355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Валентин Иванов » Природа. Человек. Закон » Текст книги (страница 2)
Природа. Человек. Закон
  • Текст добавлен: 2 декабря 2017, 01:30

Текст книги "Природа. Человек. Закон"


Автор книги: Валентин Иванов


Соавторы: Виолетта Городинская
сообщить о нарушении

Текущая страница: 2 (всего у книги 26 страниц)

Для того чтобы закон был действен, совершенно необходимо, чтобы, ну если не все без исключения, то хотя бы подавляющая часть граждан страны знали и понимали, на чем он основан, какие жизненно важные причины вызвали его появление, для чего конкретно необходимо его строгое соблюдение. И если причины, вызвавшие к жизни некоторые законы, общеизвестны – скажем, всем понятно, почему закон запрещает убийство, воровство, мошенничество и т. п., – то появление природоохранных законов требует специальных, не столько кратких разъяснении и комментариев, сколько обширных и глубоких биологических и экологических сведений – основу знаний, понимания необходимости появления и строгого соблюдения законов об охране природы.

В какой-то мере эта книга и призвана заполнить этот пробел. В ней, насколько нам известно, впервые делается попытка как можно более полно показать с общебиологических и экологических позиций, какие именно законы природы продиктовали законы об ее охране, как сложны и тонки взаимосвязи между всеми природными явлениями, как удивительно детерминировано и необходимо все многообразие взаимодействий и взаимовлияний их для существования того динамического равновесия, которое и обусловливает, и поддерживает, и развивает Жизнь на Земле.

Более полувека назад замечательный русский ученый, академик В. И. Вернадский показал, что мощь человеческой деятельности сравнима с геологической силой Земли, сдвигающей континенты, поднимающей горные массивы, опускающей материки. С тех пор мощь эта возросла в десятки раз, и сегодня уже не деятельность человечества в целом, а одно всего предприятие может нанести огромный, а иной раз и непоправимый вред громадному региону. А поскольку регион этот не изолированный остров в некоем безвоздушном нематериальном океане, а связан неразрывными экологическими узами с континентом и – шире – со всей атмосферой, сушей и водою земного шара, вред этот зачастую глобален и вызывает отрицательные для нормального существования Жизни на Земле изменения планетарных процессов. Такая мощь требует и соответствующего ей сознания и мышления.

Сегодня нельзя уже мыслить узкоместными категориями, даже и региональные слишком узки. Когда предприятие или ТЭЦ, расположенные, скажем, в Кривом Роге, выбрасывают сотни миллионов кубометров дымовых газов (средняя ГРЭС мощностью 2400 МВт выделяет дыма 281,7 млн. м3 в сутки), а сконденсированные из них кислотные дожди выпадают на Смоленщине или в Польше, в Подмосковье или в Чехословакии, тут уж не региональными категориями пахнет, здесь необходимо глобальное мышление.

Это не так уж трудно, как кажется. Человеческая мысль способна объять необъятное – просторы Космоса, простирающиеся во все стороны на миллиарды световых лет, Вечность, в которой и миллиарды лет кажутся мгновеньем. Планета же наша не так уж и велика, современные информационные и транспортные средства позволяют в считанные часы и даже минуты заглянуть на кухню к соседу и увидеть, что у него варится на обед, даром что сосед этот живет на противоположной стороне земного шара.

Увидеть одномоментно всю планету со всем многообразием ее природных ландшафтов, вод, воздушных и климатических условий геосферы; со всем многообразием живых существ – от микроскопических почвенных бактерий до гигантских секвой, слонов и китов биосферы; со всем многообразием промышленных, транспортных, сельскохозяйственных, энергетических и бытовых сооружений антропосферы, а главное представить себе все многообразие их взаимных влияний, конечно же, гораздо сложнее. Но – не невозможно. Наука – от древних мудрецов и до современных ученых – к нашим дням накопила довольно много знаний для того, чтобы каждый человек мог иметь достаточное общее представление о том, чем живет, чем дышит Земля, вся ее биосфера и антропосфера, какие законы управляют их происхождением и развитием, что помогает им существовать и что именно гибельно для них. Пользоваться этими знаниями, постоянно руководствоваться и сверяться с ними в своей повседневной деятельности – это и значит иметь глобальное экологическое мышление. Без этих знаний, без такого мышления современный человек вообще и современный руководитель в особенности походит на малого ребенка, ненароком включившего рычаг скорости в мощном бульдозере, который помчал его по людной улице: и окружающих подавит, и сам не убережется.

В такой ситуации и оказался директор комбината, о судьбе которого мы рассказали.

В этой книге мы постарались кратко изложить наиболее важные современные научные представления о Земле и ее биосфере, о той их необходимости для су ществования Жизни на нашей планете, и в частности существования человечества, которую нельзя заменить ничем, никакими иными искусственными условиями. И о тех воздействиях, о той угрозе, которую представляет собой неразумное антропогенное воздействие на биосферу. Мы отнюдь не тешим себя мыслью, что каждый, кто прочтет эту книгу, тотчас же станет рьяным, а главное деятельным оберегателем природы, проводящим в жизнь природоохранные законы и там, где он живет, и на своем промышленном, транспортном, сельскохозяйственном или в каком там еще он работает предприятии, вне зависимости от профессии и занимаемой должности, ибо в этом деле нет рангов и чинов, соблюдать законы и отстаивать их строгое соблюдение другими есть, в сущности, долг каждого гражданина страны. Мы писали эту книгу с робкой надеждой, что тот, кто прочтет ее, станет хоть немного осведомленнее, почему эти законы изданы и почему их необходимо соблюдать. Ибо уверены – беда заключается не в злой воле того или иного работника или руководителя, а в недостаточной осведомленности в экологических проблемах современного мира большинства людей. Мы уверены, что человек, даже вынужденный силою каких-то обстоятельств нарушить закон, если он ведает, что творит, всегда будет испытывать чувство вины и в следующий раз постарается этих самых обстоятельств не допустить. Ну, а если на основе полученных знаний будут предприняты эффективные действия с целью предупредить «нелепую случайность» и «стечение обстоятельств», мы и вовсе будем, счастливы – значит труд наш не напрасен.

Следует особо оговорить, что книга эта обращена не только к работникам промышленности, сельского хозяйства и других отраслей народного хозяйства – как это иные могут заключить по введению, – но, как говорится в экспедиционных «открытых листах», – ко всем, кого это касается.

А касается это – всех.

И родилась Жизнь

Любому инженеру любой специальности да и не специалисту в области техники или точных наук вполне ясно, что прежде чем говорить об устойчивости или ненадежности, других эксплуатационных качествах того или иного объекта необходимо досконально знать, из каких материалов он состоит, конструкцию и технологию его сооружения, чтобы определить его возможности, способности вынести предполагаемые нагрузки. И уж коли речь зашла об антропогенном влиянии на природные объекты и Природу вообще, обойтись без знания хотя бы в общих чертах строения мира, в котором мы живем и действуем, невозможно. А поскольку современный человек, даже достаточно отрешенный от техники гуманитарий, гораздо больше знает об устройстве машин и конструкции небоскребов, нежели о Природе и ее явлениях, мы прежде всего остановимся на том, что представляет собою мир в свете современных научных знаний.

В начале начал, как говорят сегодня астрофизики, все вещество Вселенной – все эти мириады и мириады галактик, состоящих из мириад звезд, радиус большинства которых превышает радиус всей нашей солнечной системы, – было сконцентрировано в одной точке. Размеры этой точки оцениваются учеными по-разному: одни говорят, что была она объемом с горошину, другие полагают, что не превышала размеров спичечной головки, третьи и вовсе утверждают, что была она не больше атома. Но как бы там ни было, даже если бы эта «точка» была величиною с нашу Солнечную систему, и то вещество Вселенной находилось бы в ней в чрезвычайно сжатом и, в сущности, для нас пока еще неизвестном состоянии.

Вопрос о размерах частицы вовсе не праздный, как может показаться на первый взгляд. Ибо от ответа на него зависит и представление о том, из чего состояла, в каком виде пребывала в то время Праматерия, из которой развивалось вещество Вселенной, а значит, и ответ на самый главный вопрос: что же такое Материя, из которой состоит весь наш мир и мы с вами? И хотя полной ясности в этом нет, кое-что мы узнать можем.

Ну хотя бы на первый случай вот что: состояла ли эта частица из того самого вещества, что и нынешняя Вселенная? Для этого прежде всего нужно выяснить, до каких пределов оно может уплотниться. Самое плотное тело на Земле – ядро атома, плотность которого в 100 000 млрд. раз больше принятой за единицу измерения плотности воды 1 г/см3. Как выяснили астрофизики, в природе Вселенной существуют и сверхплотные тела – нейтронные звезды, вещество которых сжато в 10-100 раз больше, чем протоны и нейтроны ядра атома в обычном его состоянии.

Если припомнить воровскую модель атома, станет ясно, насколько «рыхла» его структура – в любом природном теле ядра составляющих его атомов отделены друг от друга энергетической оболочкой электронов. В нейтронных же звездах под воздействием огромной гравитационной силы свободные электроны вдавливаются в протоны, а образующиеся в результате этого и уже существовавшие нейтроны тесно прижимаются один к другому без каких бы то ни было энергетических и прочих зазоров. И это – предел для плотности вещества Вселенной. Правда, предполагается, что в «черных дырах», которыми так любят жонглировать писатели-фантасты и популяризаторы, плотность еще большая, так что и свет не может вырваться за их пределы, но хоть их существование допускал еще лет 200 назад Лаплас, они, сколько ни ищут их астрономы, до сих пор так и не обнаружены. Да и существование их подвергается вполне обоснованному сомнению, хотя и возможность эта вовсе не исключается.

Если бы земной шар вдруг обрел сверхплотность нейтронной звезды, то при той же массе, или – как говорится в просторечии – весе он имел бы размеры футбольного мяча. Солнце, которое имеет массу в 330 000 раз большую, чем Земля, в «нейтронном варианте» стало бы диаметром 3 километра.

А то, что интересует нас сейчас в особенности – Вселенная – собралась бы в тело всего только 50 световых лет – 500 000 млрд. километров в поперечнике.

Говоря «всего только», мы вовсе не иронизируем. Несмотря на огромность масштабов, которые и представить, не то что преодолеть самыми современными космическими кораблями, невозможно: в сравнении с тем пространством, которое занимает сегодня Вселенная, они ничтожны. Точка, поставленная карандашом на стене стоэтажного небоскреба или пирамиды Хеопса, относительно площади стены в миллионы раз больше соотношения нейтронной и нынешней Вселенной. Вот если бы мы поставили эту карандашную точку на поверхности в миллион квадратных километров, то тогда соотношение было бы вполне удовлетворительным. Только как обнаружить, как разглядеть ее на такой площади?

Но в этом сверхплотном состоянии вещество Вселенной сможет существовать всего какой-то миг, не больше. Огромная масса порождает чудовищные гравитационные силы, которые все ускоряют и ускоряют дальнейшее сжатие. Так камень, сброшенный с высоты, чем дольше падает, тем быстрее летит. Кстати, падение его обусловлено силами гравитации. Вот точно так же и вещество нейтронной Вселенной «падает» к центру все быстрее и быстрее и все больше и больше сдавливается. Под воздействием огромного сжатия и не менее громадной температуры – тысячи миллиардов градусов! – нейтроны распадаются на субатомные частицы, которые от продолжающегося усиливаться сжатия и увеличения температуры в одну секунду распадаются и превращаются – во что? Согласно знаменитой формуле А. Эйнштейна Е=мс2, в чистую энергию.

В то же мгновенье прекратилось сжатие – вещества нет, значит, нет и массы и присущей только ей силы гравитации. Мгновенно исчезла и миллиардо-градусная температура (как известно из школьного курса, она возникает при столкновении частиц вещества, а их уже нет). Пропали и электромагнитные поля, поля слабых и сильных взаимодействий, которыми обмениваются атомные и субатомные частицы – не стало их носителей.

Осталась только чистая энергия невероятной мощи, способная, согласно той же формуле Эйнштейна, швырнуть все вещество Вселенной массой 1050 мегатонн так, что она летела бы со скоростью 90 млрд. километров в секунду!

Ну а каковы все же были ее размеры? Вполне возможно – с горошину. Может быть, и со спичечную головку. Вероятно также – и с атом. Ибо энергия, хоть и имеет вполне явственные физические свойства, вещественностью не обладает. А только вещественное тело не может занять в пространстве того же места, в котором находится уже другое тело. Энергия же места в пространстве не занимает. Так же, как электромагнитные и гравитационные поля, которые вполне спокойно могут накладываться одно на другое хоть до бесконечности и ничуть не мешать друг другу сосуществовать в одном и том же пространстве и времени. Так же вот и энергия может существовать в огромных количествах в каком угодно малом объеме, вовсе не чувствуя себя стесненной.

А вот что она собою представляет, нам до сих пор неизвестно, даром что пользуемся энергией– точнее, ее разнообразными видами: химической, тепловой, электрической, ядерной и т. п. – с незапамятных времен, а вообще живые существа – с тех самых пор, как появилась Жизнь на Земле.

И из чего она состоит, не знаем. И состоит ли или является той неделимой начальной субстанцией, из какой и строится весь материальный мир, не знаем, не знаем, не знаем.

А очень хотелось бы знать. В энергии – и тайна единого поля, над которой бился Эйнштейн и по сей день бьются физики, и загадка бытия всего этого необъятного и разнообразного мира, разгадать которую пытались и пытаются лучшие умы человечества, и разгадка Будущего, в которое устремляется этот мир.

И вот к тому времени, с которого начался наш рассказ – хоть и не было в ту пору времени, а царила Бесконечная Вечность, – висела она, а точнее, не висела, а пребывала, таинственная и непостижимая, среди абсолютного нуля, абсолютного мрака, абсолютного безмолвия в абсолютной неподвижности абсолютной пустоты.

И тут можно бы было услышать возражение критика-педанта:

– Пустоты в природе не существует! Великие умы XX века А. Эйнштейн, В. И. Вернадский и многие другие категорически отрицали существование пустоты!

Пустота, которую физики предпочитают именовать вакуумом – в силу того что вакуум обладает, как известно, некоторыми физическими свойствами и, значит, входит в перечень явлений, которыми физики занимаются, – не может не существовать, что бы там ни говорили великие умы. Тем более, что и Эйнштейн и Вернадский отрицали существование пустоты в существующей Вселенной, точнее, в ее межзвездной среде, которая, хоть и чрезвычайно разрежена, но все же всегда содержит и газовые, и энергетические релятивистские, и пылевые частицы, пронизана гравитационными (пусть чрезвычайно слабыми) и электромагнитными полями, словом, населена.

Мы же в данном случае говорим о той поре, когда ни частиц, ни полей еще не было и в помине. Было ничто вокруг сгустка энергии – пустота.

Физики утверждают, что в ту пору «вакуум» пустоты обладал физическими свойствами, прямо противоположными тем, которые имеет вакуум на Земле. Если у нас он стремится втянуть в себя любое доступное ему вещество, то в ту пору он отталкивал все, к чему только ни прикасался. Запомним это свойство – пригодится в будущем для объяснения некоторых неясных еще явлений. По мнению тех же физиков, когда родилась Вселенная, «вакуум» пустоты вдруг неизвестно почему потерял это свойство и ныне он, так сказать, «вакуум без свойств», если не считать его земного собрата, который в миллионы раз более населен всевозможными частицами, несмотря на все технические ухищрения людей, разрежающих атмосферный воздух в вакуумных камерах. Свойства земного вакуума демонстрируются только в условиях давления земной атмосферы; в космическом пространстве он вполне бы мог сойти за чрезвычайно густую туманность.

И чтобы не путаться, мы будем называть кошку кошкой, а пустоту пустотой.

Большой взрыв нарушил мирное и спокойное пребывание энергии в dolce far niente (дольче фар ниенте (в сладком ничегонеделании (прим. ред.))), как говорят итальянцы. Как, почему это вдруг случилось, что потревожило равновесие и потому самое удобное, бесконечное и самое приемлемое состояние ее, об этом предстоит еще догадываться. Распирающая ли ее самое собственная мощь, ищущая выхода, действия, тому виною, отталкивающее ли, а потому сжимающее все больше и больше до какого-то наиминимальнейшего предела, за которым грозит полное исчезновение и как следствие возникшая необходимость ему противостоять, воздействие пустоты, а может быть, и то и другое сразу вывело сгусток чистой энергии из состояния покоя?

И – опять же вопрос совсем не праздный. От ответа на него зависит и ответ на животрепещущий «детский» вопрос: вечно ли будет существовать Вселенная, а вместе с нею, конечно, и человечество, или когда-нибудь все же наступит «конец света»? Ибо от предположения, что он наступит хотя бы даже через миллиарды лет, сердце сжимается от безысходности и становится скучно и вроде бы незачем жить.

Если Большой взрыв произошел по причинам, которые мы предположили, то это означает, что материя мира периодически пульсирует между какими-то крайними пределами. Сжатая до отказа энергия, достигнув критического состояния, «взбунтовавшись», разрывает сдерживающие ее оковы пустоты, распрямляется как пружина, мгновенно распространяясь в пространстве и преобразовываясь в вещество Вселенной. Первоначальный импульс заставляет разлетаться это вещество, но со временем, за десятки или сотни миллиардов лет, он ослабевает, силы гравитации – ньютоновского всемирного тяготения – берут верх, вещество начинает собираться в одно место и дальше все идет по сценарию, представленному в начале раздела. Вещество Вселенной вновь превращается в сгусток чистой энергии, он снова достигает определенного критического состояния, опять происходит Большой взрыв и т. д. их. п.

В этом случае материя мира будет, как ей и полагается, существовать бесконечно, но вот Вселенная и человечество увы! – нет. Более оптимистично для нас предположение, что первоначальный сгусток энергии потерял равновесное состояние не в резуль тате неизбежного кризиса, а совершенно случайно. Однако случай – всегда результат взаимодействия нескольких перекрещивающихся в одной точке явлений или сил и, хотим мы этого или не хотим, в данной ситуации нам снова придется вернуться к тому же самому взаимодействию сгустка энергии и пустоты, с которого начался разговор о причине Большого взрыва. Ибо ни плотно обжимающая сгусток пустота, ни сам сгусток энергии, находящийся в равновесном состоянии хоть какое-то самое малое время, не говоря уж о бесконечности, случайному изменению своих состояний не подвластны, Для того чтобы их изменить, требуется третья, сторонняя сила или вмешательство, а по условиям нашей задачи, принятой сегодняшней наукой, их в ту пору существовало только две: пустота и энергия – два противоположных, противопоставленных друг другу явления.

Есть еще, правда, сверхоптимистичное мнение, что Вселенная в том виде, который мы наблюдаем сейчас, существовала бесконечно изначально, точнее, и начала ее никогда не было, как не будет никогда конца, но это предположение противоречит наблюдаемой учеными эволюции вещества Вселенной. А сейчас мы расскажем о том, что же произошло, по мнению ученых, после Большого взрыва.

Сотворение мира, по мнению всех астро– и просто физиков произошло, в сущности, одномоментно. А вот каким образом это происходило, тут мнения расходятся.

Одна из гипотез, разработанная в свое время советским физиком Р. М. Мурадяном, предполагает, что в начале начал была частица, которую он назвал суперадроном, с массой, равной массе вещества нынешней Вселенной – 1056 г. Большой взрыв разнес этот сверхмассивный суперадрон на части, образовавшие протогалактические скопления. В свою очередь эти части распались на галактики. Представление об этом может дать праздничный фейерверк типа фонтан. В небо взлетает патрон и на определенной высоте выбрасывает заложенные в нем меньшие заряды, которые и рассыпают в ночном небе звезды содержащихся в них десятков ракет.

Гипотеза эта, довольно хорошо объясняя появление галактик и их скоплений, которые наблюдают астрономы, противоречит, однако, фундаментальным физическим законам поведения вещества. Огромная масса суперадрона исключает его распадение на отдельные куски – даже при вспышке сверхновой звезды ее вещество не отваливается кусками, а истекает сплошным облаком. А ведь любая сверхновая в сравнении с гипотетическим суперадроном все равно, что атом в сравнении с Солнцем (в данном случае мы берем массу, а не размеры и физическое состояние). И поэтому частицы, составляющие вещество звезды, гораздо крупнее, нежели частицы суперадрона. Представить же, что при столь чудовищном сжатии, его вещество было неоднородно и по границам этих неоднородностей распалось, попросту невозможно.

Другая гипотеза, изложенная в книге известного американского физика С. Вайнберга, полагает, что Большой взрыв был не таким, к которому мы привыкли – из определенного центра разлетается во все стороны вещество, – а сразу по всему полю, занимаемому в ту пору материей пространства. Вроде того, как на всей площади фотобумаги появляется сразу все изображение в быстродействующем проявителе. И разбегалось не вещество, а пространство, увлекая за собою, удаляя друг от друга его частицы.

Похоже на то, как если бы детский воздушный шарик внесли в вакуумную камеру. Разница давлений внутри его и снаружи мгновенно раздула бы шарик до гигантских размеров и между молекулами содержащегося в нем воздуха появились бы большие расстояния – они разбежались вместе с внутренним пространством шарика. Так что технически подобный процесс вполне возможен. Но вот физически…

Даже если допустить, что пространство может растягивать материю, как школьник резинку рогатки, то и в этом случае возникает множество сомнений в справедливости гипотезы. Подобное растяжение происходило бы одинаково в любой точке и пространства, и материи. Однородные частицы всегда находились бы на равном расстоянии одна от другой, и поэтому тех сгустков вещества Вселенной, которые мы видим в галактиках и звездах, образоваться попросту бы не смогло. И до сих пор пространство разносило бы эти мельчайшие частицы размером в атом, а то и еще меньше, по необъятным своим просторам, однообразно заполненным (а точнее, не заполненным) этими частицами, разбежавшимися бы к нашему времени на расстояния в миллиарды километров одна от другой. Потребовалось бы вмешательство сторонней, третьей силы, которая могла бы согнать эти частицы в сферы звезд и их скоплений – галактики. Да и на том этапе, когда расстояния между частицами были незначительны, для разделения их на отдельные, скажем, облака необходима бы была сторонняя, третья сила.

Но такой силы, как мы знаем сегодня, в физическом мире нет.

Противоречит эта гипотеза и общепринятому нынче представлению, что начало Вселенной было «горячим». Тепло возникает при столкновении частиц вещества, а не при их удалении друг от друга в пространстве.

Третья гипотеза, которую поддерживают многие ученые, и в частности выдающийся итальянский физик Т. Редже, похожа на кинофильм, снятый по сценарию, данному в начале раздела – о сжатии вещества Вселенной в одной точке, – только прокрученному в обратную сторону. Правда, о том, в каком состоянии находилась материя до Большого взрыва и даже во время него, осторожно умалчивается. «Никто не может гарантировать, что законы физики остаются справедливыми для такого состояния вещества, при котором весь Космос оказывается сжатым до размеров спичечной головки, – пишет Т. Редже. – Нам придется удовлетвориться тем, что отправной точкой мы будем считать десятитысячную долю секунды после самого начала» (Редже Т. Этюды о Вселенной. М., 1985, с. 55.).

Большой взрыв, полагает эта гипотеза, свершился обычным образом: из одной точки во все стороны начала мгновенно с огромной скоростью истекать материя. Специальные вычисления показали, что к моменту, о котором говорит Т. Редже, ее радиус составлял 1/30 светового года – 300 млрд. километров. Впечатляющая для нас эта цифра по космическим масштабам ничтожна – в 500 миллиардов раз меньше радиуса наблюдаемой ныне Вселенной. И разместить стадо в миллион слонов в спичечной коробке покажется детской задачей в сравнении с тем, сколько было втиснуто в этом объеме вещества.

Да, вещества, ибо к этому моменту образовались и первые частицы, которые, как и полагается каждой уважающей себя частице, стали расталкивать друг друга в эдакой чудовищной тесноте и толчее и потому нагрели все и вся, и прежде всего себя, до 1000 млрд. градусов. Считается, впрочем, что образовалось не только вещество, но и антивещество, и потому частицы – мюоны и электрон-позитроны – появлялись парами. А вот почему эти пары не аннигилировали, не уничтожили тут же взаимно друг друга, не ясно.

Огромная скорость расширения разносит частицы все дальше одну от другой, становится все менее тесно, частицы все меньше сталкиваются и температура падает. Всего через секунду после Большого взрыва пропадают мюоны, начинается образование протонов и нейтронов, а из них атомных ядер в основном гелия. Этот нуклеосинтез заканчивается в течение первых трех минут.

Расчеты показали, что в этом случае во временном интервале, скажем, от одной до четырех секунд, радиус расширения увеличивается вдвое и во столько же раз уменьшается температура. 15 минут спустя радиус расширившегося вещества достигает 100 световых лет, а его температура становится сравнимой с наблюдаемой при термоядерных взрывах – 300 млн. градусов. С этого времени процесс расширения и снижения температуры начинает идти менее интенсивно: только миллион лет спустя вещество охладится настолько (до 4000°), что свободные электроны могут рекомбинировать с ядрами и образовывать устойчивые атомы водорода и гелия, из которых, в сущности, и синтезируются все элементы, содержащиеся в таблице периодической системы Менделеева. Словом, все происходит настолько стройно, что можно вполне построить линейный график:

Но и при всей стройности и здесь, мягко говоря, концы с концами не сходятся. Прежде всего изумляет скорость разбегания вещества. Мы даже не период берем до образования мюонов и электрон-позитронных пар – неизвестны исходные размеры и состояние материи. Но после этого уже вещество за каких-нибудь 15 минут – 1000 секунд – разбегается до радиуса 100 световых лет. Следовательно, со скоростью в 3 млн. раз превышающей скорость света!

Если бы это была чистая энергия, тогда еще как-то можно бы было согласиться – это неизвестно, что может распространяться с неизвестно какой, в сущности, любой, вплоть до бесконечной, скоростью. Но здесь же уже образовались не только мюоны, электроны и позитроны, но и протоны, нейтроны и ядра – те самые частицы, которым Эйнштейн положил запрет двигаться даже чуточку быстрее скорости света, не то что там в миллионы раз скорее!

И забавнее всего то, что эти, столь противоречащие друг другу выводы зиждутся на расчетах, основанных на одной и той же общей теории относительности.

Другое сомнение в линейном, из одного центра, расширении Вселенной возникает опять же в связи с дальнейшим ее развитием в ту, какую мы видим сейчас. Как могли образоваться галактики и звезды, а еще раньше сгущения вещества среди однородных, размазанных по всему пространству одинаково густо (или одинаково редко, все равно), одинаковых, находящихся на одном и том же расстоянии друг от друга частиц, совершенно непонятно. Правда, высказывается предположение, что изначально облако вещества было неоднородно, уже содержало какие-то отдельные сгустки, которые впоследствии и притянули, собрали вокруг себя материал для строительства галактик и звезд, но предположение это не серьезно. Во всяком случае фундаментальные физические законы отвергают его. И законы эти выведены на основании наблюдений за поведением вещества именно в том его состоянии, о котором идет речь.

И еще одно: что же затормозило тот чудовищно быстрый разлет вещества Вселенной? Ведь сопротивления оно не встречало никакого, ибо разлеталось в пустоте.

Предположить, что оно затормозило само себя, все равно, что поверить известному барону Мюнхгаузену, который рассказывал, что однажды, завязнув в болоте, он избавился от неминуемой смерти, выдернув за собственные волосы себя вместе с конем из трясины и выбросив на берег!

Или опять вмешалась некая третья сила?

Третий лишний, как говорится в известной детской игре. Правда, с образованием вещества Вселенной родились и сопутствующие ему силы – электрические, магнитные, гравитационные, но силы эти при тех неимоверных скоростях разлета были бессильны разорвать, разделить однородную плазму, даже чуточку притормозить ее движение были едва ли в состоянии. Это можно понять по примеру тех же сверхновых, в которых при импульсе взрыва в миллиарды раз меньшем гравитационные силы все же не могут удержать выброс вещества в космическое пространство.

Даже если предположить, что при чудовищной массе и гравитационные силы были под стать и как-нибудь все-таки могли задержать разлет вещества, то это все равно не объясняет факта образования галактик и звезд. Ну, остановилось в своем стремительном беге размазанное однородно по всему пространству однородное вещество и что дальше? А дальше, уж коли гравитация сдержала его от разлета, она будет его сжимать опять до состояния первоначальной точки. А потом снова энергия взбунтовалась бы и расшвыряла все вокруг себя и опять гравитация все стянула бы в одну точку и так до бесконечности происходила бы игра в «сожми – разожми», и ни той Вселенной, какая есть, ни звезд, ни галактик, ни нас с вами так и не появилось бы никогда.

Но и мы, и звезды-галактики, и Вселенная есть. Значит должно существовать и нечто, обусловившее образование нынешней Вселенной. А поскольку единственное «что-то», что могло в то время быть наряду с веществом, это, в сущности, ничто, пустота, то, хотим мы этого или нет, но придется обратить внимание на нее.

Обладала ли она активным, как полагает современная физика, свойством отталкивания вещества или пассивно только сопротивлялась его расширению, в принципе не так уж и важно. Важно, что пустота вступала во взаимодействие с веществом, а следовательно, могла противостоять, сдерживать беспрепятственный свободный разлет его в бесконечности. В этом случае, по-видимому, и появлялось то нарушение однородности, которое нас интересует. Ведь так или иначе, но в контакт с пустотою могло вступать не все вещество сразу, а только его пограничная часть. На границе расширения, вступая во взаимодействие с пустотою, вещество должно было уплотняться, как уплотняется подушечка ладони, когда мы толкаем неподатливую дверь. А может быть, напротив, разрежаться, что тоже исключить нельзя. Но как бы то ни было на самом деле, главное для нас в данном случае, что пограничное вещество было иным по отношению к следующей за ним массе.


    Ваша оценка произведения:

Популярные книги за неделю