800 км без ретрансляции. Для этого передатчики обоих корреспондентов облучают некоторую зону на высоте около 100 км над поверхностью Земли. При соответствующей ориентации следа образуется двухсторонний канал связи (рис. ) с шириной полосы частот в несколько десятков или сотен кгц в зависимости от мощности передатчиков, чувствительности приёмников и допустимого влияния эффектов многолучевого распространения радиоволн. При достаточном энергетическом потенциале линии М. р. эффективные отражения наблюдаются регулярно – обычно несколько раз в 1 мин со средней длительностью несколько десятых долей сек. Применяя скорость передачи 5—10 тыс. двоичных знаков в 1 сек, можно в течение этих коротких интервалов времени, составляющих в сумме несколько процентов от общего времени связи, передать относительно большой объём информации. Так, линия М. р., работающая на частоте около 40 Мгц, может обладать ёмкостью, достаточной для непрерывной устойчивой работы одного или несколько телетайпов . Вследствие слабого поглощения метровых волн в ионосфере и особенностей механизма распространения волн при М. р. она значительно меньше подвержена влиянию ионосферных возмущений, чем радиосвязь на декаметровых волнах, и обладает относительно высокой направленностью (даже при слабонаправленных антеннах) и поэтому менее подвержена действию помех, создаваемых удалёнными радиоустройствами.

  Прерывистый характер образования канала связи требует применения специальных методов передачи и приёма сообщений. Поступающие сообщения накапливаются и затем передаются порциями с большой скоростью в те короткие интервалы времени, когда образуется двухсторонний канал связи. Принятые порциями сообщения также сначала накапливаются, а затем с обычной скоростью поступают в регистрирующий аппарат. Кроме накопителей, специфическими элементами являются анализаторы принятых сигналов, определяющие их пригодность для связи, и системы сопряжения порций принятых сообщений, исключающие потери или повторный приём сообщений на стыках между порциями. Для обеспечения достоверности передачи применяют методы автоматического обнаружения и исправления ошибок.

  Лит.: Метеорная радиосвязь на ультракоротких волнах. Сб. ст., под ред. А. Н. Казанцева, М., 1961; Бондарь Б. Г., Кащеев Б. Л., Метеорная связь, [К., 1968].

  А. А. Магазаник.

Схема двухсторонней метеорной связи: 1 – метеорный след ионизованного газа; 2 – источник сообщений (передающий телеграфный аппарат); 3 – приёмник сообщений (приёмный телеграфный аппарат); 4 – накопитель-ускоритель передающего тракта; 5 – накопитель-замедлитель приёмного тракта; 6 – системы анализа, сопряжения и управления; 7 – передатчик метровых волн; 8 – приёмник метровых волн; 9 – передающая антенна; 10 – приёмная антенна.


    Ваша оценка произведения:

Популярные книги за неделю

    wait_for_cache