355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Большая Советская Энциклопедия » Большая Советская Энциклопедия (ИН) » Текст книги (страница 65)
Большая Советская Энциклопедия (ИН)
  • Текст добавлен: 5 октября 2016, 23:21

Текст книги "Большая Советская Энциклопедия (ИН)"


Автор книги: Большая Советская Энциклопедия


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 65 (всего у книги 66 страниц)

Инфракрасное излучение

Инфракра'сное излуче'ние, ИК излучение, инфракрасные лучи, электромагнитное излучение, занимающее спектральную область между красным концом видимого света (с длиной волны l = 0,74 мкм ) и коротковолновым радиоизлучением (l ~ 1—2 мм ). Инфракрасную область спектра обычно условно разделяют на ближнюю (l от 0,74 до 2,5 мкм ), среднюю (2,5—50 мкм ) и далёкую (50—2000 мкм ).

  И. и. было открыто в 1800 английским учёным В. Гершелем, который обнаружил, что в полученном с помощью призмы спектре Солнца за границей красного света (т. е. в невидимой части спектра) температура термометра повышается (рис. 1 ). В 19 в. было доказано, что И. и. подчиняется законам оптики и, следовательно, имеет ту же природу, что и видимый свет. В 1923 советский физик А. А. Глаголева-Аркадьева получила радиоволны с l ~ 80 мкм , т. е. соответствующие инфракрасному диапазону длин волн. Таким образом, экспериментально было доказано, что существует непрерывный переход от видимого излучения к И. и. и радиоволновому и, следовательно, все они имеют электромагнитную природу.

  Спектр И. и., так же как и спектр видимого и ультрафиолетового излучений, может состоять из отдельных линий, полос или быть непрерывным в зависимости от природы источника И. и. Возбуждённые атомы или ионы испускают линейчатые инфракрасные спектры. Например, при электрическом разряде пары ртути испускают ряд узких линий в интервале 1,014—2,326 мкм ; атомы водорода – ряд линий в интервале 0,95—7,40 мкм . Возбуждённые молекулы испускают полосатые инфракрасные спектры, обусловленные их колебаниями и вращениями (см. Молекулярные спектры ). Колебательные и колебательно-вращательные спектры расположены главным образом в средней, а чисто вращательные – в далекой инфракрасной области. Так, например, в спектре излучения газового пламени наблюдается полоса около 2,7 мкм , испускаемая молекулами воды, и полосы с l » 2,7 мкм и l » 4,2 мкм , испускаемые молекулами углекислого газа. Нагретые твёрдые и жидкие тела испускают непрерывный инфракрасный спектр. Нагретое твёрдое тело излучает в очень широком интервале длин волн. При низких температурах (ниже 800 К) излучение нагретого твёрдого тела почти целиком расположено в инфракрасной области и такое тело кажется тёмным. При повышении температуры доля излучения в видимой области увеличивается и тело вначале кажется тёмно-красным, затем красным, жёлтым и, наконец, при высоких температурах (выше 5000 К) – белым; при этом возрастает как полная энергия излучения, так и энергия И. и.

  Оптические свойства веществ (прозрачность, коэффициент отражения, коэффициент преломления) в инфракрасной области спектра, как правило, значительно отличаются от оптических свойств в видимой и ультрафиолетовой областях. Многие вещества, прозрачные в видимой области, оказываются непрозрачными в некоторых областях И. и. и наоборот. Например, слой воды толщиной в несколько см непрозрачен для И. и. с l > 1 мкм (поэтому вода часто используется как теплозащитный фильтр), пластинки германия и кремния, непрозрачные в видимой области, прозрачны в инфракрасной (германий для l > 1,8 мкм , кремний для l > 1,0 мкм ). Чёрная бумага прозрачна в далёкой инфракрасной области. Вещества, прозрачные для И. и. и непрозрачные в видимой области, используются в качестве светофильтров для выделения И. и. Ряд веществ даже в толстых слоях (несколько см ) прозрачен в достаточно больших участках инфракрасного спектра. Из таких веществ изготовляются различные оптические детали (призмы, линзы, окна и пр.) инфракрасных приборов. Например, стекло прозрачно до 2,7 мкм, кварц – до 4,0 мкм и от 100 мкм до 1000 мкм, каменная соль – до 15 мкм, йодистый цезий – до 55 мкм . Полиэтилен, парафин, тефлон, алмаз прозрачны для l > 100 мкм . У большинства металлов отражательная способность для И. и. значительно больше, чем для видимого света, и возрастает с увеличением длины волны И. и. (см. Металлооптика ). Например, коэффициент отражения Al, Au, Ag, Cu при l = 10 мкм достигает 98%. Жидкие и твёрдые неметаллические вещества обладают в И. и. селективным отражением, причём положение максимумов отражения зависит от химического состава вещества.

  Проходя через земную атмосферу, И. и. ослабляется в результате рассеяния и поглощения. Азот и кислород воздуха не поглощают И. и. и ослабляют его лишь в результате рассеяния, которое, однако, для И. и. значительно меньше, чем для видимого света. Пары воды, углекислый газ, озон и др. примеси, имеющиеся в атмосфере, селективно поглощают И. и. Особенно сильно поглощают И. и. пары воды, полосы поглощения которых расположены почти во всей инфракрасной области спектра, а в средней инфракрасной области – углекислый газ. В приземных слоях атмосферы в средней инфракрасной области имеется лишь небольшое число «окон», прозрачных для И. и. (рис. 2 ). Наличие в атмосфере взвешенных частиц – дыма, пыли, мелких капель воды (дымка, туман) – приводит к дополнительному ослаблению И. и. в результате рассеяния его на этих частицах, причём величина рассеяния зависит от соотношения размеров частиц и длины волны И. и. При малых размерах частиц (воздушная дымка) И. и. рассеивается меньше, чем видимое излучение (что используется в инфракрасной фотографии), а при больших размерах капель (густой туман) И. и. рассеивается так же сильно, как и видимое.

  Источники И. и. Мощным источником И. и. является Солнце, около 50% излучения которого лежит в инфракрасной области. Значительная доля (от 70 до 80%) энергии излучения ламп накаливания с вольфрамовой нитью приходится на И. и. (рис. 3 ). При фотографировании в темноте и в некоторых приборах ночного наблюдения лампы для подсветки снабжаются инфракрасным светофильтром, который пропускает только И. и. Мощным источником И. и. является угольная электрическая дуга с температурой ~ 3900 К, излучение которой близко к излучению чёрного тела, а также различные газоразрядные лампы (импульсные и непрерывного горения). Для радиационного обогрева помещений применяют спирали из нихромовой проволоки, нагреваемые до температуры ~ 950 К. Для лучшей концентрации И. и. такие нагреватели снабжаются рефлекторами. В научных исследованиях, например, при получении спектров инфракрасного поглощения в разных областях спектра применяют специальные источники И. и.: ленточные вольфрамовые лампы, штифт Нернста, глобар, ртутные лампы высокого давления и др. Излучение некоторых оптических квантовых генераторов – лазеров также лежит в инфракрасной области спектра; например, излучение лазера на неодимовом стекле имеет длину волны 1,06 мкм , лазера на смеси неона и гелия – 1,15 мкм и 3,39 мкм , лазера на углекислом газе – 10,6 мкм , полупроводникового лазера на InSb – 5 мкм и др.

  Приёмники инфракрасного излучения основаны на преобразовании энергии И. и. в другие виды энергии, которые могут быть измерены обычными методами. Существуют тепловые и фотоэлектрические приёмники И. и. В первых поглощённое И. и. вызывает повышение температуры термочувствительного элемента приёмника, которое и регистрируется. В фотоэлектрических приёмниках поглощённое И. и. приводит к появлению или изменению электрического тока или напряжения. Фотоэлектрические приёмники, в отличие от тепловых, являются селективными приёмниками, т. е. чувствительными лишь в определённой области спектра. Специальные фотоплёнки и пластинки – инфрапластинки – также чувствительны к И. и. (до l = 1,2 мкм ), и потому в И. и. могут быть получены фотографии.

  Применение И. и. И. и. находит широкое применение в научных исследованиях, при решении большого числа практических задач, в военном деле и пр. Исследование спектров испускания и поглощения в инфракрасной области используется при изучении структуры электронной оболочки атомов, для определения структуры молекул, а также для качественного и количественного анализа смесей веществ сложного молекулярного состава, например моторного топлива (см. Инфракрасная спектроскопия ).

  Благодаря различию коэффициентов рассеяния, отражения и пропускания тел в видимом и И. и. фотография, полученная в И. и., обладает рядом особенностей по сравнению с обычной фотографией. Например, на инфракрасных снимках часто видны детали, невидимые на обычной фотографии (см. ст. Инфракрасная фотография ).

  В промышленности И. и. применяется для сушки и нагрева материалов и изделий при их облучении (см. Инфракрасный нагрев ), а также для обнаружения скрытых дефектов изделий (см. Дефектоскопия ).

  На основе фотокатодов, чувствительных к И. и. (для l < 1,3 мкм ), созданы специальные приборы – электроннооптические преобразователи , в которых не видимое глазом инфракрасное изображение объекта на фотокатоде преобразуется в видимое. На этом принципе построены различные приборы ночного видения (бинокли, прицелы и др.), позволяющие при облучении наблюдаемых объектов И. и. от специальных источников вести наблюдение или прицеливание в полной темноте. Создание высокочувствительных приёмников И. и. позволило построить специальные приборы – теплопеленгаторы для обнаружения и пеленгации объектов, температура которых выше температуры окружающего фона (нагретые трубы кораблей, двигатели самолётов, выхлопные трубы танков и др.), по их собственному тепловому И. и. На принципе использования теплового излучения цели созданы также системы самонаведения на цель снарядов и ракет. Специальная оптическая система и приёмник И. и., расположенные в головной части ракеты, принимают И. и. от цели, температура которой выше температуры окружающей среды (например, собственное И. и. самолётов, кораблей, заводов, тепловых электростанций), а автоматическое следящее устройство, связанное с рулями, направляет ракету точно в цель. Инфракрасные локаторы и дальномеры позволяют обнаруживать в темноте любые объекты и измерять расстояния до них.

  Оптические квантовые генераторы, излучающие в инфракрасной области, используются также для наземной и космической связи.

  Лит.: Леконт Ж., Инфракрасное излучение, пер. с франц., М., 1958; Дерибере М., Практические применения инфракрасных лучей, пер. с франц., М.—Л., 1959; Козелкин В. В., Усольцев И. Ф., Основы инфракрасной техники, М., 1967; Соловьев С. М., Инфракрасная фотография, М., 1960; Лебедев П. Д., Сушка инфракрасными лучами, М.—Л., 1955.

  В. И. Малышев.

Рис. 1. Опыт В. Гершеля. Термометр, помещенный за красной частью солнечного спектра, показал повышенную температуру по сравнению с контрольными термометрами, расположенными сбоку.

Рис. 3. Кривые излучения абсолютно чёрного тела A и вольфрама B при температуре 2450 К. Заштрихованная часть – излучение вольфрама в инфракрасной области; интервал 0,4—0,74 мкм – видимая область.

Рис. 2. Кривая пропускания атмосферы в области 0,6 – 14 мкм . Полосы – «окна» прозрачности: 2,0 – 2,5 мкм , 3,2 – 4,2 мкм , 4,5 – 5,2 мкм , 8,0 – 13,5 мкм . Полосы поглощения с максимумами при l = 0,93; 1,13; 1,40; 1,87; 2,74 мкм принадлежат пара'м воды; при l = 2,7 и 4,26 мкм – углекислому газу и при l » 9,5 мкм – озону.

Инфракрасный нагрев

Инфракра'сный нагре'в, нагрев материалов электромагнитным излучением с длиной волны 1,3—4 мкм (инфракрасное излучение ). И. н. основан на свойстве материалов поглощать определённую часть спектра этого излучения. При соответствующем подборе спектра испускания инфракрасного излучателя достигается глубинный или поверхностный нагрев облучаемого тела, а также его локальная сушка без нагрева всего объекта. Впервые И. н. в промышленном масштабе был применен в 30-х гг. 20 в. в США на заводах Форда для обжига эмали на кузовах автомобилей.

  Источником энергии при И. н. служат инфракрасные излучатели, состоящие из собственно источника энергии (нагретого тела) и отражателя. В зависимости от степени нагрева источников их условно подразделяют на низкотемпературные, нагреваемые до температур менее 700 °С, среднетемпературные – от 700 до 1500 °С, высокотемпературные – выше 1500 °С. В качестве источников применяют: трубчатые электрические нагреватели; зеркальные сушильные лампы; электрические нагреватели, состоящие из вольфрамовой спирали, помещенной в герметическую кварцевую трубку, наполненную инертным газом и парами йода, и др. Установки И. н. представляют собой камеры, туннели или колпаки, размеры и формы которых соответствуют размерам и форме обрабатываемых изделий. Излучатели укрепляют на внутренней стороне установки; расстояние между ними и поверхностью нагреваемых предметов обычно составляет 15—45 см . В промышленности И. н. широко применяют для нагрева до сравнительно небольших температур низкими тепловыми потоками (сушка лакокрасочных материалов, овощей, фруктов; нагрев термопластических материалов перед формованием; вулканизация каучука и др.).

Инфрамикробиология

Инфрамикробиоло'гия (от лат. infra – ниже, под и микробиология ), наука о вирусах; то же, что вирусология .

Инфраподвидовые категории

Инфраподвидовы'е катего'рии, подразделения внутри видов растений и животных, служащие для классификации индивидуальной (внутрипопуляционной) изменчивости, но не географической (популяционной) изменчивости, для которой существует особая категория – подвид . Происхождение различий, определяющих И. к., весьма разнообразно; в их основе может быть полиморфизм (в том числе диморфизм ), экологическая, сезонная или возрастная изменчивость, незначительные генетические отличия особей и т. д. Для растений употребляются две основные соподчинённые И. к. – разновидность (varietas) и форма (forma) и две дополнительные – subvarietas и subforma; для паразитических растений (особенно для грибов) существует специальная форма (rorma specialis), особи которой различаются только видовой принадлежностью хозяина. Для животных употребляют след. И. к.: вариетет (varietas) и форма (forma), рассматривая их обычно как равнозначные категории; кроме того, в некоторых группах животных применяют И. к. морфа и аберрация . В конкретных классификациях животных И. к. соответствует инфраподвидовая форма, которой часто дают специальное латинское название (после латинского названия вида ставят сокращённое латинское название И. к. и название инфраподвидовой формы). В ботанической номенклатуре научные названия разновидностей и форм подчиняются тем же правилам, что и названия видов. В Международном кодексе зоологической номенклатуры правила именования инфраподвидовых форм не рассматриваются.

  И. М. Кержнер.

Инфраруж

Инфрару'ж (от лат. infra – ниже, под и франц. rouge – красный), лампа инфракрасного излучения (ЛИК), аппарат (настольный или стационарный), состоящий из рефлектора и нагревательного элемента. Интенсивность облучения регулируется изменением расстояния излучателя от тела больного. См. Светолечение .

Инфраструктура

Инфраструкту'ра (от лат. infra – ниже, под и structura – строение, расположение), термин, появившийся в экономической литературе в конце 40-х гг. 20 в. для обозначения комплекса отраслей хозяйства, обслуживающих промышленное и с.-х. производство (строительство шоссейных дорог, каналов, портов, мостов, аэродромов, складов, энергетическое хозяйство, ж.-д. транспорт, связь, водоснабжение и канализация, общее и профессиональное образование, расходы на науку, здравоохранение и т. п.).

  Термин «И.» заимствован из военного лексикона, где он обозначает комплекс тыловых сооружений, обеспечивающих действия вооружённых сил (склады боеприпасов и других военных материалов, аэродромы, ракетные базы, полигоны, площадки для запуска ракет и т. п.). В НАТО создан специальный комитет по И. (Committee of Infrastructure).

  В советской экономической науке И. делится на две группы: производственную и непроизводственную (социальную). В первую группу включаются отрасли И., непосредственно обслуживающие материальное производство: железные и шоссейные дороги, водоснабжение, канализация и пр. Во вторую группу включаются отрасли, опосредованно связанные с процессом производства: подготовка кадров, школьное и высшее образование, здравоохранение и т. д.

  Характерной чертой инфраструктурных отраслей капиталистического хозяйства является их двойственный характер. С одной стороны, без развития этих отраслей невозможно существование промышленности и с.-х. предприятий, где производятся товары и создаётся прибавочная стоимость. В условиях научно-технической революции четко обнаружилась прямая зависимость темпов роста производства и его эффективности от развития отраслей И. С другой стороны, создание этих отраслей и их функционирование не приносят прибыли тому, кто осуществляет капиталовложения в эти отрасли, но увеличивает прибыли промышленных и с.-х. компаний. Чем выше развитие производительных сил, тем больших капиталовложений требуют отрасли И. Ряд отраслей И. стал объектом межимпериалистической конкурентной борьбы, например сфера науки, образования, подготовки кадров, отрасли транспорта, обеспечение хозяйства электроэнергией и т. д., так как от капиталовложений в них зависят рост производства и выигрыш в межимпериалистической конкурентной борьбе.

  Двойственный характер И. превратил проблему её создания из технической в социальную, а развитие государственно-монополистического капитализма сделало возможным переложение всех тягот по финансированию и развитию инфраструктурных отраслей на государственный бюджет, т. е. на плечи народных масс. В современных империалистических государствах произошло чёткое размежевание хозяйственных функций: частный капитал владеет предприятиями, где создаётся прибавочная стоимость, на государство возложены функции финансирования и развития отраслей И., способствующих увеличению прибылей частных компаний. Однако стремление монополистического капитала снять с себя бремя расходов по финансированию мало прибыльных или убыточных отраслей и переложить его на государство способствовало переходу этих отраслей И. в собственность империалистических государств при сохранении монополиями права контроля над ними.

  Процесс обобществления производства при капитализме обусловил необходимость перехода в государственную собственность таких отраслей хозяйства, которые по своей природе требуют общественного регулирования. Ф. Энгельс писал в «Анти-Дюринге»: «Эта необходимость превращения в государственную собственность наступает прежде всего для крупных средств сообщения: почты, телеграфа и железных дорог» (Маркс К. и Энгельс Ф., Соч., 2 изд., т. 20, с. 289). Сосредоточение отраслей И. в руках капиталистических государств отвечает также агрессивной природе империализма. Создание стратегических автострад, единое управление средствами ж.-д. транспорта и связи, подготовка военных кадров, развитие науки в военных целях – всё это обусловливает необходимость перехода этих отраслей под контроль государства. Объективная необходимость, заставляющая буржуазное государство брать на себя создание мощного комплекса И., показывает, что процесс обобществления производства зашёл уже так далеко, что частный сектор не в состоянии справиться с отдельными отраслями хозяйства. «...Переход крупных производственных предприятий и средств сообщения в руки акционерных обществ и в государственную собственность доказывает ненужность буржуазии для этой цели» (там же, с. 289).

  Проблема взаимосвязи производства с обслуживающими его отраслями хозяйства возникла значительно раньше, чем появился термин «И.». Изучались необходимые пропорции в развитии промышленных и обслуживающих их отраслей, а с развитием государственно-монополистического капитализма отрасли И. стали рассматриваться как средство регулирования экономики. Эти отрасли не создают продукта, давящего на рынок, но лица, занятые в них, получают заработную плату, что способствует увеличению платёжеспособного спроса населения.

  Попытки буржуазных экономистов найти средство, ослабляющее действие экономических кризисов, натолкнуло их на мысль рассматривать отрасли И. как одно из важнейших средств приведения в соответствие объёма производства и платёжеспособного спроса. В специальных публикациях США и ФРГ появились плановые разработки развития отраслей И. на 10 и 25 лет, в которых представлены расчёты влияния их развития на темпы промышленного роста. Однако теоретические проблемы И. в буржуазной политической экономии ещё не разработаны. Разные экономисты включают в И. различные отрасли хозяйства. Для оправдания переложения огромных затрат на государственный бюджет эти расходы обозначаются терминами «социальные издержки общества» или «дополнительный капитал». Все попытки буржуазных экономистов дать определение понятию И., которое вскрывало бы его сущность, природу и место в капиталистическом воспроизводстве, подвергались резкой критике со стороны других буржуазных экономистов как уязвимые и неубедительные.

  И. как социальная проблема характерна только для капиталистического способа производства. При социализме остаётся лишь её технико-экономическая сторона, которая решается научным планированием. Но и для социалистических стран проблема И. как проблема пропорций между отраслями И. и основным производством, эффективности общественного производства остаётся. Изучение этих пропорций и выявление в этой области объективных закономерностей имеют важное значение для темпов социалистического воспроизводства, роста производительности общественного труда, экономного использования ресурсов, для всего коммунистического строительства.

  В СССР 9-й пятилетний план предусматривает ускоренные темпы развития ряда отраслей И., в том числе электроэнергетики, транспорта, образования, здравоохранения и др., в целях обеспечения потребностей народного хозяйства, повышения благосостояния трудящихся.

  Лит.: Тезисы основных докладов и выступлений на научной конференции по теме «Инфраструктура и ее роль в современном капиталистическом воспроизводстве», М., 1969; Семенкова Т., Инфраструктура и сфера услуг, «Мировая экономика и международные отношения», 1971, № 3; Пай Л., Обострение классовых конфликтов в отраслях социальной инфраструктуры ФРГ, «Социалистический труд», 1971, № 11; Michalski W., Infrastrukturpolitik im Engpaß, Hamb., 1966; Jochimsen R., Theorie der Infrastruktur, Tübingen, 1966; Zechlin H., Staatliche Infrastrukturplanung in der Marktwirtschaft, Marburg, 1965 (Diss.); Rosenstein-Rodan P. N., Notes on the theory of the «Big Push», Camb., 1957; Nurkse R., Problems of capital formation in underdeveloped countries, Oxf., 1955; Hirschman A. O., The strategy of economic development. New Haven, 1958; Youngson A. J., Overhead capital, Edinb., 1967.

  Г. П. Солюс.


    Ваша оценка произведения:

Популярные книги за неделю