Текст книги "Большая Советская Энциклопедия (СО)"
Автор книги: Большая Советская Энциклопедия
Жанр:
Энциклопедии
сообщить о нарушении
Текущая страница: 51 (всего у книги 104 страниц)
Солнечное сплетение
Со'лнечное сплете'ние, чревное сплетение, совокупность нервных элементов, концентрирующихся в брюшной полости вокруг начала чревной и верхней брыжеечной артерий человека. В состав С. с. входят правый и левый чревные узлы, непарный верхний брыжеечный узел и многочисленные нервы, которые отходят от узлов в разные стороны наподобие лучей солнца (отсюда название). Узлы С. с. состоят из многоотростчатых нервных клеток, на телах и отростках которых заканчиваются синапсами разветвления преганглионарных волокон, прошедших без перерыва узлы пограничного симпатического ствола. Нервы С. с., помимо чувствительных и парасимпатических волокон, содержат многочисленные постганглионарные симпатические волокна, которые являются отростками клеток его узлов и иннервируют железы и мускулатуру сосудов диафрагмы, желудочно-кишечного тракта, селезёнки, почек с надпочечниками и др. органов. См. также Вегетативная нервная система,Симпатическая нервная система.
Солнечно-земные связи
Со'лнечно-земны'е свя'зи, реакция Земли (её внешних оболочек, включая биосферу) на изменение солнечной активности. Уровень солнечной активности (число активных областей и солнечных пятен, количество и мощность солнечных вспышек и т.д.) изменяется с периодом около 11 лет. Существуют также слабые колебания величины максимумов 11-летнего цикла с периодом около 90 лет. На Земле 11-летний цикл прослеживается на целом ряде явлений органической и неорганической природы (возмущения магнитного поля, полярные сияния, возмущения ионосферы, изменение скорости роста деревьев с периодом 11 лет, установленным по чередованию толщины годовых колец, и т.д.). На земные процессы оказывают также воздействие отдельные активные области на Солнце и происходящие в них кратковременные, но иногда очень мощные вспышки. Время существования отдельной активной области на Солнце может достигать 1 года. Вызываемые этой областью возмущения в магнитосфере и верхней атмосфере Земли повторяются через 27 сут (с наблюдаемым с Земли периодом вращения Солнца). Наиболее мощные проявления солнечной активности – солнечные (хромосферные) вспышки – происходят нерегулярно (чаще вблизи периодов максимальной активности), длительность их составляет 5—40 мин, редко несколько часов. Энергия хромосферной вспышки может достигать ~1032эрг (~1025дж), из выделяющейся при вспышке энергии лишь 1—10% приходится на электромагнитное излучение в оптическом диапазоне. По сравнению с полным излучением Солнца в оптическом диапазоне энергия вспышки невелика (~10–5—10–6), но коротковолновое излучение вспышки и генерируемые при вспышке быстрые электроны, а иногда солнечные космические лучи могут дать заметный вклад в рентгеновское и корпускулярное излучение Солнца. В периоды повышения активности Солнца его рентгеновское излучение увеличивается в диапазоне 30—10 нм в 2 раза, в диапазоне 10—1 нм в 3—5 раз, в диапазоне 1—0,2 нм более чем в 100 раз. По мере уменьшения длины волны излучения вклад активных областей в полное излучение Солнца увеличивается, и в последнем из указанных диапазонов практически всё излучение обусловлено активными областями. Жёсткое рентгеновское излучение с длиной волны l<0,2 нм появляется в спектре Солнца лишь на короткое время после вспышек.
В ультрафиолетовом диапазоне (l от 180 до 350 нм) излучение Солнца за 11-летний цикл меняется всего на 1—10%, а в диапазоне 290—2400 нм остаётся практически постоянным и составляет 3,6×1033эрг/сек, или 3,6×1026вт.
Постоянство энергии, получаемой Землёй от Солнца (см. Солнечная постоянная), обеспечивает стационарность теплового баланса Земли. Солнечная активность существенно не сказывается на энергетике Земли как планеты, но отдельные компоненты излучения хромосферных вспышек и активных областей могут оказывать значительное влияние на многие физические, биофизические и биохимические процессы на Земле.
Активные области являются мощным источником корпускулярного излучения. Частицы с энергиями около 1 кэв (в основном протоны), распространяющиеся вдоль силовых линий межпланетного магнитного поля из активных областей, усиливают солнечный ветер — поток частиц, непрерывно испускаемых Солнцем. Эти усиления (порывы) солнечного ветра часто повторяются через 27 дней и называются рекуррентными. Аналогичные потоки, но ещё большей энергии и плотности, возникают при вспышках. Они вызывают т. н. спорадические возмущения солнечного ветра и достигают Земли за интервалы времени от 8—10 ч до 2 сут. Протоны высокой энергии (от 100 Мэв до 1 Гэв) от очень сильных «протонных» вспышек и электроны с энергией 10—500 кэв, входящие в состав солнечных космических лучей, приходят к Земле через десятки минут после вспышек; несколько позже приходят те из них, которые попали в «ловушки» межпланетного магнитного поля и двигались вместе с солнечным ветром. Коротковолновое излучение и солнечные космические лучи (в высоких широтах) ионизуют земную атмосферу, что приводит к колебаниям её прозрачности в ультрафиолетовом и инфракрасном диапазонах, а также к изменениям условий распространения коротких радиоволн (в ряде случаев наблюдаются нарушения коротковолновой радиосвязи, см. Ионосфера).
Усиление солнечного ветра, вызванное вспышкой, приводит к сжатию магнитосферы Земли с солнечной стороны, усилению токов на её внешней границе, частичному проникновению частиц солнечного ветра в глубь магнитосферы (в зону авроральной радиации), пополнению частицами высоких энергий радиационных поясов Земли и т.д. (см. Земля, раздел III). Эти процессы сопровождаются колебаниями напряжённости геомагнитного поля (магнитной бурей),полярными сияниями и др. геофизическими явлениями, отражающими общее возмущение магнитного поля Земли (см. Вариации магнитные).
Т. о., воздействие активных процессов на Солнце (солнечных бурь) на геофизические явления осуществляется как коротковолновой радиацией, так и через посредство магнитного поля Земли. По-видимому, эти факторы являются главными и для физико-химических, и биологических процессов (см. Магнитобиология). Проследить всю цепь связей, приводящих к 11-летней периодичности многих процессов на Земле, пока не удаётся, но накопленный обширный фактический материал не оставляет сомнений в существовании таких связей. Так, была установлена корреляция между 11-летним циклом солнечной активности и землетрясениями, колебаниями уровня озёр, урожаями с.-х. культур, размножением и миграцией насекомых, эпидемиями гриппа, тифа, холеры, числом сердечно-сосудистых заболеваний и т.д. Эти данные указывают на постоянно действующие С.-з. с. Раскрытие механизмов С.-з. с. представляет большой научный и практический интерес. В частности, на этой основе может быть значительно повышена точность долгосрочных прогнозов погоды и необходимых для космонавтики прогнозов интенсивности корпускулярных потоков в околоземном пространстве. Влияние С.-з. с. на физические процессы изучает гелиогеофизика, влияние на биологические процессы – гелиобиология, на погоду – гелиометеорология.
Лит.: Эллисон М. А., Солнце и его влияние на Землю, М., 1959; Солнечно-земная физика. Сб., пер. с англ., М., 1968; Влияние солнечной активности на атмосферу и биосферу Земли, М., 1971; Ч ижевский А. Л., Земное эхо солнечных бурь, М., 1973.
М. А. Лившиц.
Солнечные пятна
Со'лнечные пя'тна, тёмные образования, наблюдаемые в фотосфере Солнца. Поперечники С. п. достигают 200 000 км; их температура ниже температуры фотосферы на 1—2 тыс. градусов (4500 К и ниже), вследствие чего они в 2—5 раз темнее фотосферы. Среднее годовое число С. п. изменяется с периодом 11 лет. См. Солнце,Солнечная активность.
Лит.: Брей Р., Лоухед Р., Солнечные пятна, пер. с англ., М., 1967.
Солнечные сутки
Со'лнечные су'тки, см. Сутки.
Солнечные цапли
Со'лнечные ца'пли (Eurypygidae), семейство птиц отряда журавлеобразных; единственный представитель семейства – Eurypyga helias. Длина тела около 45 см. Оперение мягкое, густое с поперечным и крапчатым рисунком белого, серого, чёрного и каштанового цвета. Распространены в тропической Америке от Южной Мексики до Центральной Бразилии. Держатся скрытно, одиночками и парами в тенистых, часто заболоченных лесах по берегам водоёмов; лишь во время тока самец, развернув широкие крылья и хвост, выходит на поляны. Наземные птицы. Питаются насекомыми, рачками, рыбками. Гнёзда из растительного материала и грязи, чаще на деревьях или кустарниках. В кладке 2 яйца. Насиживают около 28 суток.
Солнечная цапля; токующий самец.
Солнечные часы
Со'лнечные часы', прибор, служащий для определения времени по Солнцу. С. ч. состоят из стержня или пластинки, отбрасывающих тень, и циферблата, на который тень падает, указывая истинное солнечное время. В зависимости от расположения плоскости циферблата различают экваториальные, горизонтальные и вертикальные С. ч. Во всех типах С. ч. стержень или край отбрасывающей тень пластинки ориентированы параллельно оси мира и пересекают циферблат в его центре; деление циферблата, соответствующее полдню, находится в плоскости меридиана, проходящего через этот центр. В экваториальных С. ч. плоскость циферблата параллельна плоскости небесного экватора. Циферблат разделён на равноотстоящие деления из расчёта 360° = 24 ч. В горизонтальных С. ч. циферблат горизонтален (рис. 1); деления на него наносятся в соответствии с формулой:
tg х = tg t • sin j,
где х — угол при центре циферблата между данным делением и полуденной линией (т. е. делением, соответствующим полдню), t — часовой угол Солнца (истинное солнечное время), j – географическая широта места. Деления, соответствующие 6 и 18 ч, всегда перпендикулярны к полуденной линии. Вертикальные С. ч. располагают обычно на стенах различных строений (рис. 2), вследствие чего плоскость циферблата может оказаться в любом азимуте. В таких С. ч. деления симметричны относительно полуденного деления лишь при ориентировке циферблата перпендикулярно к меридиану. В этом случае формула для расчёта делений имеет вид:
tg х = tg t •cos j.
Существуют конструкции переносных С. ч.
Положение тени на циферблате указывает истинное солнечное время; для перевода его в среднее солнечное время к нему нужно прибавить уравнение времени, а для получения поясного времени учесть также дополнительную поправку, зависящую от номера часового пояса данного места и его географической долготы. Точность определения времени по С. ч. обычно не превосходит нескольких минут.
Рис. 2. Вертикальные солнечные часы.
Рис. 1. Горизонтальные солнечные часы.
Солнечный
Со'лнечный, посёлок городского типа в Комсомольском районе Хабаровского края РСФСР. Расположен на р. Силинка (бассейн Амура), в 38 км к С.-З. от г. Комсомольска-на-Амуре. Горно-обогатительный комбинат (оловянная руда).
Солнечный берег
Со'лнечный бе'рег (Слънчев бряг), приморский климатический курорт в Болгарии, на берегу Чёрного моря, к С. от Несебыра. Лето очень тёплое (средняя температура июля 23,3 °С), зима очень мягкая (средняя температура января 2,4 °С); осадков 430 мм в год. Лечебные средства: климатотерапия, морские купания (с середины июня до октября). Мелкопесчаный пляж (ширина 300—400 м, протяжённость свыше 5 км). Виноградолечение. Лечение заболеваний органов дыхания нетуберкулёзного характера, функциональных расстройств нервной системы и т.п. Пансионаты, отели, дачи и др.
Солнечный ветер
Со'лнечный ве'тер, представляет собой постоянное радиальное истечение плазмы солнечной короны в межпланетное пространство. Образование С. в. связано с потоком энергии, поступающим в корону из более глубоких слоев Солнца. По-видимому, переносят энергию магнитогидродинамические и слабые ударные волны (см. Плазма,Солнце). Для поддержания С. в. существенно, чтобы энергия, переносимая волнами и теплопроводностью, передавалась и верхним слоям короны. Постоянный нагрев короны, имеющей температуру 1,5—2 млн. градусов, не уравновешивается потерей энергии за счёт излучения, т.к. плотность короны мала. Избыточную энергию уносят частицы С. в.
По существу С. в. – это непрерывно расширяющаяся солнечная корона. Давление нагретого газа вызывает её стационарное гидродинамическое истечение с постепенно нарастающей скоростью. В основании короны (~ 10 тыс. км от поверхности Солнца) частицы имеют радиальную скорость порядка сотен м/сек. на расстоянии несколько радиусов от Солнца она достигает звуковой скорости в плазме 100—150 км/сек, а на расстоянии 1 а. е. (у орбиты Земли) скорость протонов плазмы составляет 300—750 км/сек. Вблизи орбиты Земли температура плазмы С. в., определяемая по тепловой составляющей скоростей частиц (по разности скоростей частиц и средней скорости потока), в периоды спокойного Солнца составляет ~ 104К, в активные периоды доходит до 4×105 К. С. в. содержит те же частицы, что и солнечная корона, т. е. главным образом протоны и электроны, присутствуют также ядра гелия (от 2 до 20%). В зависимости от состояния солнечной активности поток протонов вблизи орбиты Земли меняется от 5×107 до 5×108 протонов/(см2×сек), а их пространственная концентрация – от нескольких частиц до нескольких десятков частиц в 1 см3. При помощи межпланетных космических станций установлено, что вплоть до орбиты Юпитера плотность потока частиц С. в. изменяется по закону r–2, где r – расстояние от Солнца. Энергия, которую уносят в межпланетное пространство частицы С. в. в 1 сек, оценивается в 1027—1029эрг (энергия электромагнитного излучения Солнца ~4×1033эрг/сек). Солнце теряет с С. в. в течение года массу, равную ~2×10–14 массы Солнца. С. в. уносит с собой петли силовых линий солнечного магнитного поля (т.к. силовые линии как бы «вморожены» в истекающую плазму солнечной короны; см. Магнитная гидродинамика). Сочетание вращения Солнца с радиальным движением частиц. С. в. придаёт силовым линиям форму спиралей. На уровне орбиты Земли напряжённость магнитного поля С. в. меняется в пределах от 2,5×10–6до 4×10–4 э. Крупномасштабная структура этого поля в плоскости эклиптики имеет вид секторов, в которых поле направлено от Солнца или к нему (рис. 1). В период невысокой активности Солнца (1963—64) наблюдались 4 сектора, сохранявшиеся в течение 1,5 лет. При росте активности структура поля стала более динамичной, увеличилось и число секторов.
Магнитное поле, уносимое С. в., частично «выметает» галактические космические лучи из околосолнечного пространства, что приводит к изменению их интенсивности на Земле. Изучение вариаций космических лучей позволяет исследовать С. в. на больших расстояниях от Земли и, что особенно важно, вне плоскости эклиптики. О многих свойствах С. в. вдали от Солнца можно будет, по-видимому, узнать также из исследования взаимодействия плазмы С. в. с плазмой комет – своеобразных космических зондов. Размер полости, занятой С. в., точно не известен (аппаратурой космических станций С. в. прослежен пока до орбиты Юпитера). У границ этой полости динамическое давление С. в. должно уравновешиваться давлением межзвёздного газа, галактического магнитного поля и галактических космических лучей. Столкновение сверхзвукового потока солнечной плазмы с геомагнитным полем порождает стационарную ударную волну перед земной магнитосферой (рис. 2). С. в. как бы обтекает магнитосферу, ограничивая её протяжённость в пространстве (см. Земля). Потоком частиц С. в. геомагнитное поле сжато с солнечной стороны (здесь граница магнитосферы проходит на расстоянии ~10 RÅ – земных радиусов) и вытянуто в антисолнечном направлении на десятки RÅ (т. н. «хвост» магнитосферы). В слое между фронтом волны и магнитосферой квазирегулярного межпланетного магнитного поля уже нет, частицы движутся по сложным траекториям и часть из них может быть захвачена в радиационные пояса Земли. Изменения интенсивности С. в. являются основной причиной возмущений геомагнитного поля (см. Вариации магнитные),магнитных бурь,полярных сияний, нагрева верхней атмосферы Земли, а также ряда биофизических и биохимических явлений (см. Солнечно-земные связи). Солнце не выделяется чем-либо особенным в мире звёзд, поэтому естественно считать, что истечение вещества, подобное С. в., существует и у др. звёзд. Такой «звёздный ветер», более мощный, чем у Солнца, был открыт, например, у горячих звёзд с температурой поверхности ~30—50 тыс. К. Термин «С. в.» был предложен американским физиком Е. Паркером (1958), разработавшим основы гидродинамической теории С. в.
Лит.: Паркер Е., Динамические процессы в межпланетной среде, пер. с англ., М., 1965; Солнечный ветер, пер. с англ., М., 1968; Хундхаузен А., Расширение короны и солнечный ветер, пер. с англ., М., 1976.
М. А. Лившиц, С. Б. Пикельнер.
Рис. 2. Локализация геомагнитного поля солнечным ветром: 1 – силовые линии магнитного поля Солнца; 2 – ударная волна; 3 – магнитосфера Земли; 4 – граница магнитосферы; 5 – орбита Земли; 6 – траектория частицы.
Рис. 1. Секторная структура межпланетного магнитного поля, выявленная американским спутником «IMP-1».
Солнечный водонагреватель
Со'лнечный водонагрева'тель, гелиоустановка, предназначенная для нагрева воды (до 50—60 °С) в банях, прачечных и т.п. Чаще всего С. в. строят по схеме без концентрации солнечной энергии. Такой С. в. состоит из термоизолированного и застеклённого сверху ящика (см. «Горячий ящик»), внутри которого устанавливают плоский или трубчатый котёл с нагреваемой водой. Солнечные лучи проходят сквозь стекло и, попадая на зачернённую поверхность котла, нагревают воду. По мере использования горячей воды котёл пополняется холодной. Различают С. в. с естественной и принудительной (с помощью насосов) циркуляцией воды. Обычно С. в. делают неподвижными, ориентируют на Юг и наклоняют под некоторым углом к горизонту. В ряде случаев С. в. оснащают простейшими приспособлениями для изменения угла наклона в зависимости от времени года. Выпускаются серийно во многих странах.
Солнечный датчик
Со'лнечный да'тчик, прибор, обычно оптико-электронного типа, определяющий углы отклонения одной из осей какого-либо прибора или летательного аппарата от направления на Солнце. Применяется при ориентировании астрономических приборов, при решении навигационных задач а авиации и космонавтике, служит позиционным датчиком в некоторых системах ориентации. Конструкция С. д. определяется конкретными требованиями к его точности, надёжности, быстродействию, величине сферы обзора и т.д.
Солнечный календарь
Со'лнечный календа'рь,календарь, в основе которого лежит тропический год.
Солнечный магнетизм
Со'лнечный магнети'зм, совокупность явлений, связанных с существованием на Солнце магнитного поля. Различают магнитные поля солнечных пятен, активных областей вне пятен и т. н. общее магнитное поле Солнца. Впервые магнитное поле на Солнце было открыто американским астрономом Дж. Хейлом в 1908 по расщеплению линий поглощения (см. Зеемана эффект) в спектрах пятен. Для измерения сильного магнитного поля обычно применяется анализатор круговой поляризации, позволяющий наблюдать зеемановские компоненты линии раздельно. При слабом магнитном поле наиболее точны измерения с помощью магнитографа солнечного. С. м., возможно, является причиной нагрева верхней солнечной атмосферы, ускорения частиц и их выхода в межпланетное пространство, играет определяющую роль во многих явлениях солнечной активности, таких, как солнечные вспышки и др. Слабые магнитные поля связаны с участками повышенной яркости, где происходит нагрев газа. Однако локальное усиление магнитного поля выше 1400 э приводит к охлаждению газа и образованию солнечных пятен. Пятнам присущи наиболее сильные магнитные поля (до 5000 э), подчиняющиеся определённым законам изменения полярности с циклом солнечной активности (продолжительность «магнитного» цикла составляет два 11-летних цикла солнечной активности, т. е. около 22 лет). Взаимодействие магнитных полей в группах пятен, по-видимому, вызывает солнечные вспышки. Вне активных областей наблюдаются слабые, т. н. фоновые магнитные поля; вместе с активными областями они определяют в основном структуру солнечной короны и межпланетной среды.
На гелиоцентрических широтах более 55° измеряется т. н. общее магнитное поле, сходное с полем диполя. Для него характерны временные колебания, и в отдельные годы распределение общего магнитного поля по широте сильно отличается от дипольного. Установлено, что в эпохи максимума солнечной активности происходит изменение знака магнитного поля на полюсах. Советский астроном А. Б. Северный изучил тонкую структуру и статистический характер общего магнитного поля, которое сконцентрировано в отдельных структурных элементах, имеющих разные размеры и магнитное поле обеих полярностей с напряжённостью примерно до 20 э; напряжённость усреднённого общего магнитного поля составляет 1—5 э.
Суммарное магнитное поле всего Солнца как звезды изменяется с периодом около 27—28 дней и амплитудой около 1 э. Оно имеет обычно 2 или 4 сектора чередующихся полярностей, совпадающих с секторной структурой межпланетного магнитного поля. Природа С. м. до конца ещё не исследована.
Лит.: Северный А. Б., Магнитные поля Солнца и звезд, «Успехи физических наук», 1966, т. 88, в. 1; Solar magnetic fields, ed. R. Howard, Dordrecht, 1971.
В. А. Котов.