355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Большая Советская Энциклопедия » Большая Советская Энциклопедия (СО) » Текст книги (страница 50)
Большая Советская Энциклопедия (СО)
  • Текст добавлен: 9 октября 2016, 04:30

Текст книги "Большая Советская Энциклопедия (СО)"


Автор книги: Большая Советская Энциклопедия


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 50 (всего у книги 104 страниц)

Солнечная радиация

Со'лнечная радиа'ция, излучение Солнца электромагнитной и корпускулярной природы. С. р. – основной источник энергии для большинства процессов, происходящих на Земле. Корпускулярная С. р. состоит в основном из протонов, обладающих около Земли скоростями 300—1500 км/сек. Концентрация их около Земли составляет 5—80 ионов/см3, но возрастает при повышении солнечной активности и после больших вспышек доходит до 103 ионов/см3. При солнечных вспышках образуются частицы (главным образом протоны) больших энергий: от 5×107 до 2×1010эв. Они составляют солнечную компоненту космических лучей и частично объясняют вариации космических лучей, приходящих на Землю. Основная часть электромагнитного излучения Солнца лежит в видимой части спектра (рис.). Количество лучистой энергии Солнца, поступающей за 1 мин на площадку в 1 см2, поставленную вне земной атмосферы перпендикулярно к солнечным лучам на среднем расстоянии Земли от Солнца, называется солнечной постоянной; она равна 1,95 кал/(см2×мин), что соответствует потоку в 1,36×106эрг/(см2×сек).

  Предполагают, что при максимуме солнечной активности излучение Солнца несколько увеличивается, однако, если это возрастание и существует, то оно не превышает долей процента. Радиоизлучение Солнца проходит сквозь атмосферу Земли не полностью, т.к. атмосфера Земли в радиодиапазоне прозрачна лишь для волн длиной от нескольких мм до нескольких м. Радиоизлучение Солнца довольно слабо, оно измеряется в единицах Ф = 10–22ватт/(м2×сек×гц) и меняется от единиц до десятков и сотен тысяч Ф при переходе от метрового диапазона (частоты порядка 108гц) к миллиметровому диапазону (частоты порядка 1010гц). Однако для земного наблюдателя Солнце, из-за его относительно небольшого расстояния от Земли, является самым мощным источником космического радиоизлучения. Солнечное радиоизлучение состоит из теплового радиоизлучения внешних слоев атмосферы спокойного Солнца, медленно меняющейся компоненты (связанной с пятнами и факелами) и спорадического радиоизлучения, связанного с солнечной активностью. Спорадическое радиоизлучение часто поляризовано, включает в себя шумовые бури и всплески радиоизлучения, оно интенсивней теплового и довольно быстро изменяется. Существует пять типов всплесков радиоизлучения, которые различаются как по частотному составу, так и по характеру зависимости изменений интенсивности от времени. Большинство всплесков сопровождают солнечные вспышки. Коротковолновое излучение Солнца полностью поглощается земной атмосферой; сведения о нём получены с помощью аппаратуры, установленной на геофизических ракетах, искусственных спутниках Земли и космических зондах. Непрерывный спектр Солнца резко ослабевает около 2085 , в области 1550  исчезают фраунгоферовы линии и, хотя непрерывный спектр можно проследить до 1000 , далее 1500  спектр состоит в основном из линий излучения (линий водорода, ионизованного гелия, многократно ионизованных атомов углерода, кислорода, магния и др.). Всего в ультрафиолетовой части спектра имеется более 200 линий излучения; наиболее сильна резонансная линия водорода (La) с длиной волны 1216 . У орбиты Земли поток коротковолнового излучения от всего солнечного диска составляет 3—6 эрг/(м2×сек). Рентгеновское излучение Солнца (длины волн от 100 до 1 ) состоит из сплошного излучения и излучения в отдельных линиях. Интенсивность его сильно меняется с солнечной активностью [от 0,13 эрг/(м2×сек) до 1 эрг/(м2×сек) у орбиты Земли] и в годы максимума солнечной активности спектр рентгеновского излучения становится более жёстким. Во время солнечных вспышек рентгеновское излучение Солнца усиливается в десятки раз. Возрастает и его жёсткость. Хотя ультрафиолетовое и рентгеновское излучения Солнца несут сравнительно немного энергии – менее 15 эрг//(м2×сек) вблизи орбиты Земли, это излучение очень сильно влияет на состояние верхних слоев земной атмосферы. Обнаружено также солнечное гамма-излучение, но оно изучено ещё недостаточно.

  Лит.: Космическая астрофизика, пер. с англ., М., 1962; Ультрафиолетовое излучение Солнца и межпланетная среда. Сб. ст., пер. с англ., М., 1962; Шкловский И. С., Физика солнечной короны, 2 изд., М., 1962; Солнечные корпускулярные потоки и их взаимодействие с магнитным полем Земли. Сб. ст., пер. с англ., М., 1962; Макарова Е. А., Харитонов А. В., Распределение энергии в спектре Солнца и солнечная постоянная, М., 1972. См. также лит. при ст. Солнце.

  Э. Е. Дубов.

Кривая зависимости излучаемой энергии Il от длины волны l для центра солнечного диска [единица интенсивности 1013эрг/(см2 ×сек ×стер)].

Солнечная система

Со'лнечная систе'ма, система небесных тел (Солнце, планеты, спутники планет, кометы, метеорные тела, космическая пыль), двигающихся в области преобладающего гравитационного влияния Солнца. Наблюдаемые размеры С. с. определяются орбитой Плутона (около 40 а. е.). Однако сфера, в пределах которой возможно устойчивое движение небесных тел вокруг Солнца, простирается почти до ближайших звёзд (230000 а. е.). Информацию о далёкой внешней области С. с. получают при наблюдениях приближающихся к Солнцу долгопериодических комет и при изучении космической пыли, заполняющей всю С. с. Общая структура С. с. была раскрыта Н. Коперником (середина 16 в.), который обосновал представление о движении Земли и др. планет вокруг Солнца. Гелиоцентрическая система Коперника впервые дала возможность определить относительные расстояния планет от Солнца, а следовательно, и от Земли. И. Кеплер открыл (начало 17 в.) законы движения планет, а И. Ньютон сформулировал (конец 17 в.) закон всемирного тяготения. Эти законы легли в основу небесной механики, исследующей движение тел С. с. Изучение физических характеристик космических тел, входящих в С. с., стало возможным только после изобретения Г. Галилеем телескопа: в 1609 Галилей впервые направил изготовленный им маленький телескоп на Луну, Венеру, Юпитер и Сатурн и сделал ряд поразительных для его эпохи открытий (см. Астрономия). Наблюдая солнечные пятна, Галилей обнаружил вращение Солнца вокруг своей оси.

  По физическим характеристикам большие планеты разделяются на внутренние (Меркурий, Венера, Земля, Марс) и внешние планеты-гиганты (Юпитер, Сатурн, Уран, Нептун). Физические характеристики Плутона качественно отличны от характеристик планет-гигантов, и потому он не может быть отнесён к их числу.

  Обширная программа наблюдений, выполненная в 1963 американским астрономом К. Томбо для поиска планет, находящихся за пределами орбиты Плутона, не дала положительных результатов. В табл. приведены оскулирующие элементы орбит (см. Орбиты небесных тел) больших планет (по Остервинтеру и Когену, США, 1972). Орбиты больших планет мало наклонены друг к другу и к фундаментальной плоскости С. с. (т. н. Лапласа неизменяемой плоскости).

Элементы планетных орбит (по данным на 1973)


Планета Ср. расстояние от Солнца (и. е.) Эксцентриситет орбиты Угол наклона плоскости орбиты к плоскости эклиптики (градусы) Период обращения вокруг Солнца (в годах)
Меркурий 0,387 0,206 7,00 0,24
Венера 0,723 0,007 3,39 0,62
Земля 1,000 0,016 1,00
Марс 1,524 0,093 1.85 1,88
Юпитер 5,2U3 0,043 1,31 11,86
Сатурн 9,539 0,056 2,49 29,46
Уран 19,19 0,046 0,77 84,02
Нептун 30,06 0,008 1,77 164,79
Плутон 39,75 0,253 17,15 250,6

  Около 90% естественных спутников планетгруппируется вокруг внешних планет, причём Юпитер и Сатурн сами представляют системы, подобные С. с. в миниатюре. Некоторые спутники имеют весьма большие размеры; так, спутник Юпитера Ганимед по размерам превосходит планету Меркурий. Сатурн, кроме десяти спутников, обладает системой колец, состоящих из большого количества мелких тел, движение которых соответствует законам Кеплера; по сути дела эти тела представляют собой также спутники Сатурна. Радиус внешнего кольца составляет 2,3 радиуса Сатурна, т. е. кольца расположены внутри Роша предела.

  К 1976 вычислены точные орбиты свыше 2 тыс. малых планет; их орбиты расположены главным образом между орбитами Марса и Юпитера. Орбиты малых планет по форме и положению могут существенно отличаться от орбит больших планет; в частности, их наклоны к плоскости эклиптики достигают 52°, а эксцентриситеты 0,83. Вследствие больших эксцентриситетов некоторые планеты приближаются к Солнцу ближе Меркурия и удаляются от него на расстояние орбиты Сатурна. Общее число малых планет, доступных современным телескопам, оценивается в 40 000.

  Движение (и вращение вокруг осей) планет и их спутников, рассматриваемое с Сев. полюса мира, происходит против часовой стрелки (прямое движение). Исключение представляют вращение Венеры и Урана и обратное движение некоторых спутников вокруг планет. Расстояния между орбитами больших планет описываются эмпирическим Тициуса – Боде правилом.

  Кометы по внешнему виду, размерам и характеристикам своих орбит резко отличаются от др. тел С. с. Периоды обращения комет могут достигать нескольких млн. лет, причём в афелии такие кометы приближаются к границам С. с., испытывая гравитационные возмущения от ближайших звёзд. Орбиты комет имеют любые наклоны от 0° до 180°. Общее количество комет оценивается сотнями млрд.

  Метеорные тела (см. Метеоры) и космическая пыль заполняют всё пространство С. с. На движение космической пыли влияет не только притяжение Солнца и планет, но и солнечная радиация, а на движение электрически заряженных частиц – также и магнитные поля Солнца и планет. Внутри орбиты Земли плотность космической пыли возрастает, и она образует облако, окружающее Солнце, видимое с Земли как зодиакальный свет.

  Вопрос об устойчивости С. с. тесно связан с наличием вековых членов (см. Возмущения небесных тел) в больших полуосях, эксцентриситетах и наклонах планетных орбит. Однако классические методы небесной механики не учитывают малые диссипативные факторы (например, непрерывную потерю Солнцем его массы), которые могут играть существенную роль в эволюции Солнечной системы в больших интервалах времени. С. с. участвует во вращении Галактики, двигаясь по приблизительно круговой орбите со скоростью около 250 кмсек. Период обращения С. с. вокруг центра Галактики определяется в около 200 млн. лет. Вопрос о происхождении С. с. является одним из важнейших вопросов современного естествознания (см. Космогония). Решение этого вопроса осложняется тем, что С. с. известна нам в единственном экземпляре. Предположения о существовании тёмных спутников планетных размеров у ближайших звёзд весьма вероятны, но пока не получили окончательного подтверждения. Возраст С. с. оценивается в 5 млрд. лет.

  Космическая эра открыла перед астрономией совершенно новые перспективы в изучении С. с. Советские и американские космические зонды интенсивно исследуют внутренние планеты С. с. Советские космические зонды совершили мягкую посадку на Луну, Венеру, Марс. Первые космонавты (США) высадились на поверхность Луны (1969), американские космические зонды «Пионер-10» и «Пионер-11» (1972—74) преодолели пояс малых планет и прошли в непосредственной близости от Юпитера. Планируются полёты к периодическим кометам и мягкая посадка космического аппарата на малую планету, приближающуюся к Земле на близкое расстояние. Человечество начинает практически осваивать внутреннюю область Солнечной системы.

  Лит. см. при статьях Небесная механика, Планеты, Космогония.

  Г. А. Чеботарев.

Схематический план Солнечной системы.

Сравнительные размеры Солнца и планет.

Солнечная фотосинтетическая установка

Со'лнечная фотосинтети'ческая устано'вка,гелиоустановкадля осуществления фотохимических реакций (см. Фотохимия). С. ф. у. находятся в основном в стадии экспериментальных разработок (1975). Обычно С. ф. у. состоит из оптической системы (включая гелиоконцентратор и ориентатор), фотохимического реактора (в виде стеклянного сосуда) и системы автоматического управления. Перспективны С. ф. у. для нитрозирования циклогексана в процессе производства капролактама (см. рис.). Их целесообразно эксплуатировать совместно с двумя вспомогательными – холодильной (поддерживающей постоянную температуру реактора) и химической (вырабатывающей вещества, необходимые для реакции нитрозирования). Вся группа установок может работать за счёт солнечной энергии, образуя единый комплекс.

Схема экспериментальной гелиоустановки для нитрозирования циклогексана: 1 – параболоцилиндрическое зеркало; 2 – ориентатор; 3 – привод вращения ориентатора; 4 – реактор; 5 – датчик системы автоматического управления.

Солнечная энергетическая станция

Со'лнечная энергети'ческая ста'нция,солнечная энергетическая установка, отличающаяся повышенной мощностью (до тыс. кет). С. э. с. могут быть чисто тепловые (производящие только пар), электрические и комбинированные – типа ТЭЦ. Преобразование в них солнечной энергии в электрическую может быть непосредственным – фотоэлектрическими генераторами либо осуществляться по классическому циклу паровой котёл – турбина – генератор, с применением гелиоконцентраторов. Разработаны 2 основных схемы С. э. с.: с большим числом (например, ~103) одинаковых плоских отражателей, фокусирующих энергию солнечной радиации на общем паровом котле, и с параболоцилиндрическими концентраторами, каждый из которых снабжен отдельным трубчатым котлом. При твёрдом графике потребления энергии в энергосистеме С. э. с. необходимо дублировать станциями иного типа или снабжать аккумуляторами. С. э. с. перспективны как источник энергии, не загрязняющий окружающую среду. Работы над проектами С. э. с. ведутся в СССР, США и др. странах; реализация проектов ожидается в 80-х гг. 20 в.

  Б. А. Гарф.

Солнечная энергетическая установка

Со'лнечная энергети'ческая устано'вка,гелиоустановка, улавливающая солнечную радиацию и преобразующая её энергию в тепловую или электрическую. Соответственно различают тепловые и электрические С. э. у. В исторически первых С. э. у. – тепловых – конечным продуктом являются горячая вода (см. Солнечный водонагреватель), технологический пар, пресная вода (см. Солнечный опреснитель) или искусственный холод. Электрические С. э. у. в зависимости от принципа преобразования могут быть фотоэлектрическими (см. Солнечная батарея), термоэлектрическими (см. Солнечный термоэлектрогенератор), термоэмиссионными (см. Термоэмиссионный преобразователь энергии) или С. э. у. с машинным циклом (см. Солнечная энергетическая станция).

  В низкотемпературных С. э. у. используют солнечную радиацию естественной плотности. Получаемая в них, например, горячая вода (с температурой до 60—70 °С) идёт на отопление помещений, а пары низкокипящих жидкостей (фреонов, хлорэтила и др.) используются для привода специальных турбин и в холодильных машинах. Температурный эффект и кпд таких С. э. у. улучшают, придавая их поглощающим поверхностям селективные свойства (см. Селективные покрытия). В высокотемпературных С. э. у. плотность излучения повышают в 102—104 раз, для чего применяют оптические (главным образом зеркальные) концентраторы солнечной радиации (гелиоконцентраторы).

  С. э. у. находят как наземное, так и космическое применение. Наземные С. э. у. применяются в незначительных масштабах (1975) из за их высокой стоимости, а также ограничений, накладываемых климатическими условиями. Космические С. э. у. используются для автономного энергоснабжения искусственных спутников Земли и др. космических аппаратов. Перспектива развития С. э. у. связана с истощением запасов минеральных видов топлива, с обострением проблемы сохранения чистоты окружающей среды, с ростом темпов освоения околосолнечного космоса.

  Лит.: Исследования по использованию солнечной энергии, пер. с англ., М., 1957; Вейнберг В. Б., Оптика в установках для использования солнечной энергии, М., 1958; Использование солнечной энергии при космических исследованиях. Сб. ст., пер. с англ., М., 1964; Ласло Т., Оптические высокотемпературные печи, пер. с англ., М., 1968.

  Д. И. Тепляков.

Солнечники (подкласс простейших)

Со'лнечники (Heliozoa), подкласс простейших класса саркодовых. Тело обычно шаровидное, с расходящимися во все стороны, подобно лучам, отростками – псевдоподиями, имеющими плотные протоплазматические осевые нити. Среди С. имеются как голые формы, так и снабженные наружным кремнезёмным скелетом. Ядро одно или их много. Большинство С. – пресноводные или морские планктонные организмы; некоторые прикрепляются к субстрату при помощи стебелька. Питаются водорослями, простейшими, коловратками и др.; для овладения более крупной добычей сливаются по нескольку. Имеют сократительные вакуоли. Размножаются обычно делением надвое; у части С. открыт половой процесс, гаметы имеют вид небольших С.

Солнечник (Actinospherium eichorni).

Солнечники (рыбы)

Со'лнечники, рыбы-солнечники (Zeiformes), отряд рыб, близких к окунеобразным. Тело обычно сжато с боков, высокое; в анальном плавнике имеется 1—4 колючки, в брюшных плавниках 6—9 колючек. Рот, выдвигаясь во время захвата пищи, образует широкую трубку. 3—6 семейств, включающих около 50 видов. Живут у берегов и по склону материковой отмели тропических и тёплых морей; преимущественно глубоководные (некоторые виды обитают глубже 1000 м). Типичный представитель – обыкновенный С. (Zeus faber); длина обычно 20—30 см, иногда до 50 см; весит до 8 кг; на боку – чёрное пятно. Распространён в восточной части Атлантического океана и в Средиземном море; держится в основном в придонных слоях воды на глубине 100—500 м. Хищник; питается преимущественно сельдью, сардиной, песчанкой. Промысловое значение невелико. Это единственный вид отряда С., изредка встречающийся в водах СССР (в Чёрном море).

  Лит.: Световидов А. Н., Рыбы Чёрного моря, М. – Л., 1964; Никольский В. Г., Частная ихтиология, 3 изд., М., 1971; Жизнь животных, т. 4, ч. 1, М., 1971.

  В. М. Макушок.

Обыкновенный солнечник.

Солнечногорск

Солнечного'рск, город областного подчинения (в результате слияния в 1928 с. Солнечная Гора и пристанционного посёлка Подсолнечное был образован поселок Солнечногорский; с 1938 – город), центр Солнечногорского района Московской области РСФСР. Расположен на берегу Сенежского озера, на шоссе Москва – Ленинград. Ж.-д. станция (Подсолнечная) в 65 км к С.-З. от Москвы. 38 тыс. жителей (1975). Заводы: по производству металлической сетки, стекольный. На Сенежском озере – рыболовно-спортивное хозяйство. Вблизи – санатории, дома отдыха, пионерские лагеря.

Солнечнодольск

Солнечнодо'льск, посёлок городского типа в Изобильненском районе Ставропольского края РСФСР. Расположен в 16 км от ж.-д. станции Передовая (на линии Кавказская – Элиста). Строится Ставропольская ГРЭС (мощность 3600 Мвт); в 1975 введён в эксплуатацию 1-й агрегат.

Солнечное

Со'лнечное (до 1948 – Ойллила), посёлок городского типа в Ленинградской области РСФСР, подчинён Сестрорецкому райсовету г. Ленинграда. Расположен на северном берегу Финского залива Ж.-д. станция в 35 км от Ленинграда. Детский санаторий «Солнечное», дом отдыха «Взморье» (см. Ленинградский курортный район). Назван в память о постановке здесь в летнем театре в 1905 пьесы М. Горького « Дети солнца».

Солнечное затмение

Со'лнечное затме'ние, см. Затмения.

Солнечное кольцо

Со'лнечное кольцо', прибор для определения поправки часов из наблюдений Солнца по методу соответствующих высот. Представляет собой металлическое кольцо, которое подвешивается в вертикальном положении на остриё, что обеспечивает неизменное положение кольца относительно вертикали (см. рис.). На расстоянии около 45° от острия в ободе кольца имеется небольшое отверстие, а на противоположной внутренней поверхности кольца наклеена шкала с произвольными (обычно миллиметровыми) делениями. Повернув кольцо так, чтобы его плоскость проходила через Солнце, замечают по проверяемым часам, не позже чем за 2 ч до полудня, момент прохождения светлого кружка, образуемого солнечными лучами, через некоторое деление шкалы. Наблюдения повторяют после полудня и отмечают второй момент прохождения кружка через то же деление шкалы. Полусумма этих моментов с точностью до полминуты даёт показание часов в истинный полдень. Прибавляя уравнение времени, получают показание часов в средний солнечный полдень; учитывая затем географическую долготу места наблюдения и номер часового пояса, вычисляют поясное время, а затем и поправку часов. С. к. как прибор для приближённого измерения зенитного расстояния Солнца было описано ещё в 16 в., а для определения времени по соответствующим высотам Солнца применено С. П. Глазенапом(сначала в форме треугольника) в 1873.

  Лит.: Глазенап С. П., Друзьям и любителям астрономии, 3 изд., М. – Л., 1936.

Солнечное кольцо Глазенапа.


    Ваша оценка произведения:

Популярные книги за неделю