355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Большая Советская Энциклопедия » Большая Советская Энциклопедия (ПЕ) » Текст книги (страница 29)
Большая Советская Энциклопедия (ПЕ)
  • Текст добавлен: 21 сентября 2016, 16:46

Текст книги "Большая Советская Энциклопедия (ПЕ)"


Автор книги: Большая Советская Энциклопедия


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 29 (всего у книги 82 страниц)

Передаточная надпись

Переда'точная на'дпись, надпись, производимая на некоторых видах ценных бумаг (например, на векселях, чеках) для передачи прав требования по ним. См. Индоссамент .

Передаточное отношение

Переда'точное отноше'ние, одна из основных характеристик механизмов, в том числе передач вращательного движения, определяемая как отношение угловых скоростей или частот вращения звеньев. Обычно имеется в виду отношение угловой скорости ведущего звена передачи к угловой скорости ведомого звена . Понятие П. о. распространяется на простые механизмы (пары зубчатых колёс, червячные, ремённые и др. передачи) и на сложные многозвенные (многоступенчатые редукторы , планетарные редукторы, коробки передач и т.д.). П. о. ряда последовательно соединённых передач равно произведению П. о. этих передач.

  Наряду с П. о. широко используется (особенно для передач зацеплением) понятие передаточное число .

Передаточное число

Переда'точное число', отношение числа зубьев колеса к числу зубьев шестерни  в зубчатой передаче , числа зубьев колеса к числу заходов червяка в червячной передаче , числа зубьев большой звёздочки к числу зубьев малой в цепной передаче , а также диаметра большего шкива или катка к диаметру меньшего в ремённой передаче и фрикционной передаче (нерегулируемой). П. ч. применяют также при расчётах многоступенчатых редукторов и др. механизмов. В отличие от передаточного отношения , П. ч. всегда больше или равно 1.

Передача

Переда'ча в машинах, механизм , служащий для передачи непрерывного вращательного движения. При помощи П. в различных приводах осуществляют понижение (или повышение) скорости; ступенчатое или бесступенчатое регулирование скорости; изменение направления движения; приведение в движение нескольких механизмов одним двигателем. Основные характеристики П.: передаваемый момент, угловая скорость, передаточное число , коэффициент полезного действия. Различают следующие типы П.: механический (в том числе с твёрдыми звеньями, гидравлический, пневматический) и электрический П. Механические П., основанные на использовании зацепления, например зубчатая передача , цепная передача , червячная передача , и П. трения, например ремённая передача и фрикционная передача , получили распространение в приводах с постоянным передаточным отношением, а также в приводах малой и средней мощности с изменяемым передаточным отношением: в коробках скоростей и вариаторах станков, автомобилей, тракторов. Гидравлические и электрические П., позволяющие передавать большие мощности и имеющие простую и удобную систему автоматического регулирования, применяются в различных областях машиностроения, особенно в приводах тяжёлых транспортных машин.

  И. Г. Герцкис.

Передача данных

Переда'ча да'нных (иногда – телекодовая связь), область электросвязи , имеющая целью передачу информации, представленной на основе заранее установленных правил в формализованном виде – знаками или непрерывными функциями и предназначенной для обработки техническими средствами (например, вычислительными машинами) или уже обработанной ими; сам процесс передачи этой информации. Такую информацию называют данными. Главное отличие П. д. от телеграфной, телефонной и др. видов связи заключается в том, что получателем или отправителем информации (данных) является машина, а не человек (при П. д. от ЭВМ к ЭВМ человек отсутствует на обоих концах линии связи). П. д. нередко требует более высокой надёжности, большей скорости и верности передачи, что, как правило, обусловлено большей важностью передаваемой информации и невозможностью логического контроля её человеком в процессе передачи и приёма. Вместе с вычислительной техникой П. д. служит технической базой информационно-вычислительных систем, в том числе автоматизированных систем управления (АСУ) различного уровня. Применение средств П. д. ускоряет сбор и распределение информации, позволяет абонентам, имеющим недорогое оконечное оборудование, пользоваться услугами мощных вычислительных центров.

  П. д. зародилась в США в начале 50-х гг. 20 в., а с начала 60-х гг. стала интенсивно развиваться и во многих других странах. В СССР с начала 60-х гг. работают системы П. д., обслуживающие космические полёты. В 1965 была введена в действие система П. д. в АСУ контроля денежных переводов «Олега»; в ней П. д. осуществляется по телеграфным и телефонным каналам со скоростями соответственно 50 и 600 бит в сек. Позже П. д. стали пользоваться в системе сбора метеорологических данных «Погода» и во многих отраслевых и ведомственных АСУ. С 1972 начала создаваться Общегосударственная система передачи данных (ОГСПД), призванная предоставлять услуги по П. д. всем министерствам и ведомствам; в качестве 1-го этапа ОГСПД создаётся сеть П. д. телеграфного типа со скоростью передачи информации по ней до 200 бит в сек. П. д.– одно из наиболее бурно развивающихся (середина 70-х гг.) направлений технического прогресса. Если в 1955 во всём мире количество единиц оконечной аппаратуры П. д. не превышало 1 тыс., то к 1965 оно возросло до 35 тыс., к 1970 – до 150 тыс., а к 1975 их ожидалось свыше 1 млн. (ежегодный прирост во многих странах составлял 70—100%).

  Во многих странах П. д. осуществляется главным образом по коммутируемым телеграфным сетям или телефонным сетям связи. Ввиду того, что эти сети предназначены в основном для передачи телеграмм или телефонных разговоров, при П. д. добавляют специальные оконечные устройства. У абонента, кроме обычного телеграфного или телефонного аппарата (ТА) (рис. 1 , а), устанавливается аппаратура П. д. (АПД), согласующая средства вычислительной техники с каналом связи , и переключатель канала связи (П.). Установление коммутируемого соединения производится «вручную», с помощью ТА. В конце телефонных (или телеграфных) переговоров участники договариваются перейти в режим П. д. и подключают канал связи к АПД; после окончания П. д. они вновь переходят к переговорам; отбой производится обычным способом, с помощью ТА. Применяется также автоматический способ установления соединения, с управлением от ЭВМ. Включение АПД в коммутируемую телеграфную или телефонную сеть целесообразно при небольших объёмах передаваемых данных, когда суммарное время занятия абонентской линии для переговоров и П. д. не превышает 6—12 мин в часы наибольшей нагрузки (см. Абонентское телеграфирование ). Телефонная сеть используется не только для передачи цифровых данных, но начинает применяться также для передачи аналоговых данных (представляющих собой непрерывные функции), например кардиограмм. Для передачи больших объёмов данных, например между двумя вычислительными центрами, используют некоммутируемые (прямые, арендованные) каналы связи; по некоммутируемым телефонным каналам информацию передают со скоростью до 2400 бит в сек и более.

  Телефонные и телеграфные сети не могут удовлетворять наиболее высоким из требований, предъявляемых к П. д. Поэтому начинают применяться (с конца 60-х гг.) специальные коммутируемые сети, так называемые сети П. д., которые могут обеспечить более высокое качество обслуживания абонентов (верность и скорость передачи, возможность выбора категории срочности и скорости работы, возможность многоадресной связи) и оказание дополнительных услуг. При этом используются как принцип коммутации каналов, при котором на время связи организуется сквозной канал от абонента до абонента, так и принцип коммутации сообщений, при котором сообщение полностью передаётся от абонента-отправителя на ближайшую коммутационную станцию, где оно временно хранится, а после освобождения канала в необходимом (заданном) направлении передаётся поэтапно дальше, от одной станции к другой, до тех пор пока не будет принято абонентом-получателем. Для управления коммутацией на станциях всё чаще применяют ЭВМ.

  Размещаемая у абонентов АПД (рис. 1 , а) преобразует сигналы данных таким образом, чтобы они стали пригодны для передачи по каналу связи, например при работе по телефонным каналам применяют частотную, фазовую и более сложные виды модуляции, а также различные виды кодирования и перекодирования сигналов. При необходимости в состав АПД включают устройство для защиты данных от ошибок, возникающих в канале связи из-за помех (с начала 70-х гг. каналы обеспечивают П. д. с вероятностью ошибки 10-3 —10-5 ; применение устройств защиты от ошибок позволяет снизить эту вероятность до 10-6 —10-8 ). Применение корректирующих кодов позволяет обнаружить большую часть ошибок, исправление которых обычно производится путём автоматически повторной передачи. Обнаружение ошибок может производиться также некодовыми способами – с помощью так называемого детектора качества, анализирующего известные параметры сигнала (амплитуду, частоту, длительность и т.д.). Если абоненту достаточно защиты от ошибок, имеющейся в его устройствах вычислительной техники, то в АПД она не предусматривается. АПД может содержать также вспомогательные устройства, такие, как переговорно-вызывные, контрольно-измерительные и т.п. Сопряжение АПД с устройствами вычислительной техники осуществляется либо через промежуточный носитель информации (обычно перфорационную ленту ) (рис. 1 , а), либо электрическими цепями (рис. 1 , б). Последний вид АПД позволяет абонентам «общаться» непосредственно с ЭВМ, в математическом обеспечении которой выделяется часть программ, осуществляющих управление системой телеобработки данных (обменом с абонентскими пунктами и с др. ЭВМ). В составе такой АПД отсутствуют вводно-выводные устройства. Примером АПД первого вида могут служить применяемая в СССР унифицированная АПД типа «Аккорд-50» для работы по телеграфным каналам со скоростью до 50 бит в сек и АПД типа «Аккорд-1200» (рис. 2 ) для работы по телефонным каналам со скоростью 600 или 1200 бит в сек. Пример АПД второго вида – универсальная аппаратура Единой системы ЭВМ социалистических стран.

  Находясь в процессе становления, П. д. развивается в следующих основных направлениях: создание специальных сетей П. д., в том числе разработка коммутационных станций, обеспечивающих улучшенное обслуживание абонентов, и внедрение цифровых каналов связи, образуемых системами с временным уплотнением линий (см. Линии связи уплотнение ); оптимальное сочетание развития новых сетей с использованием существующих телефонно-телеграфных сетей; повышение эффективности использования каналов для связи с большими нагрузками, в том числе освоение скоростей передачи по телефонным каналам до 4800 бит в сек и более; упрощение АПД для связи с малыми нагрузками; повышение верности и надёжности связи.

  Лит.: Передача данных. Информационный сборник, М., 1969; Псурцев Н. Д., Обеспечение АСУ средствами связи, в кн.: Автоматизированные системы управления, М., 1972; Системы передачи данных и сети ЭВМ, пер. с англ., М., 1972 (Труды института инженеров по электротехнике и радиоэлектронике, т. 60, № 11); Емельянов Г. А., Шварцман В. О., Передача дискретной информации и основы телеграфии, М., 1973; Етрухин Н. Н., Малишевская Т. М., Средства связи Единой системы ЭВМ «Ряд», «Электросвязь», 1974, №3; Bennett W. R., Davey J. R., Data transmission, N. Y.– [a. o.], 1965; Lucky R. W., Salz J., WeIdon E. J., Principles of data communications, N. Y.– [a. o.], 1968.

  Н. Н. Етрухин.

Рис. 1. Схемы каналов передачи данных: а – с вводом—выводом информации посредством промежуточного носителя; б – с электрическим вводом—выводом информации: ВВУ – вводно-выводные устройства; П/л – перфолента; УЗО – устройство защиты от ошибок; УПС – устройство преобразования сигналов; ТА – телеграфный или телефонный аппарат; П – переключатель; Аб. л. – абонентская линия; СК – станция коммутации: МПД – мультиплексор передачи данных; УУ – устройство управления; АПД – аппаратура передачи данных.

Рис. 2. Внешний вид аппаратуры передачи данных типа «Аккорд-1200». Слева – шкаф устройства защиты от ошибок, на столе – перфоленточные устройства ввода—вывода; справа – шкаф устройства преобразования сигналов (модема) и блоков сопряжения с устройствами ввода—вывода, сверху (на шкафу) – телефонный аппарат.

Передача электроэнергии

Переда'ча электроэне'ргии от электростанции к потребителям – одна из важнейших задач энергетики. Электроэнергия передаётся преимущественно по воздушным линиям электропередачи (ЛЭП) переменного тока, хотя наблюдается тенденция ко всё более широкому применению кабельных линий и линий постоянного тока. Необходимость П. э. на расстояние обусловлена тем, что электроэнергия вырабатывается крупными электростанциями с мощными агрегатами, а потребляется сравнительно маломощными электроприёмниками, распределёнными на значительной территории. Тенденция к концентрации мощностей объясняется тем, что с их ростом снижаются относительные затраты на сооружение электростанций и уменьшается стоимость вырабатываемой электроэнергии. Размещение мощных электростанций производится с учётом целого ряда факторов, таких, например, как наличие энергоресурсов, их вид, запасы и возможности транспортировки, природные условия, возможность работы в составе единой энергосистемы и т.п. Часто такие электростанции оказываются существенно удалёнными от основных центров потребления электроэнергии. От эффективности П. э. на расстояние зависит работа единых электроэнергетических систем , охватывающих обширные территории.

  Одной из основных характеристик электропередачи является её пропускная способность, то есть та наибольшая мощность, которую можно передать по ЛЭП с учётом ограничивающих факторов: предельной мощности по условиям устойчивости, потерь на корону, нагрева проводников и т.д. Мощность, передаваемая по ЛЭП переменного тока, связана с её протяжённостью и напряжениями зависимостью

,

где U1 и U2 напряжения в начале и в конце ЛЭП, Zc – волновое сопротивление ЛЭП, a – коэффициент изменения фазы, характеризующий поворот вектора напряжения вдоль линии на единицу её длины (обусловленный волновым характером распространения электромагнитного поля), l – протяжённость ЛЭП, d – угол между векторами напряжения в начале и в конце линии, характеризующий режим электропередачи и её устойчивость. Предельная передаваемая мощность достигается при d = 90°, когда sind = 1. Для воздушных ЛЭП переменного тока можно приближённо считать, что максимальная передаваемая мощность примерно пропорциональна квадрату напряжения, а стоимость сооружения ЛЭП пропорциональна напряжению. Поэтому в развитии электропередач наблюдается тенденция к увеличению напряжения как к главному средству повышения пропускной способности ЛЭП. Предельные значения напряжении ЛЭП, связанные с возможными перенапряжениями , ограничиваются изоляцией ЛЭП и электрической прочностью воздуха (см. Высоких напряжений техника ). Повышение пропускной способности ЛЭП переменного тока возможно и путём усовершенствования конструкции линии, а также посредством включения различных компенсирующих устройств . Так, например, на ЛЭП напряжением 330 кв и выше используется «расщепление» проводов в каждой фазе на несколько электрически связанных между собой проводников; при этом индуктивное сопротивление линии уменьшается, а ёмкостная проводимость увеличивается, что ведёт к снижению Zc и уменьшению а . Одним из способов повышения пропускной способности ЛЭП является сооружение «разомкнутых» линий, у которых на опорах подвешиваются провода двух цепей таким образом, что провода разных фаз оказываются сближенными между собой.

  В электропередачах постоянного тока отсутствуют многие факторы, свойственные электропередачам переменного тока и ограничивающие их пропускную способность. Предельная мощность, передаваемая по ЛЭП постоянного тока, имеет большие значения, чем у аналогичных ЛЭП переменного тока:

,

  где Ев напряжение на выходе выпрямителя, Rå суммарное активное сопротивление электропередачи, в которое, кроме сопротивления проводов ЛЭП, входят сопротивления выпрямителя и инвертора. Ограниченность применения электропередач постоянного тока связана главным образом с техническими трудностями создания эффективных недорогих устройств для преобразования переменного тока в постоянный (в начале линии) и постоянного тока в переменный (в конце линии). Электропередачи постоянного тока перспективны для объединения крупных удалённых друг от друга энергосистем. В этом случае отпадает необходимость в обеспечении устойчивости работы этих систем.

  Качество электроэнергии определяется надёжной и устойчивой работой электропередачи, что обеспечивается, в частности, применением компенсирующих устройств и систем автоматического регулирования и управления (см. Автоматическое регулирование возбуждения , Автоматическое регулирование напряжения , Автоматическое регулирование частоты ).

  Первая в мире электропередача, рассчитанная на длительную эксплуатацию, была построена в Петербурге в 1876 П. Н. Яблочковым для электрического освещения улиц. Д. А. Лачинов и М. Депре в 1880 теоретически обосновали возможность повышения напряжения для увеличения мощности и дальности передачи. Однако широкое использование электрической энергии в промышленности, теснейшим образом связанное с П. э. на расстояние, началось лишь после изобретения М. О. Доливо-Добровольским экономичного и относительно простого способа передачи электрической энергии трёхфазным переменным током. Со времени создания первых электропередач трёхфазного тока их напряжение возрастало в 1,5—2 раза примерно каждые 10—15 лет. Повышение напряжения давало возможность увеличивать расстояния и передаваемые мощности. В 20-х гг. 20 в. электроэнергия передавалась максимально на расстояния порядка 100 км, к 30-м гг. протяжённость ЛЭП увеличилась до 400 км, а к 70-м гг. длина ЛЭП достигла 1000—1200 км. Наряду с развитием электропередач переменного тока совершенствовалась техника П. э. постоянным током. В 1950 в СССР впервые в мире была введена в действие опытная кабельная линия постоянного тока Каширская ГРЭС – Москва напряжением 200 кв с пропускной способностью 30 Мвт. Накопленный опыт позволил в 1962—65 ввести в эксплуатацию межсистемную электропередачу постоянного тока (с воздушной ЛЭП напряжением 800 кв ) Волгоград – Донбасс пропускной способностью 750 Мвт. К 1974 в разных странах работало уже более 20 электропередач постоянного тока. В СССР в 1975—85 намечается строительство ЛЭП постоянного тока напряжением ±750 кв протяжённостью 2500—3000 км и в дальнейшем – электропередачи ± 1200 кв.

  С 60-х гг. большое внимание уделяется разработке качественно новых электропередач. Таковы, например, «закрытые» электропередачи, выполняемые в виде замкнутых конструкций, заполненных электроизолирующим газом (например, SF6 ), внутри которых располагаются провода высокого напряжения. Перспективны также криогенные (в дальнейшем, возможно, сверхпроводящие) ЛЭП. «Закрытые» и криогенные электропередачи особенно удобны для энергоснабжения потребителей в густонаселённых районах, например на территориях крупных городов. Кроме того, изучается возможность передачи энергии электромагнитными волнами высокой частоты по волноводам.

  В энергоснабжении потребителей альтернативой П. э. на расстояние является перевозка топлива. Сравнительный анализ показывает, что не всегда П. э. – наилучший способ энергоснабжения: например, при высокой калорийности угля (более 17—19 Мдж/кг ) более целесообразно перевозить его по железной дороге (при условии, что железная дорога уже построена); в ряде случаев оказывается предпочтительнее сооружать трубопроводы для подачи природного газа или нефти. Анализ энергосистем ряда стран позволяет выделить две основные тенденции их развития: приближение электростанций к центрам потребления в тех случаях, когда на территории, охватываемой объединённой энергосистемой, нет дешёвых источников энергии или когда ресурсы этих источников уже исчерпаны; сооружение электростанций вблизи дешёвых источников энергии и П. э. на расстояние, к центрам её потребления. Системы электро-, нефте– и газоснабжения должны сооружаться и эксплуатироваться в определённой координации между собой и образовывать единую энергетическую систему страны.

  Лит.: Веников В. А., Дальние электропередачи, М.– Л., 1960; Совалов С. А., Режимы электропередач 400—500 кв. ЕЭС, М., 1967; Электрические системы, т. 3 – Передача энергии переменным и постоянным током высокого напряжения, М., 1972.

  В. А. Веников, Е. В. Путянин.


    Ваша оценка произведения:

Популярные книги за неделю