355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Большая Советская Энциклопедия » Большая Советская Энциклопедия (ИН) » Текст книги (страница 44)
Большая Советская Энциклопедия (ИН)
  • Текст добавлен: 5 октября 2016, 23:21

Текст книги "Большая Советская Энциклопедия (ИН)"


Автор книги: Большая Советская Энциклопедия


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 44 (всего у книги 66 страниц)

Инсулин

Инсули'н (от лат. insula – остров), гормон белковой природы, вырабатываемый b-клетками Лангерганса островков поджелудочной железы. Впервые был выделен канадскими учёными Ф. Бантингом и Ч. Бестом (1921—22). Структурная единица И. – мономер с молекулярной массой около 6000. При определении в различных условиях молекулярная масса И. оказывается равной 12000 или 36000, так как в зависимости от условий опыта в молекулу И. объединяется разное число мономеров. Каждый мономер содержит 51 аминокислоту , которые располагаются в виде двух пептидных цепей – А и В, соединённых посредством двух дисульфидных мостиков (—S—S– ). Наличие этих мостиков необходимо для проявления гормональной активности И.: их разрушение приводит к потере активности. И. различных видов животных отличаются только положением некоторых аминокислот в цепи. Структура мономера И., т. е. последовательность расположения в нём аминокислотных остатков, выяснена английским биохимиком Ф. Сангером (1945—56). Это позволило осуществить химический синтез И.

  И. снижает содержание сахара в крови, задерживая распад гликогена и синтез глюкозы в печени. В то же время И. повышает проницаемость клеточных мембран для глюкозы, способствуя её переходу в ткани. И. повышает использование глюкозы в реакциях пентозофосфатного цикла и ускоряет синтез гликогена в мышцах. Присутствие И. в организме обусловливает преобладание синтеза белков и жирных кислот над их распадом, способствует переходу углеводов в жирные кислоты и образованию жиров. С недостатком И. в организме связано нарушение обмена веществ – диабет сахарный . При лечении диабета применяют препараты И., получаемые из поджелудочных желез убойного скота и других животных. Активность И. определяют биологически (по способности понижать содержание сахара в крови у кроликов). За единицу действия (ЕД) – интернациональную единицу (ИЕ), или международную единицу (МЕ), – принимают 0,04082 мг чистого кристаллического препарата И. Для инъекций И. вводят подкожно или внутримышечно (при приёме через рот И. разрушается желудочным соком). Свободный И. в организме быстро инактивируется под влиянием фермента инсулиназы. Более продолжительным, чем И., действием (наступающим медленнее) обладают препараты И.: суспензия аморфного цинк-инсулина, раствор протамин-цинк-инсулина, суспензия протамин-инсулина и др. Малые дозы И. (также в виде инъекций) применяют при общем истощении, упадке питания и некоторых других заболеваниях. В психиатрической практике И. вводят для вызывания гипогликемических состояний (см. Гипогликемия ).

  Г. А. Соловьева.

Инсульт

Инсу'льт (позднелат. insultus – приступ, от лат. insulto – скачу, впрыгиваю), остро развивающееся нарушение мозгового кровообращения, сопровождающееся повреждением ткани мозга и расстройством его функций. Наиболее частыми причинами И. являются гипертоническая болезнь и атеросклероз или их сочетание; нередко И. развивается при заболевании сердца, ревматизме, иногда при болезнях крови и др. Различают геморрагический И. и ишемический И. Геморрагический И. обусловлен кровоизлиянием в мозг; чаще он возникает при гипертонической болезни. Непосредственным толчком к развитию кровоизлияния в мозг во многих случаях бывает эмоциональное или физическое перенапряжение. Излившаяся кровь отчасти разрушает, а отчасти сдавливает окружающую нервную ткань и вызывает отёк мозга. Кровоизлияние обычно сопровождается тяжёлыми общими явлениями – потерей сознания, расстройством дыхания и сердечной деятельности, рвотой. Лицо больного нередко становится багрово-красным. Наблюдаются судороги различного характера. Развиваются те или иные симптомы очагового поражения мозга – параличи конечностей, расстройства чувствительности, нарушения речи и др. В основе ишемического И. лежит размягчение мозговой ткани – мозговой инфаркт. Мозговой инфаркт развивается при закупорке мозговых сосудов атеросклеротической бляшкой, тромбом (кровяным сгустком) или эмболом (кусочком тромба или атеросклеротической бляшки, принесённым током крови из больного сердца или крупного кровеносного сосуда). Мозговой инфаркт может развиться также при нарушении притока крови к какой-либо области мозга вследствие сужения атеросклеротическим процессом или спазмом приносящего кровь к этой области сосуда. При этом ткань мозга в зоне пораженного сосуда перестаёт получать приносимые с кровью кислород и питательные вещества, гибнет и размягчается. Во многих случаях в происхождении ишемического И. большое значение имеет атеросклеротическое поражение крупных (так называемых магистральных) сосудов головного мозга, сосудов, проходящих на шее (сонные и позвоночные артерии), а также неврогенные и обменные факторы. Развитию ишемического И. способствуют ослабление сердечной деятельности, падение артериального давления, повышение свёртываемости крови. Развитию ишемического И. часто предшествуют преходящие нарушения мозгового кровоснабжения, проявляющиеся кратковременными онемениями в различных частях тела, слабостью конечностей, нарушениями речи, головокружениями или др. расстройствами. Лицо у больного при возникновении ишемического И. бледнеет. Параличи, нарушение чувствительности, речи и др. симптомы нередко нарастают в своей интенсивности постепенно (при геморрагическом И. они возникают обычно внезапно и быстро). Сознание утрачивается лишь в очень тяжёлых случаях. Иногда для правильной диагностики и выбора целесообразного лечения необходимо исследование спинномозговой жидкости, крови и рентгенографическое исследование сосудов мозга с применением контрастных веществ (ангиография). Лечение: полный покой, строгий постельный режим; мероприятия, направленные на устранение сердечно-сосудистых расстройств, предупреждение и устранение нарушений дыхания, на улучшение кровоснабжения мозга и борьбу с отёком мозга, причём выбор методов лечения зависит от типа И. Разрабатываются хирургические методы лечения кровоизлияний в мозг и устранения сужений и закупорки сосудов, ведущих к нарушениям мозгового кровообращения ишемического характера (при поражении магистральных сосудов головного мозга). Для лечения последствий И. используются лечебная гимнастика, массаж, занятия с логопедом и др. Профилактика И.: правильный режим труда, отдыха и питания, устранение нервно-психического перенапряжения, лечение общего сосудистого заболевания.

  Лит.: Лурье З. Л., Расстройства мозгового кровообращения, 2 изд., М., 1959; Боголепов Н. К., Сосудистые заболевания нервной системы, в кн.: Многотомное руководство по неврологии, т. 4, ч. 1, М., 1963; Шмидт Е, В., Стеноз и тромбоз сонных артерий и нарушения мозгового кровообращения, М., 1963; Нарушения мозгового кровообращения и их хирургическое лечение, М., 1967.

  Д. К. Лунев.

Инсценировка

Инсцениро'вка [от лат. In – в, на и scaena (scena) – сцена], 1) переработка для сцены литературного произведения, написанного не в драматургической форме. В отличие от вольного использования эпических мотивов, как то было в античной драме или у У. Шекспира, И. имеет целью не столько создание нового самостоятельного произведения, сколько театральную адаптацию прозы. Первые значительные И. в России принадлежат А. А. Шаховскому (переработки произведений В. Скотта и А. С. Пушкина). Отвергнув тип ремесленной переделки романов в «хорошо скроенные пьесы», характерной для 2-й половины 19 в., В. И. Немирович-Данченко на сцене МХТ искал романную форму спектакля, ставил И.-монтажи. Инсценировочные принципы – объединение контрастных эпизодов, более свободная и ёмкая конструкция, многочастность – повлияли на советскую драму. Многие её первенцы явились авторскими И., в том числе «Виринея» Л. Н. Сейфуллиной (совместно с В. П. Правдухиным, 1925), «Дни Турбиных» М. Булгакова (1926), «Бронепоезд 14—69» В. В. Иванова (1927). В середине 20 в. распространены И. документальной прозы. 2) Одна из форм массового агитационного театра в годы революции: на площадях, сливая зрителей с исполнителями, разыгрывались инсценированные моменты истории и суды над реальными или символическими фигурами («Свержение самодержавия», 1919). Этим И. присущи романтическая символика, условность, сочетание патетики и гротеска.

Инта

Инта', город в Коми АССР. Расположен на левом берегу р. Большая Инта (бассейн Печоры), в 12 км от ж.-д. станции Инта, в 50 км к Ю. от Северного полярного круга. 51 тыс. жителей (1972). Добыча угля (Печорский бассейн), ремонтно-механический завод, деревообрабатывающий комбинат, предприятия стройматериалов, ТЭЦ, птицефабрика. Индустриальный техникум. Народный театр. На правом берегу реки пригородное подсобное хозяйство (молоко, мясо). Посёлок И. образован в 1940, город – с 1954.

  Лит.: Гулецкий Г. П., Инта, Сыктывкар, 1968.

Инталия

Инта'лия (от итал. intaglio – резьба), резной камень (гемма) с углублённым изображением. И. служили главным образом печатями. Появились в 4-м тыс. до н. э. (в странах Древнего Востока), широко распространились в период античности. Илл. см. к ст. Глиптика .

Цилиндрическая печать с изображением мифологических персонажей и животных. Сер. 3-го тыс. до н. э. Шумер. Британский музей. Лондон.

А. Маснаго. «Язон, поражающий дракона». Камея. 16 в. Италия. Художественно-исторический музей. Вена.

Печать с изображением Октавиана в образе Нептуна. 1 в. до н. э. Древний Рим. Музей изящных искусств. Бостон.

П. Е.Доброхотов. «Меркурий, дающий Парису яблоко». 1820. Россия. Эрмитаж. Ленинград.

Гемма с изображением Горгоны. Сер. 5 в. до н. э. Древняя Греция. Эрмитаж. Ленинград.

Оттиск цилиндрической печати с изображением мифологических персонажей и животных. Сер. 3-го тыс. до н. э. Шумер. Британский музей. Лондон.

Дексамен. «Летящая цапля». 3-я четв. 5 в. до н. э. Древняя Греция. Эрмитаж. Ленинград.

Гемма с изображением бегущего оленя. Ок. 1600 до н. э. Крит. Музей Ашмола. Оксфорд.

Камея Гонзага с изображением Птолемея II Филадельфа и его жены Арсинби. 3 в. до н. э. Александрия. Эрмитаж. Ленинград.

Гемма с изображением юноши с петухом. 2-я пол. 5 в. до н. э. Древняя Греция. Эрмитаж. Ленинград.

Агатоп. Мужской портрет. Между 2 в. до н. э. и 1 в. н. э. Древний Рим. Археологический музей. Флоренция.

Интарсия

Инта'рсия (от итал. intarsio – инкрустация), вид инкрустации на деревянных предметах (мебели и т. д.): фигурные изображения или узоры из пластинок дерева, разных по текстуре и цвету, врезанных в поверхность деревянного предмета. Наивысшего расцвета И. достигла в Италии в 15 в.

  Лит.: Krauss F., Intarsien, 3. Aufl., Lpz., 1958.

Интарсия. Исповедальня. Италия. Ок. 1500. Музей Виктории и Альберта. Лондон.

Интеграл

Интегра'л (от лат. integer – целый), одно из важнейших понятий математики, возникшее в связи с потребностью, с одной стороны, отыскивать функции по их производным (например, находить функцию, выражающую путь, пройденный движущейся точкой, по скорости этой точки), а с другой – измерять площади, объёмы, длины дуг, работу сил за определённый промежуток времени и т. п. Соответственно с этим различают неопределенные и определённые И., вычисление которых является задачей интегрального исчисления .

  Неопределённый интеграл. Первообразная функции f (x ) одного действительного переменного – функция F (x ), производная которой при каждом значении х равна f (x ). Прибавляя постоянную к первообразной какой-либо функции, вновь получают первообразную той же функции. Следовательно, имея одну первообразную F (x ) функции f (x ), получают общее выражение всех первообразных этой функции в виде F (x ) + С. Это общее выражение первообразных называют неопределённым интегралом:

функции f (x ). Одна из основных теорем интегрального исчисления устанавливает, что каждая непрерывная функция f (x ) действительного переменного имеет неопределённый И.

  Определённый интеграл . Определённый И. функции f (x ) с нижним пределом а и верхним пределом b можно определить как разность

где F (x ) есть первообразная функции f (x ); определение не зависит от того, какая из первообразных выбрана для вычисления определённого И. Если функция f (x ) непрерывна, то приведённое определение в случае a < b равносильно следующему определению, данному О. Коши (1823): рассматривают произвольное разбиение отрезка [a , b ] точками

в каждом отрезке [xi—1 , xi ] (i = 1, 2,... , n ) берут произвольную точку xi (xi—1 £ xi £ xi ) и образуют сумму

Сумма Sn зависит от выбора точек xi и xi . Однако в случае непрерывной функции f (x ) суммы Sn , получающиеся при различном выборе точек xi и xi , стремятся к вполне определённому пределу, если максимальная из разностей xi – xi—1 стремится к нулю при n ® ¥. Этот предел и является определённым интегралом

По определению,

  Определённый И., как указано выше, выражается через любую первообразную F (x ). Обратно, первообразная F (x ) может быть записана в виде

где а — произвольная постоянная. В соответствии с этим неопределенный И. записывается в виде

  О возникновении понятия И., а также о свойствах неопределенных и определённых И. см. Интегральное исчисление .

  Обобщение понятия интеграла

  Интеграл Римана . О. Коши применял своё определение И. только к непрерывным функциям. Назвать, по определению, интегралом

предел сумм Sn при max (xi xi—1 ) ® 0 во всех тех случаях, когда этот предел однозначно определён, предложил Б. Риман (1853). Он же исследовал условия применимости такого определения. Более совершенную форму этим условиям придал А. Лебег (1902), пользуясь введённым им понятием меры множества (см. Меры теория ). Для интегрируемости в смысле Римана функции f (x ) на [a, b ] является необходимой и достаточной совокупность двух условий: f (x ) ограничена на [а, b ], множество помещающихся на [a , b ] точек разрыва функции f (x ) имеет меру, равную нулю. Таким образом, непрерывность в каждой точке отрезка [а , b ] совсем не обязательна для интегрируемости по Риману.

  Неопределённый И. и первообразную можно теперь определять формулами (5) и (4). Следует только заметить, что при этом первообразная F (x ) не обязана иметь подинтегральную функцию f (x ) своей производной в каждой точке. Но в каждой точке непрерывности f (x ), т. е., в силу результата Лебега, всюду, кроме, может быть, множества меры, равной нулю, будет

  Г. Дарбу (1879) дал определение интеграла Римана, которое делает особенно наглядными условиями существования такого И. Вместо сумм (3) Дарбу вводит суммы (называемые суммами Дарбу)

где Mk – верхняя грань функции f (x ) на отрезке [xk—1 ,xk ], а mk нижняя грань f (x ) на том же отрезке. Если  нижняя грань сумм , а   – верхняя грань сумм , то для существования интеграла Римана необходимо и достаточно условие  Общее значение  величин  и  и является интегралом Римана (6). Сами величины  и  называются верхним и, соответственно, нижним интегралами Дарбу.

  Интеграл Лебега. Введённое Лебегом понятие меры множества позволило дать значительно более широкое определение И. Чтобы определить И. (6), Лебег делит точками

... < y-2 < y-1 < y < y-1 < ... < yi <...

область возможных значений переменного у = f (x ) и обозначает Mi множество тех точек х из отрезка [a, b ], для которых

yi—1 £ f (x ) < yi .

Сумма S определяется равенством

S = Si hi m(Mi ),

где hi берётся из отрезка yi—1 £ hi < yi , а m(Mi ) обозначает меру множества Mi . Функция f (x ) называется интегрируемой в смысле Лебега на отрезке [a , b ], если ряды, определяющие суммы S , абсолютно сходятся при max(yi yi—1 ) ® 0. Предел этих сумм и называется интегралом Лебега (6). Можно определить первообразную в смысле Лебега как функцию F (x ), удовлетворяющую равенству (4), где И. в правой части понимается по Лебегу. Как и в случае интеграла Римана, равенство (7) будет при этом выполняться во всех точках, кроме, может быть, множества, имеющего меру, равную нулю.

  Для интегрируемости по Лебегу ограниченной функции f (x ) необходимо и достаточно, чтобы она принадлежала к числу измеримых функций в смысле Лебега. Все функции, встречающиеся в математическом анализе, измеримы в этом смысле. Более того, до настоящего времени (1972) не построено ни одного индивидуального примера неизмеримой функции. Таким образом, для случая ограниченных функций Лебег решил задачу определения интеграла (6) с общностью, исчерпывающей потребности математического анализа. Среди функций, интегрируемых по Лебегу, имеется сколько угодно функций, всюду разрывных и, следовательно, неинтегрируемых по Риману. Наоборот, каждая интегрируемая по Риману функция интегрируема и по Лебегу.

  Определение Лебега обобщается на случай интегрирования по полупрямой и по полной прямой, т. е. на случай И. вида

После этого обобщения теория Лебега охватывает все случаи абсолютно сходящихся несобственных интегралов .

  Общность, достигнутая в определении Лебега, весьма существенна во многих вопросах математического анализа; например, только с введением интеграла Лебега могла быть установлена теорема Фишера – Риса в теории тригонометрических рядов, в силу которой любой ряд

для которого

представляет функцию f (x ), порождающую коэффициенты an и bn по формулам

где И. понимаются в смысле Лебега.

  Интеграл Стилтьеса. В конце 19 в. определение интеграла Римана подверглось совершенно иному обобщению, чем то, к которому привело введение понятия меры множества. Это обобщение было дано Т. Стилтьесом (1894). Пусть f (x ) – непрерывная функция действительного переменного х , определённая на отрезке [a , b ], и U (x ) – определённая на том же отрезке ограниченная монотонная (неубывающая или невозрастающая) функция. Для определения интеграла Стилтьеса берут произвольное разбиение (2) отрезка [a , b ] и составляют сумму

f (x1 ) [U (x1 ) – U (x )] + f (x2 ) [U (x2 ) – U (x1 )] +...+ f (xn ) [U (xn ) – U (xn—1 )],    (8)

где x1 , x2 , ..., xn – произвольные точки, выбранные соответственно на отрезках [x , x1 ], [x1 , x2 ], ..., [xn—1 , xn ]. Пусть d – наибольшее расстояние между двумя последовательными точками деления в разбиении (2). Если взять любую последовательность разбиений, для которой d стремится к нулю, то сумма (8) будет иметь определённый, всегда один и тот же предел, как бы ни выбирались точки x1 , x2 , ..., xn на соответствующих отрезках. Этот предел называют, следуя Стилтьесу, интегралом функции f (x ) относительно функции U (x ) и обозначают символом

Интеграл (9) (его называют также интегралом Стилтьеса) существует и в том случае, когда ограниченная функция U (x ), не будучи сама монотонной, может быть представлена в виде суммы или разности двух ограниченных монотонных функций U1 (x ) и U2 (x ):

U (x ) = U1 (x ) – U2 (x ),

т. е. является функцией с ограниченным изменением (см. Изменение функции ).

  Если интегрирующая функция U (х ) имеет ограниченную и интегрируемую по Риману производную U' (x ), то интеграл Стилтьеса сводится к интегралу Римана по формуле

В частности, когда U (x ) = х + С , интеграл Стилтьеса (9) превращается в обыкновенный интеграл Римана (6).

  Дальнейшие обобщения. Концепции И., созданные Стилтьесом и Лебегом, удалось впоследствии объединить и обобщить на интегрирование по любому (измеримому) множеству в пространстве любого числа измерений. Классические кратные интегралы вполне охватываются этим подходом. Потребности таких дисциплин, как теория вероятностей и общая теория динамическим систем, привели к ещё более широкому понятию абстрактного интеграла Лебега, основанному на общих понятиях меры множества и измеримости функций. Пусть Х — пространство, в котором выделена определённая система В его подмножеств, называемых «измеримыми», причём эта система обладает свойствами замкнутости по отношению к обычным теоретико-множественным операциям, выполняемым в конечном или счётном числе. Пусть m – конечная мера, заданная на В. Для В -измеримой функции у = f (x ), х ÎХ , принимающей конечное или счётное число значений y1 , y2 , ..., yn , ..., соответственно на попарно непересекающихся множествах A1 , ..., Аn , ..., сумма которых есть X , интеграл функции f (x ) по мере m, обозначаемый

,

определяется как сумма ряда

в предположении, что этот ряд абсолютно сходится. Для других f интегрируемость и И. определяются путём некоторого естественного предельного перехода от указанных кусочно постоянных функций.

  Пусть А – измеримое множество и jА (х ) = 1 для х , принадлежащих А , и jА (х ) = 0 для х, не принадлежащих А . Тогда интеграл от f (x ) по множеству А определяют, полагая

  При фиксированных m и А И. в зависимости от f может рассматриваться как линейный функционал ; при фиксированном f И., как функция множества А , есть счётно аддитивная функция.

  Следует отметить, что, несмотря на кажущуюся отвлечённость, это общее понятие И. в наибольшей степени подходит для определения такого понятия, как математическое ожидание (в теории вероятностей), и даже для общей формулировки задачи проверки статистических гипотез. И. по отношению к так называемой мере Винера и различным её аналогам используют в статистической физике (здесь в качестве Х фигурирует пространство непрерывных на каком-либо отрезке функций). Упоминавшиеся до сих пор обобщения понятия И. были такими, что f и |f | оказывались интегрируемыми или неинтегрируемыми одновременно.

  Обобщения первоначального понятия И. в другом направлении относятся к функциям одного переменного, но зато дают много больше в исследовании интегрирования неограниченных функций. Ещё Коши в случае функции f (x ), неограниченной в точке х = с , определил интеграл

,

когда a < c < b , как предел выражения

,

при e1 ® 0 и e2 ® 0. Аналогично И. с бесконечными пределами

определяется как предел И.

,

при а ® – ¥ и b ® + ¥. Если при этом не требуется интегрируемости |f (x )|, т. е. f (x ) интегрируема «не абсолютно», то это определение Коши не поглощается лебеговским.

  Ещё более широкое обобщение понятия И. в этом направлении было предложено А. Данжуа (1912) и А. Я. Хинчиным (1915).

  Лит.: Лебег А., Интегрирование и отыскание примитивных функций, пер. с франц., М.—Л., 1934; Сакс С., Теория интеграла, пер. с англ., М., 1949; Камке Э., Интеграл Лебега – Стилтьеса, пер. с нем., М., 1959; Уитни Х., Геометрическая теория интегрирования, пер. с англ., М., 1960; Рудин У., Основы математического анализа, пер. с англ., М., 1966; Данфорд Н., Шварц Дж. Т., Линейные операторы. Общая теория, пер. с англ., М., 1962; Невё Ж., Математические основы теории вероятностей, пер. с франц., М., 1969; Federer Н., Geometric measure theory, В. – Hdlb. – N. Y., 1969.

  Под редакцией академика А. Н. Колмогорова.


    Ваша оценка произведения:

Популярные книги за неделю