355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Большая Советская Энциклопедия » Большая Советская Энциклопедия (МЕ) » Текст книги (страница 69)
Большая Советская Энциклопедия (МЕ)
  • Текст добавлен: 9 октября 2016, 11:43

Текст книги "Большая Советская Энциклопедия (МЕ)"


Автор книги: Большая Советская Энциклопедия


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 69 (всего у книги 105 страниц)

Месарош Лёринц

Ме'сарош (Meszaros) Лёринц (г. рождения неизвестен – умер 1514), один из руководителей и идеологов Дожи Дьёрдя восстания 1514 . Приходский священник из местечка Медьясо. Сформулировал наиболее радикальные требования восставших (раздел земли, истребление дворянства и др.). Во главе крестьянских отрядов продолжал борьбу после поражения при (15 июля 1514). Был захвачен в плен феодалами и заживо сожжён.

  Лит. см. при ст. Дожи Дьёрдя восстание 1514 .

Месдаг Хендрик Виллем

Ме'сдаг (Mesdag) Хендрик Виллем (23.2.1831, Гронинген, – 10.7.1915, Гаага), голландский живописец-маринист. Учился с 1866 у В. Рулофса и Л. Алмы-Тадемы в Брюсселе. С 1869 жил в Гааге. Один из главных представителей гаагской школы . М. писал наполненные воздухом пейзажи, в которых запечатлел различные состояния морсой стихии, суровую жизнь рыбаков. Своё собрание картин (в т. ч. произведения барбизонцев) принёс в дар г. Гааге (Государственный музей Х. В. Месдага). Произведения «Дамба во Флиссингене», «Летний вечер в Схевенингене», оба – в Государственном музее Х. В. Месдага (Гаага).

  Лит.: Zicken Ph., H. W. Mesdag, the painter of the North Sea, L., 1896.

Х. В. Месдаг. «Парусные лодки». Музей изобразительных искусств им. А. С. Пушкина. Москва.

Месджеде-Солейман

Месдже'де-Солейма'н , город в Иране, в остане Хузистан. 66 тыс. жителей (1971). Автодорогой связан с Тегераном и Ахвазом. Центр добычи нефти (с 1908); ныне его значение упало. Нефтепереработка. Производство серы (на базе природного газа).

Месембрия

Месембри'я, Месемврия (Mesёmbria), древнегреческое название города Несебыр (Болгария).

Месета

Месе'та (Meseta), Иберийская Месета, плоскогорье в Испании и Португалии. Занимает большую часть Пиренейского полуострова. В тектоническом отношении соответствует древнему массиву с основанием, образованным герцинской складчатостью. Складчатый фундамент выходит на поверхность в западной части М.; на В. он прикрыт чехлом морских и континентальных осадков мезозойского и кайнозойского возраста. Общий уклон поверхности с В. на З. Характерно чередование плато, складчато-глыбовых горных хребтов и внутригорных котловин. Среднюю часть М. занимают горы Центрального Кордильера с высшей точкой М. г. Альмансор (2592 м ) и ряд менее значительных складчато-глыбовых хребтов субширотного простирания. Эти хребты разделяют значительные по площади Новокастильское плоскогорье (высотой 600—800 м ) и Старокастильское плоскогорье (высотой от 800 м в центре до 1000—1200 м по окраинам). На Ю., в горах Сьерра-Морена – месторождения свинца, меди, ртути, кобальта, железных руд; на С.-З., в Галисии – железных руд, золота, олова, вольфрама. Климат преимущественно субтропический, средиземноморский, на С. Галисии – умеренный, морской. Температура июля от 20 до 28 °С, января около 5 °С. Осадков 400—500 мм, в горах и на С.—З. до 1000—1500 мм в год. Зима влажная, лето (за исключением Галисии) сухое. Крупные реки – Дуэро, Тахо, Гвадиана, Миньо – текут в пределах М. преимущественно с В. на З. Почвы бурые лесные и коричневые средиземноморские. Естественная растительность – кустарниковые заросли типа маквис на З. и типа томиллара и гарига на В. и Ю.; в горах – широколиственные и хвойные леса, лучше всего сохранившиеся в Галисии.

  Р. А. Ерамов.

Мескупас Ицикас

Ме'скупас Ицикас (партийный псевдоним – Адомас) (1907, Укмерге, ныне Литовской ССР, – 13.3.1942, дер. Смайляй Биржайского района Литовской ССР), участник революционного движения в Литве, один из организаторов партизанского движения в годы Великой Отечественной войны 1941—45. Родился в семье ремесленника. Гимназистом вступил в 1924 в Коммунистический союз молодёжи (КСМ) Литвы, в 1925—26 член, затем секретарь Укмергского подрайонного комитета КСМ Литвы. В 1927 секретарь Каунасского РК КСМ Литвы; был арестован, в 1929, находясь в тюрьме, принят в члены КП Литвы. В 1931—33 работал в Германии по организации издания и транспортировки партийной литературы в Литву, с 1931 член ЦК КСМ Литвы; в 1933 арестован гитлеровцами, выслан в Литву. С 1934 секретарь ЦК КСМ Литвы, с 1935 член ЦК КП Литвы, с 1938 член Политбюро и Секретариата ЦК КП Литвы. Делегат 7-го конгресса Коминтерна (1935) и 6-го конгресса КИМ (1935). После свержения буржуазного режима (июнь 1940) депутат Народного сейма, затем Верховного Совета Литовской ССР, в 1940—41 2-й секретарь ЦК КП(б) Литвы. Во время немецко-фашистской оккупации в марте 1942 руководитель оперативной группы ЦК КП(б) Литвы по организации центра подпольной партийной работы; погиб в бою. Депутат Верховного Совета СССР 1-го созыва. Награжден орденом Отечественной войны 1-й степени (посмертно).

  Лит.: Штарас П. Ф., Враг просчитался, в сборнике: Герои подполья, 4 изд., М., 1972.

Месмеризм

Месмери'зм, антинаучная медицинская система, выдвинутая австрийским врачом (швейцарцем по происхождению) Ф. Месмером (F. Mesmer; 1734—1815); основана на представлении о «животном магнетизме». Была широко распространена в конце 18 в. во Франции и Германии. Месмер считал, что планеты действуют на человека посредством особой магнитной силы и человек, овладевший этой силой, способен излучать её на др. людей, благотворно действуя на течение всех заболеваний. Несостоятельность его теории была установлена (1774) специальной комиссией, в составе которой был А. Л. Лавуазье .

Месневи

Месневи' (маснави, араб. – сдвоенное), стихотворная форма в арабо-, персо– и тюркоязычной поэтике. Двустишие (бейт ) со смежной рифмой; произведение, построенное из многих подобных двустиший, каждое из которых имеет свою рифму. Поскольку эта форма употреблялась в основном при создании поэм, термин «М.» стал обозначать и самый жанр, в котором выделяются по признаку содержания М. героические (например, «Шахнаме» Фирдоуси), дидактически-философские (например, поэмы Низами) и романические (например, «Лейли и Меджнун» Навои).

  Лит.: Бертельс Е. Э., История персидско-таджикской литературы, М., 1960; Квятковский А., Поэтический словарь, М., 1966.

Месолонгион

Месоло'нгион (Mesolóngion), Миссолунги, город и порт в Греции, на берегу залива Патраикос Ионического моря. Административный центр нома Этолия и Акарнания. 11,6 тыс. жителей (1971). Рыбообработка, табачная, мясная промышленность. Основан в 16 в. В М. умер английский поэт Дж. Байрон.

Месонжеро Романос Рамон де

Месонже'ро Рома'нос (Mesonero Romanos) Рамон де (19.7.1803, Мадрид, – 30.4.1882, там же), испанский писатель. Один из крупнейших представителей костумбризма . Учился в университетах Барселоны, Мадрида, Вальядолида. С 1832 печатал нравоописательные очерки под псевдонимом «Любопытный говорун», позднее вошедшие в книги «Мадридская панорама» (т. 1—3, 1835—1838), «Мадридские сцены» (т. 1—4, 1842) и «Типы, группы и наброски...» (1862). М. Р. создал многочисленные очерки-портреты общественных типов, а также очерки-сценки быта столицы, сочувственно изображая городские низы и с горечью отмечая разложение патриархальных нравов. В 1836 М. Р. основал и до 1842 редактировал журнал «Семанарио пинтореско эспаньоль» («El Semanario Pintoresco Español). Интерес представляют его «Воспоминания семидесятилетнего старика...» (1880) и описания испанской столицы в книгах «Путеводитель по Мадриду» (1831) и «Старый Мадрид» (1861).

  Соч.: Obras, v. 1—8, Madrid, 1925—26; Obras, v. 1, Madrid, 1967.

  Лит.: Olmedilla у Puig J., Bosquejo biografico del popular escrítor de costumbres Don Ramón de Mesonero Romanos (El Curioso Parlante), Madrid, 1889; Sánchez de Palacios M., Mesonero Romanos. Estudios у antología, Madrid, 1963.

  З. И. Плавскин.

Месонье Эрнест

Месонье' (Meissonier) Эрнест (21.2.1815, Лион, – 31.1.1891, Париж), французский живописец. Учился в Париже у Л. Конье. Приобрёл известность небольшими жанровыми картинами из быта минувших эпох (главным образом Франции 17—18 вв.) и батальными сценами («Ссора», 1885, Королевский замок, Виндзор; «Наполеон III при Сольферино», 1863, Лувр, Париж; «Фридланд. 1807», 1875, Метрополитен-музей, Нью-Йорк). Неглубокие по замыслу, воспроизводящие преимущественно внешнюю сторону явлений, картины М. привлекали зрителя занимательностью сюжета, тщательной передачей исторического антуража, выписанностью деталей. Одно из немногих произведений М. на современную тему – «Баррикада» (1848, Лувр) – посвящены июньским событиям 1848. В годы Второй империи (1852– 70) М. – любимый художник Наполеона III и главный авторитет двора в вопросах искусства.

  Лит.: Булгаков Ф., Мейсонье и его произведения, СПБ. 1907 [1908 на обложке]; Benedite L., Meissonier, P., [1911].

Месопотамия

Месопота'мия (греч. Mesopotamia, от mésos – средний, находящийся между, в середине и potamos – река), Междуречье, Двуречье, природная область в Западной Азии, в бассейне рр. Тигр и Евфрат. Включает Месопотамскую низменность и плато Джезире . М. – один из крупнейших культурных очагов Древнего Востока, создавшийся первоначально на базе искусственного орошения в нижнем течении Евфрата (затем для ирригации стали использоваться и воды Тигра). На территории М. в 4—3-м тыс. до н. э. формировались раннеклассовые государства. В конце 3-го тыс. до н. э. здесь существовали древние государства Аккад, Ур и др.; в начале 2-го тыс. до н. э. в южной части М. сложилось государство Вавилония . В дальнейшем М. входила в состав Ассирии (9—7 вв. до н. э.), Нововавилонского царства (7—6 вв. до н. э.), державы Ахеменидов (6—4 вв. до н. э.), империи Александра Македонского (4 в. до н. э.), государства Селевкидов (4—2 вв. до н. э.), Парфии (3 в. до н. э. – 3 в. н. э.), государства Сасанидов (3—7 вв.), с 7 в. – Арабского халифата. В 11 в. М. была завоёвана сельджуками, в 13 в. – монголами, в начале 16 в. попала под власть Сефевидов, в 17 в. – 1918 – в составе Османской империи. После 1-й мировой войны 1914—18 большая часть М. входит в государство Ирак, остальные части – в состав Сирии и Турции.

Месопотамская низменность

Месопота'мская ни'зменность, низменность в Западной Азии, главным образом на территории Ирака, а также в Иране и Кувейте. Расположена в нижних частях бассейнах рр. Тигр, Евфрат и Карун. Занимает предгорный краевой прогиб, заполненный песчано-глинистыми аллювиальными отложениями рек, морскими отложениями Персидского залива и материалом наклонных предгорных шлейфов (галечник, щебень). Преобладают плоские равнины высотой до 100 м, по окраинам – до 200 м. Климат на С. субтропический, на Ю. – тропический, пустынный. Средняя температура января в Басре 11 °С, августа 34 °С, летом в отдельные дни до 50 °С, осадков 100—200 мм в год. Основные реки Тигр и Евфрат характеризуются весенним половодьем и летней меженью. Они служат важными источниками орошения и транспортными путями. Естественная растительность – субтропические и тропические пустыни, по окраинам – полупустыни, вдоль рек местами галерейные леса (из евфратского тополя, ив и др.). Кочевое скотоводство, поливное земледелие, плантации финиковой пальмы. На М. н. – гг. Багдад, Басра (Ирак), Абадан (Иран).

  Ю. К. Ефремов.

Месроп Маштоц

Месро'п Машто'ц (361, селение Хацик, провинция Тарон, – 17.2.440, Эчмиадзин, похоронен в Ошакане, ныне Аштаракский район Армянской ССР), армянский учёный, просветитель, создатель армянского алфавита. Родился в семье крестьянина. Принял монашество и проповедовал христианство среди армян-язычников. Изучив звуковую систему армянского языка, составил в 405—406 алфавит. Перевёл со своими учениками часть Библии с сирийского на армянский язык. Внедрение алфавита способствовало борьбе за сохранение культурной самостоятельности армянского народа. Возникло мощное просветительское движение, появилась богатая оригинальная и переводная литература. В 5 в. многие из учеников М. М. стали видными писателями (Езник, Корюн, Егише, Мовсес Хоренаци и др.).

  Лит.: Абегян М., История древнеармянской литературы, т. 1, Ер., 1948; Корюн, Житие Маштоца, пер. с арм., Ер., 1962.

Месса

Ме'сса (франц. messe, от позднелат. missa), принятое католической церковью название литургии . Порядок проведения и состав М. складывались в течение многих веков; фиксации они подверглись в основном на Тридентском соборе (1545—63). 2-й Ватиканский собор (1962—65) внёс изменения в М. (разрешив, например, вести службу не только на латинском, но и на местных языках). Песнопения, неизменно входящие в данное богослужение, составляют т. н. «обычную мессу» (missa ordinarium). Названия этих песнопений определяются начальными словами текста: Кирие, Глориа, Кредо, Санктус и Бенедиктус, Агнус деи. Первоначально песнопения М. были одноголосными, основой их служил григорианский хорал. Впоследствии, с развитием многоголосия, появляются композиторские полифонические обработки песнопений М. и целые «обычные» М., полностью написанные одним композитором на традиционный текст. Различали торжественную М. (missa solemnis) и короткую М. (missa brevis), состоявшую, как правило, из 2—3 первых песнопений «обычной» М. В эпоху Возрождения М. являлась самым монументальным жанром музыкального искусства. М. писали Дж. Данстейбл (Англия), Г. Дюфаи, И. Окегем, Я. Обрехт, Жоскен Депре, О. Лассо (Нидерланды), Палестрина, А. Вилларт, Дж. Габриели (Италия), Т. Л. де Виктория (Испания). В более поздний период классические образцы М. создали И. С. Бах (месса h-moll), В. А. Моцарт, Л. Бетховен (2 М., 2-я – «Торжественная»), Л. Керубини, Ф. Шуберт, Ф. Лист, А. Брукнер и др. Заупокойная траурная М. – см. Реквием .

  Лит.: Бобровницкий И., О происхождении и составе римско-католической литургии и отличии ее от православной, 4 изд., К., 1873: Иванов-Борецкий М. В., Очерк истории мессы, М., 1910; Wagner P., Geschichte der Messe, Lpz., 1913.

  Б. В. Левик.

«Мессаджеро»

«Мессадже'ро» («Il Messaggero» – «Вестник»), итальянская ежедневная газета. Основана в Риме в 1878. Принадлежит семье Перроне – итальянским промышленным магнатам, имеющим значительную часть акций в металлургическом и машиностроительном комплексе «Ансальдо» (1973). Часто отражает мнение кругов, близких к правительственным. Тираж (1972) около 350 тыс. экземпляров.

Мессапы

Месса'пы, Мессапии (лат. Messapii), древнее племя, жившее на Ю. Италии (в южной части современной области Апулия). Обнаруженные в 1-й половине 20 в. в Апулии сосуды местного производства со знаками критского линейного письма А подтверждают версию Геродота («История», VII, с. 170) и точку зрения В. И. Модестова («Введение в римскую историю», ч. 2, 1909, с. 101 и далее) о переселении М. с о. Крит в 10—9 вв. до н. э.

Мёссбауэр Рудольф Людвиг

Мёссба'уэр (Mössbauer) Рудольф Людвиг (р. 31.1.1929, Мюнхен), немецкий физик (ФРГ). Окончил Высшее техническое училище в Мюнхене (1955). В 1955—57 докторант при институте Макса Планка в Гейдельберге, в 1957—59 сотрудник Высшего технического училища в Мюнхене. С 1960 в Калифорнийском технологическом институте (с 1961 профессор). С 1965 профессор Технической высшей школы в Мюнхене. Работы в области ядерной физики и физики твёрдого тела. В 1958 открыл явление резонансного поглощения g-квантов атомными ядрами твёрдого тела, не сопровождающееся изменением внутренней энергии тела (Мёссбауэра эффект ). Нобелевская премия (1961).

  Соч.: Kernresonanzfluoreszenz von Gammastrahiung in Ir191 , «Zeitschrift für Physik», 1958, Bd 151, Н. 2, S. 124—43; Kernresonanzabsorption von g-StrahIung in Ir191 , «Zeitschrift für Naturforschung», 1959, Bd 14 a, S. 211—16; в рус. пер. – Резонансное ядерное поглощение g-квантов в твердых телах без отдачи, «Успехи физических наук», 1960, т. 72, в. 4, с. 658—71.

Мёссбауэра эффект

Мёссба'уэра эффе'кт, резонансное поглощение g-квантов атомными ядрами, наблюдаемое, когда источник и поглотитель g-излучения – твёрдые тела, а энергия g-квантов невелика (~ 150 кэв ). Иногда М. э. называется резонансным поглощением без отдачи, или ядерным гамма-резонансом (ЯГР).

  При облучении вещества g-квантами наряду с обычными процессами взаимодействия (см. Гамма-излучение ) возможно резонансное поглощение g-квантов ядрами, при котором g-квант исчезает, а ядро возбуждается, т. е. переходит в состояние с большей внутренней энергией. Это явление аналогично резонансному поглощению световых квантов (фотонов ) атомами (см. Атом , Квантовая электроника ). Необходимое условие резонансного поглощения состоит в том, чтобы энергия, которую квант расходует на возбуждение ядра, равнялась бы в точности энергии квантового перехода , т. е. разности внутренних энергий ядра в возбуждённом и основном состояниях. На первый взгляд это условие автоматически удовлетворяется, когда излучающие и поглощающие ядра одинаковы (рис. 1 ). Однако g-квант с энергией E обладает импульсом p = E/с (где с – скорость света, см. Корпускулярно-волновой дуализм ), и по закону сохранения импульса при излучении или поглощении кванта ядром последнее испытывает отдачу. Излучающее ядро массы М, получив импульс приобретает кинетическую энергию DE = р2 /2М   = E2 /2Мс2 . Т. о., часть энергии g-перехода трансформируется в кинетическую энергию ядра и энергия испущенного кванта меньше полной энергии g-перехода на величину DE . Такая же энергия DE передаётся свободному (покоящемуся) ядру и в процессе поглощения. Поэтому для достижения резонанса падающий на ядро g-квант должен иметь энергию на величину DE бо'льшую, чем энергия перехода. В результате линии испускания и поглощения оказываются смещенными друг относительно друга на величину 2DE = E2 /Мс2 (рис. 2 ).

  Величина DE составляет весьма небольшую долю от энергии перехода E , однако DE всегда значительно превосходит ширину линии излучения. Поэтому линии испускания и поглощения почти не перекрываются и вероятность резонансного поглощения g-квантов чрезвычайно мала. Например, для g-излучения 14,4 кэв (ядра 57 Fe) DE » 2´10-3эв , тогда как естественная ширина линии G » 4,6´10-9эв (см. Ширина спектральных линий ).

  Обычно ядра входят в состав твёрдых тел или жидкостей, т. е. не являются свободными, однако в большинстве случаев потеря энергии DE из-за отдачи практически не отличается от рассмотренного выше случая свободных и неподвижных ядер. Кроме того, ширины линий g-излучения обычно существенно превосходят естественные ширины G вследствие доплеровского уширения, возникающего при тепловом движении атомов (см. Доплера эффект ). Однако при комнатной температуре перекрытие линий испускания и поглощения остаётся всё же незначительным. При наблюдении резонансного поглощения света атомами аналогичная трудность, как правило, не возникает: из-за малой энергии фотона энергия отдачи мала и смещения линий испускания и поглощения незначительны. Чтобы сделать резонансное поглощение g-квантов наблюдаемым, приходится искусственно увеличивать перекрытие линий испускания и поглощения. Для этого используют сдвиг линий за счёт эффекта Доплера, при встречном движении излучающего и поглощающего ядер. В осуществленных экспериментах необходимая скорость движения (сотни м/сек ) сообщалась одним из трёх способов: путём механического перемещения источника или поглотителя; за счёт отдачи, испытываемой ядром, если излучению g-кванта предшествует a– или b-распад; за счёт нагревания источника и поглотителя до высокой температуры.

  В 1958 Р. Мёссбауэр обнаружил, что для ядер, входящих в состав твёрдых тел, при малых энергиях g-переходов может происходить испускание и поглощение g-квантов без потери энергии на отдачу. В спектрах испускания и поглощения наблюдаются несмещенные линии с энергией, в точности равной энергии g-перехода, причём ширины этих линий равны (или весьма близки) естественной ширине G. В этом случае линии испускания и поглощения перекрываются, что позволяет наблюдать резонансное поглощение g-квантов.

  Это явление, получившее наименование М. э., обусловлено коллективным характером движения атомов в твёрдом теле. Благодаря сильному взаимодействию атомов в твёрдых телах энергия отдачи передаётся не отдельному ядру, а превращается в энергию колебаний кристаллической решётки , иными словами, отдача приводит к рождению фононов . Но если энергия отдачи (рассчитанная на одно ядро) меньше средней энергии фонона, характерной для данного кристалла, то отдача не каждый раз будет приводить к рождению фонона. В таких «бесфононных» случаях отдача не изменяет внутренней энергии кристалла. Кинетическая же энергия, которую приобретает кристалл в целом, воспринимая импульс отдачи g-кванта, пренебрежимо мала. Передача импульса в этом случае не будет сопровождаться передачей энергии, а поэтому положение линий испускания и поглощения будет точно соответствовать энергии E перехода.

  Вероятность такого процесса достигает нескольких десятков %, если энергия g-перехода достаточно мала; практически М. э. наблюдается только при DE » 150 кэв (с увеличением E вероятность рождения фононов при отдаче растет). Вероятность М. э. сильно зависит также от температуры. Часто для наблюдения М. э. необходимо охлаждать источник g-квантов и поглотитель до температуры жидкого азота или жидкого гелия, однако для g-переходов очень низких энергий (например, E = 14,4 кэв для g-перехода ядра 57 Fe или 23,8 кэв для g-перехода ядра 119 Sn) М. э. можно наблюдать вплоть до температур, превышающих 1000 °С. При прочих равных условиях вероятность М. э. тем больше, чем сильнее взаимодействие атомов в твёрдом теле, т. е. чем больше энергия фононов. Поэтому вероятность М. э. тем выше, чем больше Дебая температура кристалла.

  Существенным свойством резонансного поглощения без отдачи, превратившим М. э. из лабораторного эксперимента в важный метод исследования, является чрезвычайно малая ширина линии. Отношение ширины линии к энергии g-кванта при М. э. составляет, например, для ядер 57 Fe величину »3´10-13 , а для ядер 67 Zn »5,2´10-16 . Такие ширины линий не достигнуты даже в газовом лазере , являющемся источником самых узких линий в инфракрасном и видимом диапазоне электромагнитных волн. С помощью М. э. оказалось возможным наблюдать процессы, в которых энергия g-кванта на чрезвычайно малую величину (»G или даже небольших долей G) отличается от энергии перехода ядер поглотителя. Такие изменения энергии приводят к смещению линий испускания и поглощения друг относительно друга, что влечёт за собой изменение величины резонансного поглощения, которое может быть измерено.

  Возможности методов, основанных на использовании М. э., хорошо иллюстрирует эксперимент, в котором удалось измерить в лабораторных условиях предсказанное относительности теорией изменение частоты кванта электромагнитного излучения в гравитационное поле Земли. В этом эксперименте (Р. Паунда и Г. Ребки, США, 1959) источник g-излучения был расположен на высоте 22,5 м над поглотителем. Соответствующее изменение гравитационного потенциала должно было привести к относительному изменению энергии g-кванта на величину 2,5´10-15 . Сдвиг линий испускания и поглощения оказался в соответствии с теорией.

  Под влиянием внутренних электрических и магнитных полей, действующих на ядра атомов в твёрдых телах (см. Кристаллическое поле ), а также под влиянием внешних факторов (давление, внешние магнитные поля) могут происходить смещения и расщепления уровней энергии ядра, а следовательно, изменения энергия перехода. Т. к. величины этих изменений связаны с микроскопической структурой твёрдых тел, изучение смещения линий испускания и поглощения даёт возможность получить информацию о строении твёрдых тел. Эти сдвиги могут быть измерены с помощью мёссбауэровских спектрометров (рис. 3 ). Если g-кванты испускаются источником, движущимся со скоростью v относительно поглотителя, то в результате эффекта Доплера энергия g-квантов, падающих на поглотитель, изменяется на величину Ev/c (для ядер, обычно применяемых при наблюдении М. э., изменение энергии E на величину G соответствует значениям скоростей v от 0,2 до 10 мм/сек ). Измеряя зависимость величины резонансного поглощения от v (спектр мёссбауэровского резонансного поглощения), находят то значение скорости, при котором линии испускания и поглощения находятся в точном резонансе, т. е. когда поглощение максимально. По величине v определяют смещение DE между линиями испускания и поглощения для неподвижных источника и поглотителя.

  На рис. 4 , а показан спектр поглощения, состоящий из одной линии: линии испускания и поглощения не смещены друг относительно друга, т. е. находятся в точном резонансе при v = 0. Форма наблюдаемой линии может быть с достаточной точностью описана лоренцовой кривой (или Брейта – Вигнера формулой) с шириной на половине высоты 2G. Такой спектр наблюдается только в том случае, когда вещества источника и поглотителя химически тождественны и когда на ядра атомов в этих веществах не действуют ни магнитное, ни неоднородное электрическое поля. В большинстве же случаев в спектрах наблюдаются несколько линий (сверхтонкая структура), обусловленных взаимодействием атомных ядер с внеядерными электрическими и магнитными полями. Характеристики сверхтонкой структуры зависят как от свойств ядер в основном и возбуждённом состояниях, так и от особенностей структуры твёрдых тел, в состав которых входят излучающие и поглощающие ядра.

  Важнейшими типами взаимодействий атомного ядра с внеядерными полями являются электрическое монопольное, электрическое квадрупольное и магнитное дипольное взаимодействия. Электрическое монопольное взаимодействие представляет собой взаимодействие ядра с электростатическим полем, создаваемым в области ядра окружающими его электронами; оно приводит к возникновению в спектре поглощения сдвига линии d (рис. 4 , б), если источник и поглотитель химически не тождественны или если распределение электрического заряда в ядре неодинаково в основном и возбуждённом состояниях (см. Изомерия атомных ядер ). Этот т. н. изомерный или химический сдвиг пропорционален электронной плотности в области ядра, и его величина является важной характеристикой химической связи атомов в твёрдых телах (см. Кристаллохимия ). По величине этого сдвига можно судить об ионном и ковалентном характере химической связи, об эффективных зарядах атомов в химических соединениях, об электроотрицательности атомов, входящих в состав молекул , и т.д. Исследование химических сдвигов позволяет также получать сведения о распределении заряда в атомных ядрах.

  Электрическое квадрупольное взаимодействие – взаимодействие квадрупольного момента ядра с неоднородным электрическим полем приводит к расщеплению ядерных уровней, в результате чего в спектрах поглощения наблюдается не одна, а несколько линий. Например, для ядер 57 Fe, 119 Sn и 125 Te в спектрах поглощения наблюдаются две линии (квадрупольный дублет, рис. 4 , в). Разность энергии между компонентами дублета D пропорциональна произведению квадрупольного момента ядра на градиент электрического поля в области ядра. Т. к. величина градиента электрического поля является характеристикой симметрии зарядов, окружающих ядро в твёрдом теле, то исследование квадрупольного взаимодействия позволяет получить информацию об электронных конфигурациях атомов и ионов, об особенностях структуры твёрдых тел, а также о квадрупольных моментах атомных ядер.

  Магнитное дипольное сверхтонкое взаимодействие обычно наблюдается в магнитоупорядоченных (ферро-, антиферро-, ферримагнитных) веществах, в которых на ядра атомов действуют сильные магнитные поля Н, достигающие величины »106э (см. Магнетизм , Ферромагнетизм и др.). Энергия магнитного дипольного взаимодействия пропорциональна произведению магнитного момента ядра на Н и зависит от ориентации магнитного поля. Поэтому магнитное дипольное взаимодействие приводит к расщеплению основного и возбуждённых уровней ядер, в результате чего в спектре поглощения наблюдаются несколько линий, число которых соответствует числу возможных g-переходов между магнитными подуровнями основного и возбуждённых состояний (см. Зеемана эффект ). Например, для ядра 57 Fe число таких переходов равно 6 (рис. 4 , г). По расстоянию между компонентами магнитной сверхтонкой структуры можно определить напряжённость магнитного поля, действующего на ядро в твёрдом теле. Величины этих полей очень чувствительны к особенностям электронной структуры твёрдого тела, к составу магнитных материалов, поэтому исследование магнитной сверхтонкой структуры широко используется для изучения магнитных свойств кристаллов.

  Важной для физики твёрдого тела характеристикой М. э. является также его вероятность. Измерение вероятности М. э. и её зависимости от температуры позволяет получить сведения об особенностях взаимодействия атомов в твёрдых телах и о колебаниях атомов в кристаллической решётке. Измерения, в которых используется М. э., отличаются высокой избирательностью, т.к. в каждом эксперименте резонансное поглощение наблюдается только для ядер одного сорта. Эта особенность метода позволяет эффективно использовать М. э. в тех случаях, когда атомы, на ядрах которых наблюдается М. э., входят в состав твёрдых тел в виде примесей. М. э. успешно используется для исследования электронных состояний примесных атомов в металлах и полупроводниках и для изучения особенностей колебаний примесных атомов в кристаллах.

  М. э. находит также применение в биологии (например, исследование электронной структуры гемоглобина ), в геологической разведке (экспресс-анализ руд), для целей химического анализа, для измерения скоростей и вибраций и т.п. М. э. наблюдался для 73 изотопов 41 элемента; самым лёгким среди них является 40 K, самым тяжёлым – 243 At.

  Лит.: Эффект Мессбауэра. Сб. ст., под ред. Ю. Кагана, М., 1962; Мёссбауэр Р., Эффект RK и его значение для точных измерений, в сборнике: Наука и человечество, М., 1962; Фрауэнфельдер Г., Эффект Мёссбауэра, пер. с англ., М., 1964; Вертхейм Г., Эффект Мёссбауэра, пер. с англ., М., 1966; Шпинель В. С., Резонанс гамма-лучей в кристаллах, М., 1969; Химические применения мессбауэровской спектроскопии, пер. с англ., под ред. В. И. Гольданского [и др.], М., 1970; Эффект Мессбауэра. Сб. переводов статей, под ред. Н. А. Бургова и В. В. Скляревского, пер. с англ., нем., М., 1969.

  Н. Н. Делягин.

Рис. 3. Упрощённая схема мёссбауэровского спектрометра; источник g-квантов с помощью механического или электродинамического устройства приводится в возвратно-поступательное движение со скоростью v относительно поглотителя. С помощью детектора g-излучения измеряется зависимость от скорости v интенсивности потока g-квантов, прошедших через поглотитель.


    Ваша оценка произведения:

Популярные книги за неделю