355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Евгений Панов » Бегство от одиночества » Текст книги (страница 4)
Бегство от одиночества
  • Текст добавлен: 21 октября 2016, 21:11

Текст книги "Бегство от одиночества"


Автор книги: Евгений Панов


Жанр:

   

Биология


сообщить о нарушении

Текущая страница: 4 (всего у книги 40 страниц)

Клетки-коллективисты и клетки-одиночки

В основе тесной кооперации клеток, входящих в состав многоклеточного организма, лежат по меньшей мере две важнейшие причины. Во-первых, каждая отдельно взятая клетка, будучи сама по себе на редкость умелым и исполнительным работником, оказывается специалистом лишь в сравнительно ограниченной сфере деятельности. Во-вторых, даже те конкретные задачи, которые стоят перед клеткой некой определенной конструкции, не могут быть в полном объеме решены ею без помощи целой армии ее коллег по специальности. Как следствие, множество однотипных клеток оказываются объединенными в высоко работоспособную коалицию, именуемую тканью. А взаимоотношения разных тканей базируются на принципе строгого разделения обязанностей между ними, а также между органами, построенными из тканей разного назначения.

К примеру, одна из главных обязанностей подвижных клеток-эритроцитов состоит в том, чтобы непрерывно поставлять кислород всем прочим клеткам тела, к которым эти красные кровяные тельца подходят по тончайшим кровеносным сосудам – капиллярам. Сколько же эритроцитов должно ежесекундно быть занято доставкой кислорода всем клеткам тела взрослого человека, если лишь на один квадратный сантиметр сечения наших мышц приходится около 250 тысяч капилляров? Нетрудно догадаться, что в работу по переносу кислорода вовлечено поистине гигантское количество эритроцитов. Только в одном миллилитре крови их насчитывается около 4,5 миллиона, и десятки миллиардов взвешены в тех ее 5–6 литрах, что безостановочно циркулируют в артериях и венах каждого из нас. Мириады эритроцитов, пребывающих в неустанном направленном движении внутри системы кровеносных сосудов, вкупе с жидкой плазмой, в которую они погружены, и с популяциями разнообразных «белых кровяных телец» формируют своеобразную подвижную ткань многоклеточного организма.

В отличие от эритроцитов с их относительно узким спектром обязанностей клетки печени, например, выполняют великое множество самых разнообразных функций. Часть из них – в обеспечении жизнеспособности и благополучия самой клетки-труженницы, другие направлены на благо клеток, слагающих прочие ткани организма. Важнейшая «социальная» роль клеток печеночной ткани состоит в том, чтобы все без исключения клетки организма в каждый данный момент располагали именно таким запасом «горючего», которое необходимо и достаточно для постоянно идущих внутри клетки процессов выработки и запасания энергии. Горючее, о котором идет речь, – это молекулы глюкозы. Их-то и вырабатывают клетки печени из постоянно присутствующих здесь запасов питательных веществ (главным образом углеводов, среди которых важнейшим является гликоген, а также белков и жиров). Через стенки капилляров молекулы глюкозы в строго дозированном количестве пересылаются клетками печени в плазму крови, которая доставляет глюкозу всем прочим клеткам организма. Поступая в распоряжение клетки-потребителя, молекулы глюкозы сложным образом взаимодействуют с кислородом, поставляемым сюда эритроцитами, давая на выходе многочисленных биохимических реакций животворную энергию. При избытке в крови молекул глюкозы клетки печени возвращают их под свой контроль, временно превращая в резервные запасы гликогена.

Приведенные здесь примеры высоко согласованной деятельности однотипных и разнотипных клеток наводят на мысль, что клетка многоклеточного организма немыслима вне его. Сама идея о возможности существования полностью автономного и самодостаточного нейрона столь же нелепа, как, скажем, зрелище изощренных команд дирижера, подаваемых несуществующему оркестру. Вся та сложнейшая работа, которая выполняется индивидуальной клеткой, находится под строгим контролем всевозможных инструкций, поступающих к ней как непосредственно от клеток-соседей, так и из удаленных участков организма – через всевозможные системы диспетчерского управления.

И все же трудно полностью перечеркнуть идеи родоначальников клеточной теории, провозгласивших, что в составе многоклеточного целого клетка выступает как «элементарный организм», обладающий определенной степенью индивидуальности. Очевидно, в наибольшей степени эти суждения применимы к физически автономным клеткам – таким, например, как всевозможные клетки крови (эритроциты, лимфоциты и др.), полезная деятельность которых возможна именно благодаря их способности свободно перемещаться внутри организма. Той же способностью, как мы помним, обладают у животных и клетки формирующегося зародыша, когда они движутся в «нужном» направлении, разыскивая своих будущих партнеров и объединяясь с ними в зачаточные ткани. Кстати, похожую ситуацию можно воспроизвести в опыте, если поместить в искусственную питательную среду смесь клеток почек и печени мыши. Расположенные первоначально в полном беспорядке друг относительно Друга клетки той и другой ткани вскоре начнут перемещаться и в конце концов сформируют компактные группы, состоящие только из клеток печени либо из клеток почки. А что произойдет с клеткой какой-либо компактной ткани (например, кожного эпителия) взрослого животного, если извлечь ее из естественного окружения и поместить в пробирку с питательной средой подходящего состава? Оказывается, такая клетка будет благополучно существовать, расти и в конце концов разделится на две дочерние. Таким образом, мы видим, что клетка многоклеточного организма, будучи изолирована от себе подобных, в какой-то степени уподобляется существам одноклеточным, познакомиться с миром которых нам предстоит в этой и последующей главах.

Но прежде чем вплотную заняться одноклеточными, стоит упомянуть еще об одной любопытной параллели между ними и клетками многоклеточного животного. Правда, речь здесь пойдет о ситуации аномальной, возникающей у многоклеточного индивида при его заболевании раком. Наблюдения ученых за поведением нормальных и раковых клеток в искусственных питательных средах показали, что вторые в отличие от первых становятся социально неуправляемыми. Это значит, что раковые клетки перестают реагировать на жизненно важные сигналы, поступающие от клеток-партнеров, и начинают вести себя как антисоциальные индивиды-одиночки. Вот как описывают происходящее Р. Зюсс и его соавторы в книге «Рак: эксперименты и гипотезы». Клетки, выращиваемые в колбе или на чашке Петри, активно перемещаются по стеклянному дну сосуда. Если одна здоровая «странствующая» клетка встречает другую, между ними, как правило, возникает контакт, после чего встречное продвижение клеток приостанавливается. Такие контакты приводят также к существенным изменениям в обмене веществ клеток, что резко замедляет их размножение путем деления. Это явление, именуемое контактным торможением, служит эффективной защитой против перенаселения: когда дотоле делившиеся клетки покрывают, наконец, дно сосуда сплошным слоем, так что каждая находится в окружении других клеток, дальнейшее деление хотя бы одной из них становится невозможным.

Совершенно иначе ведут себя в сходной ситуации опухолевые клетки. Они минуют, не замедляя движения, встречные клетки, как если бы те были некими неживыми объектами. Кроме того, раковые клетки не перестают делиться, даже оказавшись в составе плотного скопления. Создается ощущение, что эти клетки попросту «не узнают» друг друга, так что ничто не может противостоять опасностям перенаселения. Сходным образом ведут себя клетки с нарушенным контактным торможением в организме больного животного. Они перестают подчиняться инструкциям, поступающим от соседей, и беспрепятственно размножаются, образуя быстро растущую злокачественную опухоль со всеми вытекающими отсюда катастрофическими последствиями.

Итак, раковые клетки отказываются подчиняться правилам жизни «клеточного государства». Это наводит ученых на мысль, что рак – это в каком-то смысле возвращение клеток к способам существования одноклеточных организмов. Оказалось, что по типу обмена веществ опухолевые клетки в наибольшей степени напоминают бактерий, освоивших Землю еще в те незапамятные времена, когда ее атмосфера была лишена кислорода. И до сих пор у бактерий энергия, необходимая для существования клетки, вырабатывается без участия кислорода, в ходе процесса, именуемого гликолизом. В здоровой клетке многоклеточного организма гликолиз служит лишь начальной стадией в процессе выработки энергии, а основной энергетический выход обязан последующей сложнейшей цепи биохимических реакций с участием кислорода. У раковых клеток эти реакции в значительной степени нарушены, и выработка энергии идет малоэффективным способом, путем гликолиза, то есть примерно так, как это происходит в бактериальной клетке.

Клетка – элементарная частица жизни

Эти беглые замечания о способах выработки энергии в клетках многоклеточного организма и в бактериальных клетках акцентируют весьма существенные различия в важнейших аспектах их жизнедеятельности. Несходны эти два класса клеток и во многих других отношениях, о чем речь пойдет в дальнейшем. Но, с другой стороны, и те и другие построены по единой принципиальной схеме, которая и характеризует любую клетку как элементарную структурную и функциональную единицу живого вещества.

Называя клетку элементарной единицей живого, мы подразумеваем при этом, что она обладает способностью успешно выполнять все те функции, которые являются фундаментальными свойствами живой материи в ее отличии от материи косной. Среди многих таких свойств стоит перечислить для начала лишь несколько наиболее принципиальных и универсальных. Это прежде всего способность живого тела к увеличению своей массы за счет потребления и переработки энергии и материалов, получаемых телом извне. Названное свойство, которое есть не что иное, как способность к росту, предполагает существование, по крайней мере, двух других. Я имею в виду, во-первых, умение эффективно усваивать материалы для постройки своего тела из внешней среды и, во-вторых, способность вырабатывать энергию, необходимую для самого процесса строительства, равно как и для поддержания возведенных структур в рабочем состоянии. Наконец, живые тела способны тем или иным способом воспроизводить себе подобных. Следовательно, должен существовать механизм, позволяющий передать потомкам все те конструктивные особенности, которые дают возможность оптимальным образом осуществлять обмен веществ, переработку энергии и рост живой массы.

Итак, всякая клетка является, во-первых, в высшей степени совершенным преобразователем вещества и энергии и, во-вторых, хранителем наследственной информации, воспроизводимой из поколения в поколение. Соответственно в любой клетке существуют структуры, управляющие процессами обмена веществ, и те, что ответственны за хранение и воспроизведение наследственной информации. К числу первых относится основное вещество клетки – цитоплазма, заключенная в эластичную оболочку, и великое множество включенных в цитоплазму миниатюрных агрегатов нескольких разных конструкций и разного назначения. Если уподобить клетку современному, высокоэффективному технологическому комплексу, как это нередко делают в последнее время, то часть из упомянутых агрегатов будет уместно сравнить с мощными силовыми установками, а другие – с быстро действующими сборочными конвейерами. Впрочем, по аналогии между этими миниатюрными внутриклеточными структурами и органами многоклеточных за первыми издавна закрепилось название органелл.

Носители генетической информации – это гигантские линейные молекулы ДНК (дезоксирибонуклеиновых кислот), в которых определенным образом закодированы все структурные особенности данного вида микроорганизмов, растений или животных. Чтобы представить себе, насколько велика эта молекула, достаточно сказать, что у бактерий ее длина в 700–1000 раз превышает длину самой клетки. Молекулу ДНК называют двухцепочечной. Она отчасти подобна длинной застежке-молнии. Когда клетка готовится к делению, половинки ДНК начинают отходить друг от друга (как при медленном расстегивании молнии), и вдоль каждой из них сразу же выстраивается новая половинка, точно воспроизводящая утраченную. В результате из одной двухцепочечной молекулы ДНК образуется две практически идентичные друг другу (рис. 2.1). В момент деления материнской клетки надвое каждая из дочерних клеток получает свою двухцепочечную ДНК. Именно за счет этого в самой грубой схеме происходит передача генетической информации в череде клеточных поколений.

Рис. 2.1. Схема удвоения (репликации) двойной спирали молекулы ДНК. На этой до предела упрощенной схеме не отражено то фундаментальное обстоятельство, что новые двойные цепочки абсолютно идентичны друг другу.

Такова в самых общих чертах идеализированная конструктивная схема «клетки вообще». Теперь, пользуясь этим грубым наброском, нам предстоит провести различие между двумя существенно различными категориями клеток. К одной такой категории относятся клетки, у которых вся генетическая информация записана в одной-единственной молекуле ДНК. Эта молекула замкнута в кольцо и лежит непосредственно в цитоплазме, а не в ядре, присутствующем лишь в клетках второй из двух упомянутых категорий, к которым мы обратимся позже. Из-за отсутствия ядра (по латыни карион) клетки этой первой категории были названы доядерными, или прокариотическими. Сами же организмы (в большинстве своем одноклеточные), существующие в форме таких клеток, мы будем в дальнейшем называть прокариотами. Помимо особенностей строения генетического аппарата (отсутствие ядра, единственная кольцевая молекула ДНК), прокариотические клетки характеризуются весьма скромным набором органелл. В цитоплазме такой клетки присутствуют в большом количестве органеллы лишь одного типа. Это так называемые рибосомы – крошечные сборочные конвейеры, на которых по инструкциям, поступающим от ДНК, синтезируются белки, специфичные для данного вида микроорганизмов. За счет создаваемых здесь строительных блоков происходит рост клетки, а при ее последовательных делениях – увеличение числа индивидов и рост популяции соответствующего микроорганизма. К числу прокариот относятся около 2,5 тысячи существующих ныне видов бактерий и примерно 200 видов цианобактерий (раньше последних называли синезелеными водорослями).

Все прочие населяющие Землю организмы построены из клеток более сложного строения, именуемых эукариотическими (от греческих слов карион – ядро и эу – полностью, истинно). Это название подчеркивает, что клетки организмов-эукариот снабжены ядром, под оболочкой которого и помещаются теперь носители генетической информации. Как и у прокариот, это длинные двухцепочечные молекулы ДНК, но в эукариотической клетке каждая такая молекула упакована в комплексе с молекулами белков в своеобразную нитевидную структуру – хромосому. Все клетки данного вида организмов (скажем, клена, мыши или человека) содержат строго постоянное число хромосом определенной величины и строения.

Внутреннее строение эукариотической клетки отличается поистине фантастической сложностью (рис 2.2). Ежесекундно в клетке происходят тысячи разнообразных биохимических реакций, и строгая упорядоченность столь изощренной деятельности поддерживается трехмерной системой мембран, подразделяющих клетку на отсеки и одновременно служащих обмену информацией между разными ее рабочими структурами. Наряду с тысячами рибосом, занятых, как мы помним, синтезом белковых строительных блоков клетки, в ней присутствуют другие разнообразные органеллы. Среди них необходимо назвать митохондрии, которые выполняют роль уже упоминавшихся «силовых установок» клетки. Именно здесь поступающие в клетку молекулы глюкозы – основное органическое топливо – в многоступенчатой цепи химических реакций «сжигаются» с кислородом с выделением большого количества энергии. Часть ее используется на сиюминутные нужды, а другая запасается в митохондриях впрок в виде связанной химической энергии. Этот сложнейший процесс «клеточного дыхания», в котором внутри клетки задействованы сотни, а иногда и тысячи митохондрий, дает несравненно больший выход энергии, нежели соответствующий ему по назначению гликолиз в клетках прокариот.

Рис. 2.2. Фрагмент животной клетки под электронным микроскопом. Черные точки – рибосомы, прикрепленные к стенкам разветвленного, полого внутри лабиринта цистерн и трубочек (так называемого эндоплазматического ретикулума), пронизывающего всю цитоплазму и играющего роль коммуникативной системы клетки. Крупные тельца – митохондрии, вырабатывающие энергию. 1 мкм (микрометр) равен 0,001 мм.

Еще один важнейший класс органелл – хлоропласты – присутствует не во всех эукариотических клетках, а лишь в тех, из которых построены тела (одноклеточные либо многоклеточные) так называемых автотрофных организмов. Сама этимология слова автотрофный (авто – сам, трофика – питание) подсказывает нам, что такие организмы сами создают основные продукты питания, служащие материалом для построения и роста тела. Среди эукариот к числу автотрофов относятся прежде всего водоросли и высшие растения, а также некоторые другие организмы, о которых речь пойдет ниже. Все они синтезируют в хлоропластах под действием энергии солнечного света молекулы углеводов, употребляя в качестве исходных материалов углекислый газ и воду. Синтезированные таким образом органические вещества запасаются в виде крахмала, который затем используется организмом в самых разных целях: для построения собственного тела, для клеточного дыхания (с использованием молекул глюкозы, получаемых при расщеплении крахмала) и т. д. В фотосинтетической деятельности кооперируются мириады хлоропластов. В одной только клетке зеленого листа их содержится до полусотни, так что в 1 мм клеточной ткани местами насчитывается до полумиллиона хлоропластов.

Митохондрии и хлоропласты тоже индивиды?

После изобретения и постепенного усовершенствования в 30–60-х годах XIX века электронного микроскопа ученые смогли увидеть в клетке совершенно неожиданные вещи, В частности, выяснилось, что оба типа органелл, о которых только что шла речь, именно митохондрии и хлоропласты, располагают собственным генетическим аппаратом. Иными словами, в каждой из этих органелл имеется молекула ДНК. При этом она замкнута в кольцо, то есть имеет точно такое же строение, как и ДНК бактерий-прокариот.

Более того, в каждой из органелл обоих типов присутствуют многочисленные рибосомы – те самые сборочные конвейеры, на которых как в прокариотической, так и в эукариотической клетке происходит синтез белков, необходимых самой клетке и всему организму в тот или иной период времени.

Митохондрии пребывают внутри клетки в постоянном движении. Их округлые либо палочковидные тельца длиной порядка полумикрона (что составляет около одной двухтысячной доли миллиметра) поворачиваются в разных направлениях, изгибаются и перемещаются из одной части клетки в другую. Митохондрии образуют временные или постоянные скопления в тех ее участках, где в данный момент требуется максимальное количество энергии. Хлоропласты также мигрируют в цитоплазме, возможно увлекаемые ее собственным движением внутри клеточной оболочки.

Наконец, и митохондрии, и хлоропласты размножаются делением надвое – точно так же, как это делают бактериальные прокариотические клетки. Как и у этих последних, делению интересующих нас органелл предшествует удвоение кольцевой молекулы ДНК. Любопытно, что деление хлоропластов происходит обычно незадолго до начала клеточного деления, так что обе дочерние клетки, возникшие из материнской, получают примерно равное количество хлоропластов.

Присутствие и в митохондриях, и в хлоропластах собственного генетического аппарата и устройств-рибосом для синтеза белков, идущих на внутренние нужды, а также многие черты размножения и поведения этих органелл заставили ученых предположить, что и митохондрии, и хлоропласты ведут свое происхождение от бактерий-прокариот. Предполагается, что бактериальные предки нынешних органелл некогда нашли себе убежище в более крупных клетках организмов-эукариот. Автотрофные бактерии, оказавшись на первых порах в роли внутриклеточных приживальщиков, в дальнейшем вошли в отношения сотрудничества с приютившими их хозяевами, поставив на службу им все свои полезные свойства (например, способность к фотосинтезу).

В таком сценарии нет ничего фантастичного, поскольку и в наши дни существует немало содружеств подобного типа. Считается, что оба члена союза получают при кооперации определенную выгоду, что позволяет рассматривать явление как разновидность симбиоза. Чаще всего в эукариотических клетках многоклеточных организмов проживают в большом количестве одноклеточные фотосинтезирующие эукариоты. Чаще всего это микроскопические одноклеточные водоросли. Впрочем, недавно ученые обнаружили в клетках своеобразных морских животных асцидий неизвестных ранее фотосинтезирующих прокариот. Эти бактерии были описаны под названием Prochloron,в котором содержится намек на то, что именно эти существа могли быть дальними предшественниками хлоропластов.

Хотя митохондрии и хлоропласты не способны в настоящее время к самостоятельному существованию вне эукариотической клетки, они иллюстрируют своим присутствием еще одну, пожалуй, теперь уже самую низшую ступень в иерархии индивидуальностей биологических тел, вложенных друг в друга наподобие фигурок игрушечной матрешки.


    Ваша оценка произведения:

Популярные книги за неделю