Текст книги "Философия Науки. Хрестоматия"
Автор книги: авторов Коллектив
Жанры:
Философия
,сообщить о нарушении
Текущая страница: 51 (всего у книги 93 страниц)
ЭРНСТ МАХ. (1838-1916)
Э. Max (Mach) – известный австрийский физик, главная область научных интересов которого – физические исследования в механике, акустике и оптике. В своей «Механике» (1883) он стремился придать законам Ньютона такой вид, чтобы они не зависели от инерциальности (прямолинейного и равномерного движения) системы отсчета и ее вращения. Отказавшись от ньютоновских абсолютных пространства, времени и движения, он впервые предпринял попытку построить механику, исходя из того, что движения тел могут быть определены по отношению к другим телам. Последнее обстоятельство получило название «принципа Маха», который сыграл важную смысловую роль на начальном этапе построения А. Эйнштейном общей теории относительности. Как ученый-физик Мах осознанно повернул изучение проблем акустики и оптики в область физиологического восприятия органами слуха и зрения в координации с работой вестибулярного аппарата человека. Такой поворот не мог не сопровождаться выходом на философские аспекты психологии познания. По Маху, процесс познания начинается с «нейтральных элементов мира» (ощущений), которые являются не чисто «физическими» и не чисто «психическими» началами. Эти «начала», согласно Маху, являются абсолютными абстракциями, а потому реально не существуют. Лишь «комплексы ощущений» благодаря психическому синтезу образуют «реальные» предметы, называемые по именам (словами). Таким образом, синтетическая деятельность психики как бы «склеивает» элементы опыта, а вся конструкция знаний и памяти человека опирается на «комплексы ощущений».
Основными работами, переведенными на русский язык, являются: Анализ ощущений и отношение физического к психическому. М., 1908; Популярно-научные очерки. СПб., 1909; Познание и заблуждение. Очерки по психологии исследования. М„ 1909; Механика. Историко-критический опыт ее развития. М. 1909.
В. Н. Князев
Приведенные ниже фрагменты из работы «Познание и заблуждение» цитируются по изданию:
Альберт Эйнштейн и теория гравитации. Сборник статей. М., 1979.
ПРОСТРАНСТВО И ГЕОМЕТРИЯ С ТОЧКИ ЗРЕНИЯ ЕСТЕСТВОЗНАНИЯ
3. Потребность в глубоком гносеологическом выяснении основ геометрии заставила Римана в середине прошлого столетия поставить вопрос о природе пространства. Еще до этого Гаусс, Лобачевский и оба Бояи обратили внимание на эмпирически-гипотетическое значение известных основных допущений геометрии. Когда Риман рассматривает пространство как частный случай многократно протяженной «величины», он мыслит некоторый геометрический образ, который можно представлять себе наполняющим и все пространство, например координатную систему Декарта. Далее, Риман говорит, что положения геометрии нельзя вывести из общих понятий о величинах, но те свойства, которыми пространство отличается от других мыслимых величин трех измерений, могут быть заимствованы только из опыта: «Подобно всем фактам и эти факты не необходимы, а только эмпирически достоверны; они – гипотезы». Как основные допущения во всякой отрасли естествознания, так и основные допущения геометрии, к которым привел опыт, представляют собой идеализации этого опыта. В своем естественно-научном понимании геометрии Риман стоит на точке зрения своего учителя Гаусса. Гаусс высказал убеждение, «что мы не можем обосновать геометрию вполне a priori . ». «Мы должны смиренно признать, что, хотя число есть только продукт нашего ума, пространство есть реальность и вне нашего ума, которой мы не можем всецело приписывать закона а priori».
4. Каждый исследователь испытал, что познанию объекта, подлежащего исследованию, существенно помогает сравнение его с объектом родственным. Естественно, что и Риман ищет вещи, представляющие аналогию с пространством. Геометрическое пространство он рассматривает как непрерывное многообразие трех измерений, элементами которого надо считать точки, определяемые тремя координатами. Он находит, «что места чувственных предметов и цвета суть, пожалуй, единственные понятия (?), определения которых образуют многообразие многих измерений». К этой аналогии другие ученые прибавили еще новые и развили их далее, но, по моему мнению, не всегда с успехом. (С. 73-74)
20. Таким образом, геометрия есть применение математики к опыту относительно пространства. Подобно математической физике, она становится дедуктивной точной наукой только тем, что объекты опыта изображает схематическими, идеализированными понятиями. Подобно тому как механика может утверждать постоянство масс или сводить взаимодействие тела к одним ускорениям лишь в пределах ошибок наблюдения, так и существование прямых, плоскостей, величины суммы углов треугольника и т.д. возможно утверждать лишь с той же оговоркой. Но так же, как физика иногда оказывается вынужденной заменять свои идеализированные допущения другими, обыкновенно более общими, например постоянное ускорение падающего тела – ускорением, зависящим от расстояния, постоянное количество теплоты – переменным и т.д., так должна делать это и геометрия под давлением фактов или в виде попытки ради научного выяснения. После сказанного перед нами явятся в правильном свете попытки Лежандра, Лобачевского и обоих Боли, из которых младший находился, может быть, под косвенным влиянием Гаусса.
21. На попытках Швейкарта и Тауринуса, тоже современников Гаусса, мы останавливаться не будем. Работы Лобачевского были первыми, которые стали известны в широких кругах и оказали влияние ( 1829). Очень скоро вслед за этим обнародовал свою работу младший Бояи (1833), который во всех существенных пунктах сходился с Лобачевским, отличаясь только формой выводов. Судя по актам, теперь легко и в обилии доступным благодаря прекрасным изданиям Энгеля и Стаккеля, можно предположить, что и Лобачевский предпринял свои исследования в надежде, что отрицание аксиомы Евклида приведет к противоречиям. Но когда это ожидание не оправдалось, у него хватило интеллектуального мужества сделать отсюда все выводы. Лобачевский излагает свои выводы в синтетической форме. Но мы можем представить себе те общие аналитические рассуждения, которые, по всей вероятности, подготовили построение его геометрии...
24. Итак, мы видим, что, допустив сходимость параллельных прямых, мы можем развить систему геометрии, свободную от внутренних противоречий. Правда, это допущение не подтверждается ни одним наблюдением доступных нам геометрических фактов и в такой мере противоречит нашему геометрическому инстинкту, что делает вполне понятным отношение старых исследователей, как Саккери и Ламберт. Наше представление, руководимое созерцанием и привычными евклидовскими понятиями, может только частями и постепенно приспособляться к требованиям геометрии Лобачевского. Мы должны при этом руководствоваться больше геометрическими понятиями, чем чувственными образами доступной нам небольшой пространственной области. Должно, однако, признать, что математические количественные понятия, при помощи которых мы самодеятельно изображаем факты геометрического опыта, не абсолютно соответствуют этим последним. Как и физические теории, геометрическая теория более проста и точна. чем то, собственно, может быть доказано опытом с его случайными уклонениями. Разные понятия могут в области, доступной наблюдению, одинаково точно выражать факты. Таким образом, должно отличать факты от умственных образов, которые они возбудили. Последние, т.е. понятия, должны быть лишь согласованы с наблюдением и, кроме того, логически не противоречить друг другу. Эти два требования могут быть, однако, осуществлены многообразно, и отсюда различные системы геометрий.
25. Из работ Лобачевского видно, что они представляют результат долголетнего и напряженного умственного труда, и можно предполагать, что он сначала должен был общими рассуждениями и аналитическими вычислениями выработать себе общую картину своей системы, прежде чем был в состоянии изложить в синтетической форме. Привлекательной эту тяжеловесную евклидовскую форму никак нельзя назвать, и, может быть, именно этой форме главным образом надо приписать то, что значение работ Лобачевского и Я. Бояи так поздно получило всеобщее признание.
26. Лобачевский развил только следствия, вытекающие из видоизменения пятого требования Евклида. Если же отвергнуть положение Евклида, что «две прямые не ограничивают пространства», то приходят к некоторой противоположности геометрии Лобачевского. В отношении поверхностей это есть сферическая геометрия. Вместо евклидовских прямых линий мы имеем здесь большие круги сферы, которые все дважды пересекаются и каждая пара которых образует два сферических двуугольника. Здесь, следовательно, совсем нет параллелей. Возможность подобной геометрии в трехмерном пространстве (с положительной мерой кривизны) впервые указал Риман. Ее, по-видимому, не допускал Гаусс, может быть, из пристрастия к бесконечности пространства. Гельмгольц, который развивал далее именно в физическом смысле исследования Римана, напротив, в первой своей работе оставил без внимания пространство Лобачевского, т.е. пространство с отрицательной мерой кривизны (с мнимым параметром к). Действительно, рассмотрение этого случая ближе математику, чем физику. Гельмгольц обсуждает здесь только случай Евклида с мерой кривизны, равной нулю, и пространство Римана с положительной мерой кривизны.
27. Итак, факты пространственного наблюдения мы можем изображать со всей доступной нам точностью как при помощи геометрии Евклида, так и при помощи геометрии Лобачевского и Римана, если только в двух последних случаях примем параметр к достаточно большим. До сих пор физики не имели оснований отказаться от допущения геометрии Евклида, т.е. k=∞. По оказавшейся целесообразною привычке они придерживаются простейших предположений до тех пор, пока факты не принудят их к усложнению или видоизменению этих предположений. Эго соответствует и точке зрения всех выдающихся математиков в отношении прикладной геометрии. Поскольку, однако, взгляды натуралистов и математиков в этих вопросах различны, объясняется это тем, что для первых физически данное имеет величайшую важность, геометрия же есть только привычное средство для его исследования, между тем как для последних именно эти вопросы представляют величайший специальный и в особенности гносеологический интерес. Но раз математик попытался изменить ближайшие и простейшие предположения, которые внушал ему геометрический опыт, и раз эта попытка увенчалась для него расширением понимания, то, конечно, такие попытки должны были развиваться и далее, в интересе уже чисто математическом. Были развиты системы геометрии, аналогичные привычной нам геометрии, но с точки зрения предположений еще более свободных, еще более общих, для любого числа измерений, не претендующие быть чем-либо, кроме научных экспериментов в мыслях, без притязаний на применение к чувственной действительности. Достаточно указать здесь на движение вперед математики в работах Клиффорда, Клейна, Ли и др. Весьма редко какой-нибудь мыслитель так уходил в свои теоретические построения и настолько отрывался от действительности, чтобы думать, что данное нам чувственное пространство может иметь больше трех измерений, или изображать это пространство при помощи геометрии, значительно уклоняющейся от евклидовской. Гауссу, Лобачевскому, Я.Бояи, Риману это было вполне ясно, и они, во всяком случае, не ответственны за те несуразные мнения, которые были высказаны в этой области впоследствии.
28. Не во вкусе физика делать предположения относительно свойств геометрических образов в бесконечности, ему недоступной, и затем сравнивать эти последние с ближайшим опытом и к нему их приспособлять. Он предпочитает (как это сделал в своей работе Штольц) рассматривать как источник своих понятий непосредственно данное и значение этих понятий затем распространяет и на область недоступного ему бесконечного до тех пор, пока не увидит себя вынужденным их изменить. Но и он должен быть весьма благодарен за выяснение того факта, что существует несколько удовлетворяющих делу геометрий, что можно справиться с делом и при помощи конечного пространства и т.д., одним словом, за устранение традиционных ограничений мышления. Если бы мы жили на поверхности планеты с мутной непрозрачной атмосферой и, обладая только наугольником и измерительной цепью, приступили бы к измерениям исходя из предположения плоской поверхности, то нарастание нарушений правила относительно суммы углов в случае больших треугольников скоро заставило бы нас заменить нашу планиметрию сферометрией. Возможности аналогичных данных опыта в трехмерном пространстве физик в принципе не может исключить, хотя явления, вынуждающие к допущению геометрии Лобачевского или Римана, столь чудовищно противоположны всему, к чему мы до сих пор привыкли, что никто не считает наступления их вероятным.
29. Вопрос, представляет ли данный физический объект прямую линию или дугу круга, неправилен по форме своей постановки. Натянутая нить или световой луч не есть, конечно, ни то ни другое. Вопрос может быть только о том, реагирует ли наш объект пространственно так, что он лучше соответствует одному, чем другому, понятию и соответствует ли он вообще с достаточной и достижимой точностью одному из геометрических понятий. Если этого нет, то возникает вопрос, можем ли мы практически устранить или по меньшей мере мысленно определить и учесть отклонение от прямой или круга, т.е. можем ли мы исправить результат измерения. Но при практическом измерении мы всегда делаем только одно: сравниваем физические объекты. Если бы оказалось, что при прямом исследовании эти последние соответствуют геометрическим понятиям со всей возможной точностью, но косвенные результаты измерения больше отклоняются от теории, чем то допустимо в пределах возможных ошибок, то мы действительно были бы вынуждены изменить наши физически-метрические понятия. Физик однако, будет прав, если он подождет наступления этого положения, между тем как перед математиком с его рассуждениями поле действий всегда свободно.
30. Понятия натуралиста о пространстве и времени суть наиболее простые понятия. Пространственные и временные объекты, соответствующие их требованиям, могут быть устроены с большой точностью. Почти каждое отклонение, которое еще может быть замечено, возможно устранить. Каждое построение в пространстве или времени можно мыслить осуществленным, не делая насилия над фактами. Прочие физические свойства тел настолько зависят друг от друга, что произвольные фикции находят здесь тесные рамки в фактах. Идеального газа, идеальной жидкости, абсолютно упругого тела не существует; физику известно, что его фикции соответствуют фактам только приблизительно, произвольно упрощая их; ему известны отклонения, которые не могут быть устранены. Шар, плоскость и т. д. можно мыслить сделанными с какой угодно точностью, не противореча никаким фактам. Если поэтому какой-нибудь физический факт требует видоизменения наших понятий, физик охотнее жертвует менее совершенными понятиями физики, чем более простыми, более совершенными и устойчивыми понятиями геометрии, составляющими самую твердую основу всех его построений.
31. Но, с другой стороны, физик может извлечь существенную пользу из работ геометров. Наша геометрия относится всегда к объектам чувственного опыта. Но если мы оперируем с абстрактными вещами, как то: атомами и молекулами, которые по самой природе своей не могут быть даны нашим чувствам, мы не имеем более никакого права обязательно мыслить эти вещи в отношениях, в относительных положениях, соответствующих евклидову трехмерному пространству нашего чувственного опыта. Эго в особенности должен принимать во внимание тот, кто считает атомистические теории необходимыми.
32. Вернемся к происхождению геометрии из практической потребности. Познание пространственной субстанциональности, пространственного постоянства протяженной вещи, несмотря на ее движения, является для нас биологически необходимым, ибо существует некоторая связь между пространственным количеством и количеством удовлетворения потребности. Поскольку это знание не обеспечено достаточно самой нашей физиологической организацией, мы употребляем наши руки и ноги для сравнения с протяженным объектом. Но пользуемся ли мы для сравнения нашими руками или искусственным масштабом, раз мы сравниваем тела между собой, мы уже вступили в область физики. Все физические определения относительны. Так и все геометрические определения имеют значение, относительное к масштабу. Понятие меры есть понятие отношения, которое ничего не говорит нам о самом масштабе. В геометрии мы только принимаем, что масштаб всегда и везде остается равным тому, чему он где-либо и когда-либо оказался равным. Относительно самого же масштаба здесь не высказано ничего. Этим на место пространственного физиологического равенства выступает совершенно иначе определяемое физическое равенство, которое также не следует смешивать с первым, как нельзя отождествлять показания термометра с тепловыми ощущениями. Правда, практический геометр констатирует расширение нагретого масштаба масштабом, остающимся при постоянной температуре, и обращает внимание на то, что вследствие такого постороннего пространству физического обстоятельства указанное выше отношение равенства нарушается. Однако для чистой геометрии всякое предположение относительно масштаба чуждо. Молчаливо, но без достаточного основания, сохраняется привычка, обусловленная только физиологически, считать масштаб постоянным. Было бы совершенно бесплодно и не имело бы никакого смысла, если бы мы приняли, что масштаб, а следовательно, и тела вообще с перемещением в пространстве претерпевают изменения или остаются неизменными: ведь все это могло бы быть констатировано опять только при помощи нового масштаба. Из этих соображений обнаруживается относительность всех пространственных отношений.
33. Если критерий пространственного равенства существенно изменяется уже введением мер, то с введением понятия числа в геометрию он претерпевает дальнейшее изменение, становится точнее. Этим обусловливается большая тонкость различий, какую простое понятие совмещения никогда не могло бы дать. Только применение арифметики к геометрии приводит к понятиям несоизмеримого, иррационального. Таким образом, в наших геометрических понятиях имеются чуждые пространству примеси; они изображают пространственное с некоторой свободой и именно с произвольной большей точностью, чем то может быть достигнуто пространственным наблюдением. Неполный контакт между фактами и понятиями делает возможными разные геометрические системы (теории). То же самое можно сказать и относительно физики.
34. Все развитие, приведшее к перевороту в понимании геометрии, следует признать за здоровое и сильное движение. Подготовляемое столетиями, значительно усилившееся в наши дни, оно никоим образом не может считаться уже законченным. Напротив, следует ожидать, что движение это принесет еще богатейшие плоды – и именно в смысле теории познания – не только для математики и геометрии, но и для других наук. Будучи обязано, правда, мощным толчкам некоторых отдельных выдающихся людей, оно, однако, возникло не из индивидуальных, но общих потребностей. Это видно уже из одного разнообразия профессий людей, которые приняли участие в движении. Не только математики, но и философы и дидактики внесли свою долю в эти исследования. И пути, проложенные различными исследователями, близко соприкасаются. Мысли, высказанные Лейбницем, встречаются вновь в мало измененной форме у Фурье, Лобачевского, Я. Бояи, Х. Эрба. Философ Ибервег, который в своей оппозиции против Канта примыкал по существу к психологу Бенеке, а своими геометрическими рассуждениями – к Х. Эрбу (в свою очередь называющему своим предшественником К.А. Эрба), своими исследованиями в значительной мере расчистил почву для работ Гельмгольца.
35. Результаты, к которым привели нас предыдущие рассуждения, можно сжато выразить так:
1) Опыт был признан источником наших геометрических понятий.
2) Была выяснена множественность понятий, удовлетворяющих одним и тем же геометрическим фактам.
3) Сравнением пространства с другими многообразиями были получены более общие понятия, для которых понятия геометрические составляют частный случай. Этим геометрическое мышление было освобождено от традиционных границ, считавшихся непереходимыми.
4) Указанием многообразий, родственных пространству, но от него отличных, были возбуждены совершенно новые вопросы:
Что такое пространство физиологически, физически, геометрически? К чему сводятся его особые свойства, так как мыслимы и другие? Почему пространство трехмерно? и т.д.
36. Эти вопросы, решения которых невозможно ожидать ни сегодня и ни завтра, изображают перед нами всю глубину того, что подлежит еще исследованию. Не будем вовсе говорить о суждениях непризванных «беотийцев», появление которых предвидел Гаусс и которые настраивали его к такой сдержанности. Но что нам сказать о той суровой придирчивой критике, которой подверглись мысли Гаусса, Римана и их товарищей со стороны людей, занимающих выдающееся положение в науке? Неужели им на себе самих не пришлось никогда испытать того, что исследователь на крайних границах знания находит часто то, что не может быть гладко и немедленно усвоено каждым умом и что тем не менее далеко не бессмысленно? Конечно, и такие исследователи могут впадать в ошибки. Но и ошибки иных людей бывают нередко по своим последствиям плодотворнее, чем открытия других. (С. 76-84)