Текст книги "Теория струн и скрытые измерения вселенной"
Автор книги: Стив Надис
Соавторы: Яу Шинтан
Жанр:
Технические науки
сообщить о нарушении
Текущая страница: 25 (всего у книги 29 страниц)
Теория струн также стала первой непротиворечивой теорией квантовой гравитации – самого больного вопроса современной физики. Но она пошла еще дальше. «Теория струн обладает прекрасной предсказательной силой в отношении гравитации», – утверждает Виттен. Под этим он подразумевает, что теория струн делает больше, чем просто описывает гравитацию. «Этот феномен встроен в рамки теории, и тот, кто ничего не знает о гравитации, мог бы открыть ее, как естественное следствие самой теории».[265] В дополнение к квантованию гравитации теория струн подошла к решению таких задач, как проблема энтропии черной дыры, которую не удается решить другими средствами. В этом смысле теорию струн уже можно считать успешной теорией на определенном уровне, даже если она не станет окончательной теорией физики.
Хотя этот вопрос вынесен на обсуждение, можно не сомневаться, что теория струн приведет к бесценному кладу новых идей, новых инструментов и новых направлений в математике. Например, открытие зеркальной симметрии привело к появлению «семейных предприятий» в области алгебраической и исчислительной геометрии. Зеркальная симметрия, то есть идея, что большинство пространств Калаби‑Яу имеют зеркального партнера с другой топологией, но соответствующего той же физике, была открыта в контексте теории струн, а ее справедливость подтверждена математикой. Это, как мы видели, делается по типичной схеме: теория струн может дать понятия, намеки и подсказки, а математики в большинстве случаев обеспечивают доказательство.
Одна из причин, по которой зеркальная симметрия представляет такую ценность для математики, заключается в том, что сложные вычисления для одного пространства Калаби‑Яу могут оказаться намного проще для его зеркального партнера. В результате, исследователи смогли в короткие сроки решить многовековые проблемы математики. Гомологическая зеркальная симметрия и теория Строминджера‑Яу‑Заслоу (Strominger‑Yau‑Zaslow – SYZ, СЯЗ), которую разрабатывают с середины 1990‑х годов, вскрыли неожиданные, но полезные связи между симплектической геометрией и алгебраической геометрией – двумя разделами математики, которые ранее рассматривались отдельно. Хотя зеркальная симметрия была открыта при исследовании теории струн, истинность ее математического фундамента не зависит от теории струн. «Это явление, – отмечает Эндрю Строминджер, – можно описать так, что оно вообще не будет включать теорию струн, [но] прошло бы много времени, пока бы мы его обнаружили, если бы у нас не было теории струн».[266]
Приведу другой пример: в работе 1996 года я и мой бывший аспирант Эрик Заслоу использовали идею из теории струн для решения классической задачи алгебраической геометрии, связанной с вычислением количества так называемых рациональных кривых на четырехмерной поверхности K3. Напомню, что термин K3 относится к целому классу поверхностей – не к одной, а к бесконечному их числу. «Кривые» в данном случае являются двухмерными римановыми поверхностями, определяемыми алгебраическими уравнениями, и представляют собой топологические эквиваленты сфер, встроенных в эту поверхность. Количество этих кривых, оказывается, зависит только от количества узлов, расположенных на кривой, или точек, указывающих, где кривая пересекает саму себя. Например, цифра «восемь» имеет один узел, тогда как у круга количество узлов равно нулю.
Рассмотрим еще один пример с узлами, который связан с нашим предыдущим обсуждением конифолдных переходов (в десятой главе): если взять двухмерный бублик и сжать одну из окружностей, проходящих сквозь дырку, до точки, то получим что‑то похожее на рогалик с соединенными концами. Если разделить эти два конца и разорвать поверхность, то получится топологический эквивалент сферы. Таким образом, можно считать такой «прищипнутый» бублик или «соединенный рогалик» сферой с одним узлом (или пересечением). Точно так же можно перейти к поверхностям более высокого рода и посмотреть на бублик с двумя дырками: сначала сожмем в точку окружность на «внутренней стенке» между двумя дырками, затем проделаем аналогичную операцию где‑нибудь на «наружной стенке» бублика. Объект с такими двумя точками сжатия фактически является сферой с двумя узлами, поскольку, если мы разделим эти две точки и разорвем поверхность, то получим сферу. Дело в том, что если начинать с поверхности более высокого рода, скажем, с двумя, тремя или более дырками, то можно получить кривую или сферу с большим количеством узлов.
Позвольте мне переформулировать задачу в алгебраической геометрии, которую мы пытались решить вначале: для поверхности K3 мы хотим определить количество рациональных кривых с gузлами, которые можно расположить на этой поверхности, для любого значения g(положительного целого числа). Используя обычные методы, математики придумали формулу, которая хорошо работает для кривых с шестью или меньшим количеством узлов, но не с большим. Заслоу и я приступили к решению более общей задачи, то есть к кривым с произвольным количеством узлов. Вместо обычного метода мы взяли теорию струн и рассмотрели задачу с точки зрения бран внутри пространства Калаби‑Яу.
В соответствии с теорией струн существуют браны, связанные с поверхностью K3, которая состоит из кривых (или двухмерных поверхностей, как мы определили ранее), а также так называемого плоского линейного расслоения, присоединенного к каждой кривой. Чтобы получить представление о таком линейном расслоении, представим человека, идущего по экватору с палкой произвольной длины – пусть даже бесконечно длинной, – держа ее перпендикулярно экватору и касательно к поверхности сферы. В конце концов, палка опишет цилиндр, который называют тривиальным линейным расслоением. Если человек во время ходьбы перевернет палку на 180 градусов, то палка опишет ленту Мёбиуса. Кстати, оба этих линейных расслоения являются «плоскими», то есть они обладают нулевой кривизной.
Заслоу и я заметили, что если взять пространство всех бран, содержащих кривые фиксированного рода g, которые связаны с данной поверхностью K3, и затем вычислить эйлерову характеристику этого пространства, то полученное число будет точно равняться числу рациональных кривых с gузлами, которые вписываются в эту поверхность K3.
Таким образом, я и мой коллега переформулировали исходную задачу в другом виде, показав, что все сводится к получению эйлеровой характеристики пространства бран. Затем мы использовали дуализм теории струн, разработанный Кумруном Вафа и Виттеном, для вычисления эйлеровой характеристики. Таким образом, теория струн дала новый инструментарий для решения задачи, а также новый способ формализации проблемы. Ранее алгебраические геометры не могли решить эту задачу, поскольку они не рассматривали браны: им никогда не приходило в голову решить ее в терминах пространства модулей, включающего в себя совокупность всех возможных бран данного типа.
Хотя мы с Заслоу набросали общий подход, полное доказательство было получено только спустя несколько лет другими учеными – Джимом Брайаном из Университета Британской Колумбии и Найчунгом Конаном Лойнгом из Университета Миннесоты. В результате теперь у нас есть математическая теорема, которая является истинной безотносительно к истинности теории струн.
Рис. 13.3.Если вы идете по экватору и все время удерживаете палку параллельно земле по касательной к поверхности, то опишете цилиндр. Если, огибая земной шар, вы перевернете палку на 180 градусов, то опишете более сложную поверхность, имеющую одну, а не две стороны, называемую лентой Мёбиуса
Кроме того, формула, которую мы вывели для расчета рациональных кривых на поверхностях K3, дает функцию для генерирования всех чисел, которые вы получаете для рациональных кривых с произвольным количеством узлов. Оказывается, эта функция по существу воспроизводит знаменитые тау‑функции, которые были введены в 1916 году индийским математиком и гением‑самоучкой Шринивасой Рамануджаном.[267] С тех пор наша функция в сочетании с высказанными Рамануджаном предположениями привела ко многим важным открытиям в области теории чисел. Насколько мне известно, наша работа впервые помогла установить серьезную связь между исчислительной геометрией (предметом расчета кривых) и тау‑функцией.
Эта связь была закреплена последними работами Юйонг Дзена, молодого математика, недавно приглашенного работать в Гарвард, которого обучал мой бывший студент Юн Ли. Дзен показал, что не только рациональные кривые на поверхности КЗ связаны с тау‑функцией, но расчет любыхкривых произвольного рода на любойалгебраической поверхности связан с тау‑функцией. И Дзен сделал это, доказав гипотезу, высказанную немецким математиком Лотаром Гёттше, который обобщил так называемую формулу Яу‑Заслоу для рациональных кривых на поверхностях K3.[268] Новая обобщенная формула, справедливость которой доказал Дзен, носит имя Гёттше‑Яу‑Заслоу. Несколькими годами ранее бывший мой аспирант А. К. Лью опубликовал доказательство формулы Гёттше‑Яу‑Заслоу.[269] Но его доказательство, выполненное с помощью сугубо технического, аналитического метода, не дает объяснения в том виде, который устроил бы алгебраических геометров. Таким образом, статья Лью не рассматривается в качестве окончательного подтверждения этой формулы. Доказательство Дзена, основанное на аргументах алгебраической геометрии, получило более широкое признание.
Таким образом, благодаря выводу, изначально вытекающему из теории струн, мы поняли, что связь между исчислительной геометрией и тау‑функцией Рамануджана, вероятно, глубже, чем предполагалось. Мы всегда ищем похожие связи между различными разделами математики, поскольку эти неожиданные связи часто могут привести нас к новому пониманию обоих разделов. Я подозреваю, что со временем будет открыто больше связей между исчислительной геометрией и тау‑функцией.
В качестве яркого примера обогащения математики теорией струн приведем разработанную в 1990‑х годах Виттеном и Натаном Зайбергом из Университета Ратджерса систему уравнений, получившую название Зайберга‑Виттена (см. третью главу), которая ускорила исследование четырехмерных пространств. Эти уравнения оказались проще для использования, чем существующие методы, что привело к взрывному росту количества новых идей в работе с четырьмя измерениями, главной из которых является попытка классифицировать и систематизировать все возможные формы. Хотя уравнения Зайберга‑Виттена первоначально были получены в теории поля, вскоре было показано, что они также могут быть выведены из теории струн. Кроме того, использование этой идеи в контексте теории струн значительно расширило наши представления о ней. «В ряде случаев, – говорит мой коллега, – Виттен обычно советовал математикам: вот, возьмите эти уравнения, они могут оказаться полезными. И действительно, они оказывались полезными». «Теория струн стала таким благом для математики, таким огромным источникам новых идей, что даже если она окажется несостоятельной как теория природы, она уже сделала для математики больше, чем любой вид человеческой деятельности, который я могу вспомнить», – говорит мой давний сотрудник Бонг Лиан из Университета Брандейса.[270] Хотя сам я об этом сказал бы более сдержанно, чем Лиан, но, в принципе, я согласен с ним, потому что выигрыш оказался неожиданно огромным. Нашу точку зрения разделяет и Атья: «Теория струн трансформировала, обновила и революционизировала крупные разделы математики… в тех областях, которые кажутся далекими от физики». Многие из областей математики – «геометрию, топологию, алгебраическую геометрию и теорию групп – похоже, смешали в один коктейль, причем способом, глубоко связанным с их основным содержанием, и не по касательной, а прямо в сердце математики».[271]
Хотя в прошлом другие области физики обеспечивали математику информацией, теория струн проникла гораздо глубже во внутреннюю структуру математики, способствуя новым концептуальным прорывам. По иронии судьбы, появление теории струн привело к гармоничному сотрудничеству внутри самой математики, поскольку теория струн потребовала многого от математиков, работающих в самых разных областях, включающих дифференциальную геометрию, алгебраическую геометрию, теорию групп Ли, теорию чисел и другие. Непостижимым образом наши надежды в отношении единой теории физики содействовали объединению математики.
Несмотря на красоту теории струн и ее глубокое влияние на математику, остается открытым вопрос: как долго мы должны ждать внешнего подтверждения какой‑нибудь связи, любойсвязи теории с реальным миром? Брайан Грин считает, что следует набраться терпения, учитывая, что «мы пытаемся ответить на самые трудные, самые глубокие вопросы в истории науки. [Даже] если мы не получим на них ответы через 50 или 100 лет, мы должны идти вперед».[272] Шон Кэрролл, физик из Калифорнийского технологического института, соглашается: «Глубокие идеи не появляются в короткие сроки».[273] Иначе говоря, куда спешить, в конце концов?
Здесь, возможно, будет полезным напомнить исторический прецедент. «В XIX веке вопрос, почему вода кипит при температуре 100 градусов Цельсия, оставался без ответа, – отмечает Виттен. – Если бы вы сказали физику XIX века, что в XX веке вы сможете вычислить температуру кипения, то это показалось бы ему сказкой».[274]
Нейтронные звезды, черные дыры, гравитационные линзы – плотные концентрации вещества, которые действуют, как линзы в небе, – были бы также отвергнуты, как полнейшая фантазия, если бы их на самом деле не увидели астрономы. «История науки полна суждений о том, что та или иная идея не является практической и никогда не будет проверена», – добавляет Виттен. Но история физики также показывает, что «хорошие идеи выдерживают проверку».[275] Благодаря новым технологиям, о которых даже не догадывалось предыдущее поколение, идеи, которые, казалось бы, выходят за рамки разумного, превращаются из научной фантастики в научные факты.
«Чем важнее вопрос, тем больше упорства следует проявить при его проверке», – утверждает физик Массачусетского технологического института Алан Гут, один из создателей инфляционной теории, согласно которой наша Вселенная прошла через короткий период быстрого неудержимого расширения в первые моменты Большого взрыва. «Когда мы работали над инфляцией, я даже не думал, что ее будут проверять при моей жизни, – говорит Гут. – Это было бы невероятное везение, если бы нам удалось проверить инфляцию, и нам повезло. Хотя это была не столько удача, сколько потрясающее мастерство исследователей. То же может произойти и с теорией струн. И, возможно, нам не придется ждать сотни лет».[276]
Несмотря на то, что теорию струн следует рассматривать как гипотезу, в этом нет ничего плохого. Такие гипотезы в математике, как гипотеза Калаби, являются ничем иным, как предположениями, основанными на математической теории. Они абсолютно необходимы для прогресса в моей области. И мы не достигли бы никаких существенных успехов в физике и не продвинулись бы в понимании многих вещей, если не учились бы на гипотезах – это лучше, чем бездействие. Тем не менее слово «гипотеза» подразумевает некоторую степень сомнения, и ваша реакция на него зависит от вашего склада характера, а также от вашего персонального вклада в задачу. Что касается теории струн, то одни ученые настраивают себя на длинный путь в надежде, что их усилия, в конце концов, оправдаются. Другие, кому не нравятся долго решаемые задачи, выдвигают свои сомнения на первый план и размахивают метафорическими плакатами с надписью «Остановитесь! Вы совершаете большую ошибку».
Было время (не так давно – каких‑то несколько веков назад), когда людей предупреждали об опасности плавания под парусом вдали от родных берегов, пугая тем, что судно вместе с пассажирами на борту может упасть с края земли. Но некоторые бесстрашные путешественники, тем не менее, ставили паруса, и вместо того, чтобы упасть с края света, открыли Новый Свет.
Возможно, то же происходит и сегодня. Я из лагеря сторонников движения вперед, вместе с математиками. Мы продолжаем работать. И мы будем делать это, невзирая на наличие или отсутствие какого‑либо вклада со стороны внешнего мира или экспериментальных данных, сохраняя высокую результативность.
Хотя лично я считаю полезным взять на заметку и физику. Ведь я потратил большую часть своей карьеры, работая на стыке математики и физики, отчасти из‑за своего убеждения, что взаимодействие между двумя областями науки имеет решающее значение для углубления нашего понимания Вселенной. В общем, на протяжении десятилетий эти взаимодействия были в основном гармоничными. Иногда ученые развивали идеи в математике раньше, чем находили им применение в физике, как это произошло с великими работами Майкла Атья, Эли Картан, Ч. Ш. Черна, И. М. Зингера, Германа Вейла и других. Но иногда физика опережала математику, как в случае с открытием зеркальной симметрии. Но, возможно, мне не следует характеризовать текущие взаимоотношения между математиками и физиками как полностью безоблачные. По утверждению Брайана Грина, между двумя областями науки «наблюдается сильная, но обычно здоровая конкуренция», и я считаю это верной оценкой.[277] Конкуренция это не всегда плохо, поскольку она обычно способствует прогрессу.
В различные исторические времена разделение между областями науки или его отсутствие существенно менялось. Такие ученые, как Ньютон и Гаусс, конечно, без труда лавировали между математикой, физикой и астрономией. Гаусс, который был одним из величайших математиков всех времен и народов, служил профессором астрономии в Геттингенской обсерватории в течение почти пятидесяти лет, вплоть до смерти.
Внедрение максвелловских уравнений электромагнетизма и последующие разработки в квантовой механике вбили клин между математикой и физикой, который сохранялся на протяжении большей части столетия. В 1940‑е, 1950‑е и 1960‑е годы многие математики особо не задумывались о физиках и не сотрудничали с ними. С другой стороны, многие физики также с высокомерием относились к математике и мало ее использовали. Когда пришло время для математики, они поняли, что смогли бы ее использовать для решения своих задач.
Физик из Массачусетского технологического института Макс Тегмарк интерпретирует эту ситуацию, ссылаясь на «культурный разрыв» между двумя областями науки. «Некоторые математики, задрав нос, смотрят на физиков из‑за их небрежности и отсутствия строгости в выкладках, – говорит он. – Квантовая электродинамика является примером чрезвычайно успешной теории, которая математически строго не сформулирована». Некоторые физики, добавляет он, пренебрежительно относятся к математикам, считая, что «вы, ребята, тратите целую вечность на то, что мы получаем за считанные минуты. И если бы вы обладали нашей интуицией, то поняли бы, что все это лишнее».[278]
После выхода на сцену теории струн, когда физики‑теоретики стали все больше полагаться на высшую математику, этот культурный разрыв начал сокращаться. Математика, которую применяют в теории струн, настолько сложна и является настолько неотъемлемой частью этой теории, что физики не только нуждаются в помощи, но и приветствуют ее. Несмотря на то что математики заинтересовались пространствами Калаби‑Яу раньше физиков, последние, в конце концов, пришли к ним, в свою очередь продемонстрировав несколько интересных трюков. Сейчас мы находимся на этапе «повторной конвергенции», по выражению Атья, и это хорошо.
Я не могу сказать, преодолеет ли когда‑нибудь теория струн свое самое серьезное испытание – сделать проверяемое предсказание и показать, что теория действительно дает правильный ответ. Математическая часть, как я уже говорил, стоит на более твердой почве. Тем не менее я считаю, что лучший шанс для разработки успешной теории заключается в объединении ресурсов математиков и физиков, сочетании преимущества двух дисциплин и их различных подходов к миру. Мы можем работать параллельно, иногда пересекаясь и переходя на другую сторону для пользы обеих сторон.
Клифф Таубс, мой коллега‑математик из Гарварда, подытожил различия между этими дисциплинами. Таубс полагает, что, хотя инструментарий математики и физики может быть одним и тем же, они преследуют разные цели. «Физика – это изучение мира, а математика – изучение всех возможных миров».[279]
Это одна из причин, по которой я люблю математику. Физики высказывают догадки о других мирах и других Вселенных, как и мы. Но в конце дня они должны вернуться в наш мир и думать о том, что реально. Я вынужден думать, возможно, не только о «всех возможных мирах», как выразился Клифф, но более широко – обо всех возможных пространствах. На мой взгляд, это наша работа. Хотя физики, по большому счету, как правило, смотрят только на одно пространство и видят то, что оно может рассказать нам о природе, а мы, математики, должны смотреть на совокупность всех пространств, чтобы найти общие правила и принципы, применимые к самым интересным случаям.
Рис. 13.4.Эта карикатура физика Роберта Дикграафа показывает взаимосвязь между математиками и физиками (изображение любезно предоставлено Робертом X. Дикграафом)
Тем не менее пространства не созданы равными, и некоторые привлекают мое внимание больше, чем другие, особенно те пространства, в которых, как полагают, находятся дополнительные размерности природы. Перед нами стоит задача выяснить форму этого скрытого мира, который, согласно теории, содержит оба вида материи, наблюдаемые нами из космоса, и все виды физических явлений, которые мы также наблюдаем. Некоторое время я всецело был поглощен этой задачей, и похоже, что в ближайшее время мне от нее не отделаться.
Хотя я занят различными проектами, я время от времени возвращаюсь к этой задаче. И несмотря на мой интерес к другим областям математики и физики, я постоянно возвращаюсь к геометрии. Если спокойствие достигается через понимание, то геометрия является моей попыткой достичь некоего подобия внутреннего спокойствия. Или в более широком смысле, геометрия – это мой способ попытаться разобраться в нашей Вселенной и понять таинственные скрытые пространства, названные, в том числе, в мою честь.
Четырнадцатая главаКонец геометрии?
Хотя геометрия сослужила нам хорошую службу, остались скрытые проблемы, которые предвещают нам неприятности в будущем. Чтобы убедиться в этом, необязательно отправляться в далекое путешествие, а достаточно дойти до ближайшего озера или пруда. А если в вашей местности нет озер, подойдут бассейн или ванна. Поверхность озера может выглядеть идеально гладкой в спокойный, безветренный день, но это иллюзия. Если посмотреть на поверхность с помощью прибора с высоким разрешением, то окажется, что она зубчатая, а не гладкая. Мы увидим, что поверхность фактически состоит из отдельных молекул воды, которые постоянно покачиваются, перемещаются внутри пруда и свободно проходят между поверхностью пруда и воздухом. С этой точки зрения поверхность не является статичной и хорошо определяемой. На самом деле вряд ли можно квалифицировать водную гладь как поверхность в том смысле, в каком мы обычно используем этот термин.
Аналогичная ситуация наблюдается с классической геометрией, поскольку, по мнению гарвардского физика Кумрун Вафы, она дает только приближенное, а не точное или фундаментальное описание природы. Хотя справедливости ради стоит сказать, что это приближенное описание служит хорошим фундаментом и почти безупречно описывает нашу Вселенную, за исключением планковского масштаба (10‑ 33см) – области, в которой на стандартную геометрию накладываются квантовые эффекты и выполнение простых измерений становится невозможным.
Главная трудность в решении задач на очень мелких масштабах связана с принципом неопределенности Гейзенберга, который делает невозможной локализацию отдельной точки или точную фиксацию расстояния между двумя точками. Поэтому объекты планковского размера не стоят на месте, а постоянно колеблются, изменяя свои параметры, включая местоположение, размер и кривизну. Если классическая геометрия говорит нам, что две плоскости пересекаются по линии, а три плоскости пересекаются в точке, то с квантовой точки зрения мы должны представить себе три плоскости, пересекающиеся в окрестности некоей сферы, которая охватывает область возможных положений для этой точки.
Для исследования Вселенной на уровне скрытых измерений или отдельных струн нам необходим новый вид геометрии, иногда называемой квантовой геометрией, способной работать как на самых больших, так и на самых маленьких масштабах, которые только можно вообразить. Геометрия такого рода должна быть совместима с общей теорией относительности на больших масштабах и квантовой механикой на малых масштабах и совпадать там, где обе теории пересекаются. По большей части квантовая геометрия пока не существует. Она гипотетична, хотя и важна, скорее надежда, чем реальность, название для поиска четко определенной математической теории. «Мы не знаем, как такая теория будет выглядеть или как она должна называться, – говорит Вафа. – Для меня не очевидно, что она должна называться геометрией».[280] Но независимо от названия, мы считаем, что геометрия, в том виде как она существует сейчас, исчерпала себя и ее необходимо заменить на что‑то более мощное – на геометрию, которой мы еще не знаем. Это путь всех наук, как и должно быть, поскольку застой означает смерть.
«Мы всегда ищем области, в которых наука оказывается бессильной, – объясняет физик Амстердамского университета Роберт Дикграаф. – Геометрия тесно связана с теорией Эйнштейна, и когда теория Эйнштейна испытывает потрясения, то геометрию ждет та же судьба. В конечном счете, уравнения Эйнштейна необходимо заменить так же, как они в свое время заменили уравнения Ньютона, и геометрия пойдет тем же путем».[281]
Но не будем перекладывать всю ответственность на геометрию, потому что проблема в большей степени связана с физикой, чем с математикой. Прежде всего, планковский масштаб, где начинаются все вышеупомянутые неприятности, вообще не является математической концепцией.
Это физическаяшкала длины, массы и времени. Даже тот факт, что классическая геометрия не работает на планковском масштабе, не означает, что что‑то не так с математикой как таковой. Методы дифференциального исчисления, лежащие в основе римановой геометрии, которая, в свою очередь, служит основой для общей теории относительности, не вдруг перестают работать при критическом масштабе длины. Дифференциальная геометрия предназначена по самой своей сути для работы на бесконечно малых длинах, которые можно устремлять к нулю так близко, как вы пожелаете. «У нас нет причин полагать, что экстраполяция общей теории относительности до мельчайших пространственных масштабов будет проблемой с точки зрения математики, – говорит Дэвид Моррисон, математик Калифорнийского университета в Санта‑Барбаре. – Здесь нет реальной проблемы и с точки зрения физики, за исключением того, что мы знаем, что это неверно».[282]
В общей теории относительности метрика, или функция, длины говорит нам о кривизне в каждой точке. На очень малых масштабах длины метрические коэффициенты колеблются в широких пределах, а это означает, что длина и кривизна также будут сильно колебаться. Другими словами, геометрия будет испытывать такие сильные сдвиги, что вряд ли будет иметь смысл называть ее геометрией. Это похоже на железнодорожную систему, где рельсы могут уменьшаться, удлиняться и искривляться как угодно, – такая железная дорога никогда не доставила бы вас к месту назначения или вы прибыли бы туда не по расписанию. Как говорится, это не для железной дороги и не для геометрии.
Как и многие другие проблемы, которых мы коснулись в этой книге, эти геометрические странности вытекают из фундаментальной несовместимости квантовой механики и общей теории относительности. Квантовую геометрию можно рассматривать как язык квантовой гравитации (математический формализм, необходимый для решения проблемы совместимости), какой бы эта теория не оказалась. Существует еще один способ рассмотрения данной проблемы физиками: геометрия сама по себе может быть явлением скорее «производным», чем фундаментальным. Если эта точка зрения верна, то она может объяснить, почему традиционные геометрические описания мира дают сбои в областях, которые отличаются малыми размерами и очень высокими энергиями.
«Производное» явление можно видеть в примере с прудом или озером, который мы обсуждали ранее в этой главе. Если вы смотрите на большой водоем, то целесообразно рассматривать воду как жидкость, которая течет и образует волны и характеризуется общими свойствами, такими как вязкость, температура и температурные градиенты. Но если вы рассматриваете крошечные капли воды под микроскопом, то, характеризуя их как жидкость, вы не сможете адекватно описать воду в целом. Вода, как известно, состоит из молекул, которые в малом масштабе ведут себя скорее как бильярдные шары, чем как жидкость. «Вы не можете, рассматривая волны на поверхности озера, сказать что‑нибудь о молекулярной структуре или о движении молекул H 2O, – объясняет физик Массачусетского технологического института Алан Адамс. – Это обусловлено тем, что описание воды как жидкости не является самым фундаментальным способом описания воды. С другой стороны, если известно, где находится каждая молекула и как она движется, вы, в принципе, можете сделать все выводы о водоеме и особенностях его поверхности. Другими словами, микроскопические свойства содержат макроскопическую информацию».[283] Вот почему мы считаем микроскопическое описание более фундаментальным, а макроскопические свойства – производными, то есть вытекающими из него.
Какое отношение все это имеет к геометрии? Мы знаем, что в соответствии с общей теорией относительности гравитация является следствием искривления пространства‑времени, но, как мы видели, такое описание гравитации для больших расстояний и низких энергий, которое в нашем случаем мы называем классической геометрией, не работает на планковском масштабе. Исходя из этого ряд физиков пришли к выводу, что современная теория гравитации, теория Эйнштейна, является всего лишь низкоэнергетическим приближением того, что происходит на самом деле. Эти ученые считают, что, подобно тому как волны на поверхности озера проистекают из основных молекулярных процессов, которые мы не можем видеть, гравитация и ее эквивалентная формулировка – геометрия также вытекает из фундаментальных ультра‑микроскопических процессов, которые, на наш взгляд, должны иметь место, даже если мы не знаем точно, что они собой представляют. Именно это люди имеют в виду, когда говорят, что гравитация или геометрия являются «производными» квантовой геометрии и квантовой гравитации на планковском масштабе.