Текст книги "Теория струн и скрытые измерения вселенной"
Автор книги: Стив Надис
Соавторы: Яу Шинтан
Жанр:
Технические науки
сообщить о нарушении
Текущая страница: 8 (всего у книги 29 страниц)
Безотносительно к тому, сознательно или бессознательно Калаби затрагивал физические проблемы, связь между его гипотезой и вопросами гравитации стала для меня важнейшим побудительным фактором, чтобы приняться за эту работу. Я понял, что доказательство гипотезы Калаби может стать важным шагом на пути к раскрытию какой‑то глубокой тайны.
Вопросы, подобные тому, который поставил Калаби, часто формулируют в терминах метрики или геометрии пространства – набора функций, который позволяет определить длину любой траектории в соответствующем пространстве, – с этим понятием мы впервые столкнулись в первой главе. Всякое топологическое пространство способно принимать множество различных форм и, следовательно, обладать множеством всевозможных метрик. Одно и то же топологическое пространство может иметь форму куба, сферы, пирамиды или тетраэдра – геометрических тел, эквивалентных с топологической точки зрения. Вопрос, который затрагивает гипотеза Калаби, относящийся к разновидностям метрики, допустимым в данном пространстве, может быть переформулирован следующим эквивалентным образом: какие из геометрических форм возможны для пространств данной топологии?
Конечно, Калаби не использовал в точности такие термины, когда выдвигал свою гипотезу. Его цель состояла в том, чтобы узнать, будет ли определенный вид комплексного многообразия, а именно пространство, являющееся компактным, то есть имеющим ограниченную протяженность, и «кэлеровым» – удовлетворяющим определенным топологическим условиям (имеющим определенную характеристику, известную как «обращение в нуль первого класса Черна»), – иметь риччи‑плоскую метрику. Нужно признать, что все ключевые составляющие данной гипотезы весьма сложны для непосредственного восприятия, поэтому определение всех понятий, необходимых для понимания утверждения Калаби, таких как комплексные многообразия, геометрия и метрика Кэлера, первый класс Черна и кривизна Риччи, – потребует определенных усилий.
На протяжении данной главы всем этим понятиям будет дано объяснение. При этом основной идеей гипотезы является возможность – с математической и геометрической точек зрения – существования пространств, удовлетворяющих всему этому сложному набору требований.
Мне кажется, что такие пространства столь же редки, как алмазы, и гипотеза Калаби предоставляет карту, позволяющую их обнаружить. Зная, как решить уравнение для одного из многообразий и понимая общую структуру этого уравнения, при помощи той же идеи можно решить соответствующие уравнения для всехкэлеровых многообразий, удовлетворяющих заданным требованиям. Гипотеза Калаби предлагает существование общего правила, указывающего нам на то, что «алмазы» находятся именно в данном месте – или, иными словами, на то, что та метрика, которую мы ищем, существует. Даже если пока мы не способны увидеть ее во всей красе – мы не сомневаемся в том, что она действительно существует. Среди всех математических теорий эта казалась мне скрытым сокровищем – чем‑то сродни неограненному алмазу.
Из этой идеи зародилась та работа, благодаря которой я получил сегодняшнюю известность. Можно сказать, что именно в этой работе я нашел свое истинное призвание. Вне зависимости оттого, в какой области мы работаем, мы все стремимся найти наше собственное призвание в жизни – то особое, для которого мы появились на этой земле. Для актера таким призванием может стать роль Стэнли Ковальски в пьесе Теннесси Уильямса «Трамвай “Желание”». Или заглавная роль в «Гамлете». Для пожарного это может быть победа над пожаром десятой категории сложности. Для криминалиста – поимка Врага Общества Номер Один. Ну а в математике найти свое призвание – значит найти ту задачу, работа над которой была предопределена тебе самой судьбой. Хотя, возможно, дело тут и не в судьбе. Может быть, достаточно просто наткнуться на задачу, которую ты можешь успешно решить.
Говоря откровенно, выбирая задачу для дальнейшей работы, я никогда особо не задумываюсь о том, какую роль в моей дальнейшей судьбе она может сыграть, напротив, в этих вопросах я стараюсь быть как можно более прагматичным. Моей целью является поиск новых направлений в математике, способных породить новые, неизвестные математические задачи, многие из которых и сами по себе будут интересны. Может оказаться и так, что меня заинтересует уже существующая проблема, если мне покажется, что ее решение может значительно раздвинуть горизонты той или иной области.
Гипотеза Калаби, известная к тому времени уже пару десятилетий, подходила именно под вторую категорию. Я обратил внимание на эту задачу на первом курсе аспирантуры, хотя порой мне казалось, что на самом деле это задача обратила на меня внимание. Ни одна из задач до того так не захватывала меня, как эта, поскольку я чувствовал, что ее решение может открыть дверь в совершенно новую область математики. Гипотеза Калаби отчасти затрагивала классическую проблему Пуанкаре, однако казалась мне более общей, так как из предположения Калаби следовало не только существование нового большого класса математических поверхностей и пространств, о которых до этого ничего не было известно, но и, возможно, она вела к новому пониманию пространства и времени. Для меня эта встреча с этой гипотезой была практически неизбежной: почти все дороги, по которым я двигался в своих первых исследованиях кривизны, неминуемо вели к ней.
Прежде чем приступить непосредственно к обсуждению доказательства данной гипотезы, необходимо для начала разобраться с упоминавшимися ранее понятиями, лежащими в ее основе. Гипотеза Калаби относится только к комплексным многообразиям. Понятие многообразия, как я уже говорил, аналогично понятию поверхности или пространства, но, в отличие от хорошо знакомых нам двухмерных поверхностей, многообразия могут иметь любую четную размерность, не обязательно равную двум. Ограничение по поводу четного значения размерности относится только к комплексным многообразиям, в общем случае многообразие может иметь как четную, так и нечетную размерность. По определению многообразия на малых или локальных участках имеют сходство с евклидовыми пространствами, но в больших, или так называемых глобальных, масштабах они демонстрируют заметное отличие. Так, к примеру, окружность представляет собой одномерное многообразие, и окрестность каждой из лежащей на ней точек можно уподобить отрезку прямой. Но в целом окружность совершенно не похожа на прямую линию. Теперь добавим еще одно измерение. Мы живем на поверхности сферы, которая представляет собой двухмерное многообразие. Взглянув на достаточно малый участок земной поверхности, можно обнаружить, что он имеет практически идеально плоскую форму как диск или фрагмент плоскости, несмотря на то что в целом эта поверхность искривлена и, следовательно, неевклидова. Если теперь выбрать на поверхности участок значительно большего размера, то отклонение от евклидовости станет очевидным, что приведет к необходимости сделать поправки на кривизну.
Одной из важных особенностей многообразий является их гладкость. Это свойство прямо вытекает из их определения, поскольку из сходства каждого малого участка поверхности с евклидовым пространством напрямую следует гладкость поверхности во всех точках. Геометры говорят о гладкости многообразия даже в том случае, если оно имеет некоторое количество «странных» точек, в которых условие локальной евклидовости не выполняется – например, точка пересечения двух линий. Такие точки носят название топологических сингулярностей, поскольку их в принципе невозможно сгладить. Вне зависимости то того, насколько мала выбранная вокруг такой точки окрестность, пересечение все равно останется пересечением.
Подобные вещи постоянно встречаются в римановой геометрии. В начале преобразования объект может быть гладким и простым для исследований, но стоит нам приблизиться к определенному пределу – скажем, постепенно заостряя его форму или срезая углы, – и возникновение сингулярности станет неизбежным. Впрочем, геометры обычно столь либеральны в этом вопросе, что даже пространство, имеющее бесконечно большое число сингулярностей, в их глазах все равно остается многообразием – в этом случае они называют его сингулярным пространством, или сингулярным многообразием, и рассматривают как предельную форму гладкого многообразия. При этом вместо двух линий, пересекающихся в одной точке, чаще рассматривают плоскости, результатом пересечения которых будет линия.
Это и есть грубое определение понятия многообразия. Теперь что касается слова «комплексное». Комплексным называется такое многообразие, каждой точке которого можно сопоставить определенное комплексное число. Подобное число имеет вид a+ ib, где аи b– действительные числа, a i– так называемая мнимая единица, определяемая как квадратный корень из ‑1. Как и координаты точки на плоскости, которые можно изобразить на графике с двумя осями xи y, одномерные комплексные числа можно изобразить на графике с двумя осями, соответствующими вещественной и мнимой частям.
Комплексные числа полезны по нескольким причинам – прежде всего потому, что они дают возможность извлекать квадратные корни из отрицательных чисел. При помощи комплексных чисел можно решить квадратное уравнение вида ax 2 + bx + c = 0при помощи формулы, которую многие из вас учили в средней школе x= (‑b± √(b 2 ‑ 4ac))/2aвне зависимости от того, какое значение имеют величины a, bи c. После того как комплексные числа введены, уже не нужно ломать руки в отчаянии, если дискриминант b 2 ‑ 4acвдруг окажется отрицательным; несмотря на это, уравнение все равно будет иметь решение.
Комплексные числа важны, а иногда просто незаменимы для решения полиномиальных уравнений, содержащих одну или несколько переменных и постоянных. Задача, как правило, состоит в нахождении корнейуравнения – точек, в которых значение полинома обращается в нуль. Если бы комплексных чисел не существовало, многие из подобных задач не имели бы решения. Наиболее простым примером является уравнение x 2 + 1 = 0, не имеющее вещественных корней. Данное равенство будет верным, то есть полином обратится в нуль, только в случае когда x = iили x = ‑i.
Кроме того, комплексные числа важны для понимания волновых процессов, поскольку комплексная амплитуда содержит информацию не только об амплитуде, но и о фазе волны. Две волны, имеющие одинаковую амплитуду и частоту, могут либо совпадать по фазе, и тогда волны накладываются друг на друга и результирующая волна будет равна их сумме, либо не совпадать – и тогда волны частично или полностью погасят друг друга. Если фаза и амплитуда волны выражены при помощи комплексного числа, то сложение двух волн сводится к сложению или умножению двух комплексных чисел. Выполнить этот расчет без привлечения комплексных чисел также возможно, но он будет намного сложнее, точно так же, как расчет движения планет в Солнечной системе можно произвести и в геоцентрической системе, но уравнения будут проще и изящнее, если поставить в центр физической картины Солнце, роль комплексных чисел в описании волновых процессов сделала их незаменимыми для физики. Так, в квантовой механике каждая элементарная частица может быть представлена в виде соответствующей волны. Квантовая механика в свою очередь является ключевым компонентом разнообразных теорий квантовой гравитации, претендующих на роль так называемых «теорий всего». С этой точки зрения возможность описывать волны при помощи комплексных чисел является заметным преимуществом.
Впервые комплексные числа были задействованы для вычислений в книге итальянского математика Джероламо Кардано, опубликованной в 1545 году. Однако роль комплексной геометрии как значимой дисциплины была признана только спустя три столетия. Человеком, который вывел комплексную геометрию на передний план математики, стал Георг Фридрих Бернхард Риман – архитектор первых подробно исследованных комплексных многообразий – так называемых римановых поверхностей. Эти поверхности приобретут особую важность в теории струн, созданной почти через сто лет после смерти Римана. Когда крошечная замкнутая струна, являющаяся основным элементом теории струн, движется в многомерном пространстве‑времени, поверхность, которую она заметает за собой, является римановой. Использование таких поверхностей для расчетов в рамках теории струн сделало их одними из наиболее исследованных поверхностей в современной теоретической физике. Теория римановых поверхностей существенно обогатилась от сотрудничества с теорией струн, поскольку полученные из физического описания уравнения весьма укрепили ее математическую часть.
Римановы поверхности, подобно обычным двухмерным многообразиям, являются гладкими, но из их комплексной природы – они являются одномерными комплексными многообразиями – следует наличие у них дополнительной встроенной структуры. Одна особенность, автоматически следующая из комплексной природы поверхности, но не всегда присущая действительным поверхностям, состоит в том, что все окрестности поверхности связаны друг с другом определенным образом. Спроецировав небольшой фрагмент искривленной римановой поверхности на плоскость и затем проделав ту же операцию для всех окружающих его фрагментов, можно получить карту, похожую на ту, которая получается при изображении трехмерного глобуса в двухмерном географическом атласе мира. Если сделать подобную карту на основе римановой поверхности, то расстояния между различными объектами на этой карте будут искажены, однако углы между ними сохранятся. Та же идея – сохранение углов за счет искажения расстояний – использовалась и на появившихся в XVI столетии картах, основанных на проекции Меркатора, которые представляли земную поверхность не в виде сферы, а в виде цилиндра. Сохранение углов при так называемом конформном отображении земного шара на карте в те времена было необходимо для целей навигации и помогало капитанам кораблей держать выбранный курс. Использование конформного отображения существенно упрощает расчеты, относящиеся к римановым поверхностям, делая возможным для таких поверхностей доказательство многих утверждений, недоказуемых для поверхностей, не являющихся комплексными. Наконец, римановы поверхности, в отличие от обычных многообразий, должны быть ориентируемыми, а это означает, что способ определения направлений – ориентация системы координат – не зависит от местоположения точки на поверхности. Противоположная ситуация имеет место для ленты Мёбиуса – классического примера неориентируемой поверхности, в процессе перемещения по которой направления могут меняться местами – низ становится верхом, левое – правым, направление по часовой стрелке переходит в направление против часовой стрелки.
Переход от одного участка римановой поверхности к другому приводит к изменению системы координат, и только небольшая окрестность каждой из заданных точек имеет вид евклидового пространства. Эти небольшие участки нужно сшить вместе так, чтобы переход от одного из них к другому не приводил к изменению углов. Именно это и имеют в виду, когда называют подобные переходы, или «преобразования», конформными. Конечно, комплексные многообразия возникают и в измерениях с более высокой размерностью – римановы поверхности представляют собой только их одномерный вариант. Но вне зависимости от размерности, чтобы получить комплексное многообразие, необходимо должным образом соединить различные его участки или фрагменты. При этом для многообразий более высокой размерности в процессе перехода от одного участка к другому и от одной системы координат к другой углы не сохраняются. Строго говоря, такие преобразования уже не являются конформными, но представляют собой скорее обобщение одномерного случая.
Рис. 4.2.Все эти двухмерные поверхности – бык, кролик, Давид и лошадь – являются примерами римановых поверхностей, имеющих огромную важность в математике и теории струн. Можно нанести на эти поверхности узор в виде шахматной доски, выбирая точки на шахматной доске, подставляя их координаты в некую функцию и получая в результате точку на поверхности, например кролика. Однако полученная в результате шахматная доска не будет идеальной, если только ее не отобразили на поверхность двухмерного тора, по причине присутствия на ней сингулярных точек, таких как северный и южный полюсы сферы, которые неизбежно возникают на поверхностях, эйлеровы характеристики которых (понятие эйлеровой характеристики будет подробно описано далее) не равны нулю. При этом, однако, процесс отображения является конформным, то есть углы – в том числе и прямые углы шахматной доски – при переходе от одной поверхности к другой всегда сохраняются. Несмотря на то что размеры объектов, таких как клетки шахматной доски, могут в результате оказаться искаженными, углы клеток все равно будут составлять ровно 90 градусов. Это свойство сохранения углов является одной из характерных особенностей римановых поверхностей
Пространства, которые представил себе Калаби, были не только комплексными, но также имели особое свойство, называемое кэлеровой метрикой. Римановы поверхности являются кэлеровым автоматически, поэтому данное понятие обретает смысл только для комплексных многообразий двух и более комплексных измерений. В кэлеровом многообразии пространство имеет вид евклидового в определенной точке и остается близким к нему при небольшом смещении, хотя и отклоняется от евклидовости определенным образом. Для того чтобы пояснить последнее утверждение, необходимо отметить, что это многообразие имеет вид не привычного плоского евклидового пространства, а так называемого «комплексного евклидового пространства», то есть оно имеет четную размерность и некоторые из координат, определяющие положение точек на данном многообразии, являются комплексными числами. Этот отличительный признак очень важен, поскольку только комплексные многообразия могут иметь кэлерову метрику. Данная метрика в свою очередь дает нам возможность помимо всего прочего измерять расстояния при помощи комплексных чисел. Условие Кэлера, названное в честь немецкого математика Эриха Кэлера, показывает степень близости заданного пространства к евклидовому на основании критериев, не связанных непосредственно с его кривизной.
Для того чтобы количественно оценить степень близости определенного многообразия к евклидовому пространству, необходимо знать его метрику. В плоском пространстве с взаимно перпендикулярными координатными осями для расчета расстояний можно использовать теорему Пифагора. В искривленных пространствах дело обстоит несколько сложнее, поскольку оси координат в этом случае могут уже не быть взаимно перпендикулярными, что приводит к необходимости использования модифицированной версии теоремы Пифагора. Для расчета расстояний в искривленных пространствах необходимо знать метрические коэффициенты – набор чисел, изменяющийся от точки к точке и зависящий от ориентации координатных осей. Выбор той или иной ориентации осей ведет к возникновению разных наборов метрических коэффициентов. При этом значение имеют не столько величины этих коэффициентов, которые во многом произвольны, сколько характер их изменения при переходе от одной точки многообразия к другой. Это дает возможность узнать положение различных точек по отношению друг к другу и таким образом свести воедино все, что касается геометрии данного многообразия. Как уже было сказано в предыдущих главах, для описания четырехмерного пространства необходимы десять метрических коэффициентов. На самом деле коэффициентов всего шестнадцать, поскольку метрический тензор в данном случае представляет собой матрицу 4Ч4. Однако метрический тензор всегда симметричен относительно диагонали, проходящей из левого верхнего угла матрицы в правый нижний. Таким образом, четыре числа лежат непосредственно на диагонали матрицы и еще два одинаковых набора из шести чисел каждый лежат по разные стороны от нее. За счет наличия симметрии вместо шестнадцати чисел можно рассматривать только десять: четыре на диагонали и шесть – по одну сторону от нее.
Это, впрочем, еще не объясняет механизм работы метрики. Рассмотрим весьма простой пример, имеющий место для одного комплексного или двух вещественных измерений, – метрику Пуанкаре единичного круга, центр которого находится в точке плоскости с координатами (0, 0). Этот круг представляет собой набор точек ( x, y), удовлетворяющих неравенству x 2 + y 2 < 1. Формально такой круг называют «открытым», поскольку он не включает в себя свою границу – окружность, определяемую выражением x 2 + y 2 = 1. Поскольку рассматриваемый случай относится к двум измерениям, тензор метрики Пуанкаре представляет собой матрицу 2Ч2. В каждой из ячеек этой матрицы стоит коэффициент вида G ij , где i– номер строки, j– номер столбца. Таким образом, матрица будет иметь вид:
G 11 G 12
G 21 G 22
За счет симметрии, о которой шла речь выше, G 12 будет равно G 21 . Для метрики Пуанкаре эти два «недиагональных» элемента по определению равны нулю. Равенство двух других элементов – G 11 и G 22 не обязательно, но в случае метрики Пуанкаре оно имеет место: оба эти элемента по определению равны 4/(1‑x 2 ‑ y 2 ) 2 .Любой паре координат xи y, выбранной внутри единичного круга, метрический тензор ставит в соответствие определенный набор коэффициентов. Так, например, для x = 1/2и y = 1/2элементы G 11 и G 22 будут оба равны 16, оставшиеся же два коэффициента равны нулю для любой точки единичного круга.
Что же делать дальше с полученными числами? И как эти коэффициенты соотносятся с расстоянием? Нарисуем внутри единичного круга небольшую кривую, однако рассмотрим ее не как неподвижный объект, а как траекторию частицы, движущейся из точки А в точку В. Чему же равна длина этой траектории для данной метрики Пуанкаре?
Для того чтобы ответить на этот вопрос, рассмотрим кривую sи разделим ее на крошечные линейные участки – настолько крошечные, насколько это только можно представить, – и сложим их длины между собой. Длину каждого из линейных участков можно найти при помощи теоремы Пифагора. Для начала определим величины x, yи sпараметрически, то есть представим их как функции времени: x = X(t), y = Y(t)и s = S(t). Производные этих функций – X'(t)и Y'(t) – можно рассматривать как катеты прямоугольного треугольника; их подстановка в теорему Пифагора √([X'(t)] 2 +[Y'(t)] 2 )дает значение производной S'(t).Интегрирование от А до В позволяет определить длину всей кривой. В свою очередь каждый линейный сегмент представляет собой касательную к кривой, называемую в данном случае касательным вектором. Однако поскольку кривая находится на круге Пуанкаре, то перед интегрированием полученный результат нужно умножить на значение метрики √([X'(t)] 2 +[Y'(t)] 2 ) Ч√ (4/(1‑x 2 ‑ y 2 ) 2 ), чтобы ввести поправку на кривизну.
Для дальнейшего упрощения полученной картины приравняем Y(t) к нулю и таким образом ограничимся осью x. Затем начнем движение с постоянной скоростью вдоль оси xиз точки 0 в точку 1. Если время также будет изменяться от 0 до 1, то уравнение движения будет иметь вид X(t) = t, и при Y(t) = 0, что предполагалось изначально, производная X'(t)= 1, поскольку производная от Xв данном случае берется по отношению ко времени, а значение Xвсегда равно значению времени. Если представить производную в виде отношения, то последнее уравнение станет очевидным: в этом примере производная по X – это отношение изменения переменной Xк изменению переменной X, а любое отношение такого вида – с одинаковым числителем и знаменателем – всегда равно 1.
Таким образом, пугающее своим видом выражение, полученное двумя абзацами выше, которое необходимо было каким‑то образом проинтегрировать, чтобы получить из него длину, свелось к выражению 2/(1 – x 2 ).Нетрудно заметить, что когда xстремится к единице, это отношение стремится к бесконечности, и точно так же стремится к бесконечности, или, как говорят математики, расходится, и его интеграл.
Важно отметить, что из стремления к бесконечности метрических коэффициентов – в данном случае G 11 и G 22 – еще не следует, что расстояние до границы также стремится к бесконечности. Но именно это имеет место в случае метрики Пуанкаре на единичном круге. Рассмотрим внимательнее, что происходит с этими значениями при движении в направлении от центра круга с течением времени. В начальной точке, где x = 0и y = 0, оба коэффициента, G 11 и G 22 равны 4. Однако при приближении к границе круга, где сумма квадратов xи yблизка к 1, метрические коэффициенты резко возрастают, как и длины тангенциальных векторов. К примеру, когда x = 0,7и y = 0,7, G 11 и G 22 равны 10 000. При x = 0,705и y = 0,705значения коэффициентов будут больше 100 000; а для x = 0,7071и y = 0,7071– превысят 10 миллиардов. При приближении к границе круга эти коэффициенты будут не просто возрастать, но в конце концов устремятся к бесконечности – так же, как и расстояния до границы. Если бы вы были жуком, ползущим по поверхности в направлении границы круга, то, к величайшему огорчению, вы никогда бы ее не достигли. Впрочем, вы бы ничего не потеряли, поскольку данная поверхность не имеет границы в принципе. Если поместить открытый единичный круг на плоскость, то он приобретет границу в виде единичной окружности, являющейся частью данной плоскости. Но сам единичный круг Пуанкаре границы не имеет, и любой жук, пытающийся до нее добраться, умрет, так и не осуществив своей мечты. Этот непривычный и, возможно, противоречащий интуиции факт является результатом отрицательной кривизны единичного круга, обусловленной метрикой Пуанкаре.
Мы потратили некоторое время на обсуждение понятия метрики, для того чтобы уяснить для себя сущность кэлеровой метрики и кэлерового многообразия – многообразия, оснащенного подобной метрикой. Определить, является ли та или иная метрика кэлеровой, можно, исследуя ее изменение при переходе от одной точки к другой. Кэлеровы многообразия являются подклассом комплексных многообразий, известных как эрмитовымногообразия. При помещении начала комплексной системы координат в любую точку эрмитового многообразия метрика будет совпадать со стандартной евклидовой метрикой для данной точки. Однако при смещении из этой точки метрика становится все более и более неевклидовой. Выражаясь более строго, при смещении из начала координат на расстояние е(эпсилон) метрические коэффициенты сами по себе изменятся на величину порядка е. Такие многообразия принято характеризовать как евклидовы многообразия первого рода. Таким образом, если есоставляет одну тысячную миллиметра, то при смещении на екоэффициенты эрмитовой метрики останутся постоянными в пределах одной тысячной миллиметра или около того. Кэлеровы многообразия являются евклидовыми многообразиями второго рода, что означает еще большую стабильность их метрики; метрические коэффициенты на кэлеровом многообразии при смещении из начала координат на еизменяются как е 2 . Продолжая предыдущий пример, для кэлерова многообразия при смещении на е = 0,001мм метрика изменится на 0,000001мм.
Итак, что же побудило Калаби выделить кэлеровы многообразия как одни из наиболее интересных? Для того чтобы ответить на этот вопрос, следует рассмотреть все возможные варианты. Если требовать полной строгости, можно настаивать, к примеру, на том, чтобы многообразия были совершенно плоскими. Но совершенно плоскими являются только те компактные многообразия, которые имеют форму бубликов, торов и других близких к ним объектов, – что остается верным для любых размерностей, начиная от двух и выше. Тороидальные объекты просты для изучения, но их количество ограничено. Математикам интереснее исследовать более разнообразные объекты, дающие им более широкий спектр возможностей. С другой стороны, требования для причисления многообразий к категории эрмитовых слишком слабы – следовательно, число возможных объектов чрезвычайно велико. Кэлеровы многообразия, лежащие между эрмитовыми и плоскими, имеют как раз такой набор свойств, который нужен геометрам. Их структура достаточно развита, чтобы упростить работу с ними, но не настолько, чтобы ограничить математика в выборе многообразия, удовлетворяющего его спецификациям.
Другой причиной внимания к кэлеровым многообразиям стала возможность использования для их исследования методов, введенных Риманом, которые впоследствии использовал Эйнштейн. Эти методы работают на кэлеровых многообразиях, представляющих собой ограниченный класс эрмитовых многообразий, но в целом к эрмитовым многообразиям неприменимы. Мы крайне заинтересованы в возможности использования данных методов, поскольку их надежность была проверена еще в процессе разработки самим Риманом, кроме того, математики имели более столетия на их дальнейшее усовершенствование. Все это делает кэлеровы многообразия весьма привлекательным выбором, поскольку мы по сути уже имеем на руках технологию работы с ними.
Но и это еще не все. Данные многообразия заинтересовали Калаби из‑за тех типов симметрии, которыми они обладают. Кэлеровы многообразия, как и все эрмитовы многообразия, обладают вращательной симметрией при умножении векторов на их поверхности на мнимую единицу i. Для случая одного комплексного измерения точки описываются парой чисел (a, b), взятой из выражения a + bi. Допустим, что координаты (a, b)определяют тангенциальный вектор, выходящий из начала координат. При умножении вектора на iего длина сохраняется, хотя сам вектор поворачивается на 90 градусов. Чтобы посмотреть на это вращение в действии, возьмем некую точку (a, b)или a + bi. Умножение на iдаст в результате ia ‑ bили, что эквивалентно, ‑b + ia, что соответствует новой точке (‑b, a)на комплексной плоскости, определяющей вектор, ортогональный исходному и имеющий одинаковую с ним длину.
Можно легко убедиться в том, что эти вектора действительно перпендикулярны, нарисовав точки (a, b)и (‑b, a)на координатной плоскости и измерив углы между отрезками, выходящими из начала координат и заканчивающимися в данных точках. Операция, о которой идет речь, – преобразование координаты xв координату (‑y), а координаты yв координату x– носит название J‑преобразования, которое на вещественной плоскости является аналогом умножения на iна комплексной. Дважды проведенное J‑преобразование (или J 2) аналогично умножению вектора на ‑1. Дальнейшее объяснение будет идти именно в терминах поворотов (J‑преобразований), а не в терминах умножения на мнимую единицу, поскольку процесс преобразования проще представить – не важно, в голове или на бумаге – на вещественной, а не на комплексной координатной плоскости. При этом нужно не забывать, что J‑преобразование является только удобной иллюстрацией комплексного умножения на iпутем перехода к двухмерным вещественным координатам.