355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Стив Надис » Теория струн и скрытые измерения вселенной » Текст книги (страница 7)
Теория струн и скрытые измерения вселенной
  • Текст добавлен: 28 сентября 2016, 22:55

Текст книги "Теория струн и скрытые измерения вселенной"


Автор книги: Стив Надис


Соавторы: Яу Шинтан
сообщить о нарушении

Текущая страница: 7 (всего у книги 29 страниц)

Второй метод сравнения многообразий характеризуется несколько большей утонченностью и строгостью. В этом случае вопрос состоит в том, возможно ли перейти от одного многообразия к другому, не нарушая его гладкости, то есть не вводя так называемые сингулярности, например острые углы или пики на поверхности. Многообразия, эквивалентные в этом смысле, носят название диффеоморфных. Чтобы два многообразия можно было считать диффеоморфными, функция, преобразующая одно многообразие в другое – или, иными словами, переводящая набор координат одного пространства в набор координат второго, – должна быть гладкой – дифференцируемой, то есть иметь производную во всех точках пространства в любой момент времени. График такой функции также должен быть гладким – не иметь никаких «зазубрин» во всех смыслах этого слова – наличие на нем обрывов, участков скачкообразного роста или падения привело бы к тому, что в определенных точках само понятие производной потеряло бы смысл.

В качестве примера рассмотрим сферу, помещенную внутрь эллипсоида – поверхности, имеющей форму дыни, – так, что их центры совпадают. Лучи, проведенные из их общего центра во всех возможных направлениях, соединят точки на сфере с точками на эллипсоиде. Подобная операция может быть проделана для любой точки эллипсоида или сферы. Отображение в данном случае не только является непрерывным и однозначным, но оно также не нарушает гладкости отображаемой поверхности. Функция, связывающая две эти поверхности, также не имеет никаких особенностей – это просто прямая линия без зигзагов, резких поворотов и вообще чего‑либо необычного. Таким образом, два рассматриваемых объекта – сферу и эллипсоид – можно назвать как гомеоморфными, так и диффеоморфными.

Рис. 3.12.Геометр Саймон Дональдсон

Противоположным примером является так называемая экзотическая сфера. Экзотической сферой называется гладкое во всех точках семимерное многообразие, которое, тем не менее, невозможно без нарушения гладкости преобразовать в обычную круглую семимерную сферу даже при соблюдении условия непрерывности преобразования. Таким образом, подобные поверхности являются гомеоморфными, но не диффеоморфными. Джон Мильнор, уже упоминавшийся в данной главе, получил медаль Филдса во многом благодаря установлению им факта существования экзотических пространств. До открытия Мильнора многие сомневались в существовании таких пространств, поэтому их и назвали экзотическими.

Плоское евклидово пространство для случая двух измерений является простейшим из всех пространств, которые можно себе представить, – это плоская поверхность, подобная крышке стола, которая простирается бесконечно во всех возможных направлениях. На вопрос, будет ли двухмерный диск, множество точек которого является подмножеством точек плоскости, гомеоморфным и диффеоморфным данной плоскости, можно ответить – да, будет. Можно представить себе толпу людей, стоящих на плоскости, каждый из которых берет в руку краешек диска и идет с ним в направлении от центра диска. Как только они достигнут бесконечности, диск точно, непрерывно и однозначно совпадет с плоскостью. Таким образом, эти объекты идентичны с точки зрения тополога. Очевидно и то, что подобный процесс растягивания диска в радиальном направлении можно проделать без нарушения его гладкости.

Все вышесказанное сохраняет свою силу для трех и любого другого числа измерений за исключением случая четырех. В четырехмерном пространстве многообразия могут быть гомеоморфны плоскости или плоскому евклидовому пространству, не будучи при этом диффеоморфны ему. По сути, существует бесконечное множество четырехмерных многообразий, гомеоморфных, но не диффеоморфных четырехмерному евклидовому пространству, носящих общее название ℝ 4(ℝ – от «real» – означает, что элементами пространства являются действительныечисла, в противоположность комплексномучетырехмерному пространству).

Четырехмерное пространство преподносит нам множество особенностей и загадок. Так, к примеру, в пространственно‑временном континууме, содержащем 3+1 измерение (три пространственных и одно временное), по словам Дональдсона, «электрическое и магнитное поля будут идентичны». «Но для другого числа измерений с геометрической точки зрения это будут два совершенно разных объекта. Одно из них представляет собой тензор и описывается при помощи матрицы, тогда как другое – вектор, и сравнивать их невозможно. Только в четырех измерениях и то и другое поле будет описываться векторами. Симметрия, имеющая место в данном случае, для иного числа измерений будет отсутствовать».[37]

Дональдсона, по его словам, восхищает тот факт, что с фундаментальной точки зрения невозможно точно указать, что именно выделяет случай четырех измерений среди всех остальных. До того как вышла его работа, о «гладкой эквивалентности» (диффеоморфизме) не было известно практически ничего, хотя благодаря математику Майклу Фриману (ранее работавшему в Калифорнийском университете, Сан‑Диего) уже существовали определенные наработки в области топологической эквивалентности (гомеоморфизма). В свою очередь Фриман классифицировал четырехмерные многообразия с топологической точки зрения, основываясь на более ранней работе Эндрю Кассона, в настоящее время работающего в Йельском университете.

Дональдсон привнес в топологию целый ряд свежих идей, использование которых на практике позволило решить сложнейшую задачу классификации гладких (диффеоморфных) четырехмерных многообразий, открыв, фигурально выражаясь, закрытую прежде дверь. До него подобные многообразия были темным лесом. И хотя четырехмерные многообразия еще содержат в себе много загадок, по крайней мере, вопрос, с чего начинать их исследование, уже не стоит. При этом, однако, метод Дональдсона оказался чрезвычайно труден для практического применения. «Мы работали как лошади, пытаясь этим путем извлечь хоть какую‑то информацию!» – рассказал гарвардский геометр Клиффорд Таубс.[38]

В 1994 году Эдвард Виттен и его коллега – физик Натан Зайберг обнаружили намного более простой метод исследования геометрии четырехмерных пространств, несмотря на то что их подход основывался не собственно на геометрии, как метод Дональдсона, а на одной из теорий из области физики элементарных частиц – так называемой теории суперсимметрии. «В новом уравнении содержится вся информация, которая содержалась и в старом, – прокомментировал это открытие Таубс. – Разница лишь в том, что извлечь эту информацию из нового уравнения в тысячу раз проще».[39] Таубс, как и многие другие, использовал подход Зайберга‑Виттена для расширения наших знаний о геометрических структурах в четырехмерном пространстве, понимание которых на сегодняшний день остается весьма условным, но тем не менее очень важным для ответа на вопрос о природе пространства‑времени в общей теории относительности.

Виттен показал, что для большей части четырехмерных многообразий число решений уравнения Зайберга‑Виттена определяется исключительно топологией соответствующего многообразия. После этого Таубс доказал теорему, согласно которой количество решений этих уравнений, предопределенное топологией многообразия, совпадает с числом подпространств или кривых определенного типа ( семейства), которые можно поместить в данном многообразии. Определив количество кривых конкретного типа, соответствующих данному многообразию, можно как определить его геометрию, так и получить о нем много другой важной информации. Таким образом, справедливым будет заметить, что теорема Таубса позволила значительно продвинуться в области исследования подобных пространств.

Взглянув на историю исследований четырехмерных пространств, начиная с работ физиков Янга и Миллса в 1950‑х, можно обнаружить, что в своем развитии эта теория проходила этапы, на которых физика оказывала влияние на математику, плавно переходящие в этапы, на которых математика влияла на физику. Несмотря на свое физическое происхождение, теория Янга‑Миллса возникла не без участия геометрии, которая помогла лучше понять природу сил, объединяющих элементарные частицы в единое целое. Подойдя к данной проблеме с другой стороны, геометр Дональдсон использовал теорию Янга‑Миллса для того, чтобы понять топологию и геометрию четырехмерных пространств. Тот же взаимовыгодный обмен между математикой и физикой был продолжен в работе физиков Зайберга и Виттена и в последовавших за ними работах. Таубс так подвел итог этой бурной истории: «Однажды на Землю прилетел марсианин, дал нам уравнения Янга‑Миллса и улетел. Мы изучали их, и в конце концов возникла теория Дональдсона. Много лет спустя марсианин прилетел вновь и дал нам уравнения Зайберга‑Виттена»[40]. Хотя я и не могу поручиться за достоверность истории Таубса, пожалуй, из всех объяснений, которые я когда‑либо слышал, это – наиболее правдоподобное…

Второе важнейшее достижение геометрического анализа – и многие поставили бы именно его на первое место по важности – относится к доказательству знаменитой гипотезы, сформулированной в 1904 году Анри Пуанкаре и на протяжении более столетия остававшейся важнейшей проблемой трехмерной топологии. Основной причиной, по которой я считаю эту гипотезу выдающейся, является возможность сформулировать ее в виде одного простого утверждения, которое, тем не менее, держало в напряжении все математическое сообщество на протяжении сотни лет. В двух словах, эта гипотеза утверждает, что компактное трехмерное пространство топологически эквивалентно сфере, если любая петля, которую можно построить в данном пространстве, может быть стянута в точку без нарушения при этом целостности петли или пространства. Как уже было сказано ранее в данной главе, пространство, удовлетворяющее этому условию, содержит тривиальную фундаментальную группу.

Гипотеза Пуанкаре звучит весьма просто, но на самом деле она далеко не очевидна. Рассмотрим двухмерный аналог этой задачи, не обращая внимания на то, что в действительности проблема сформулирована для трех измерений (и решить ее в этом случае намного сложнее). Представим себе сферу, например глобус, по экватору которого проходит резинка. Теперь легонько подтолкнем эту ленту в направлении северного полюса так, чтобы при этом она не переставала касаться поверхности. Если резиновая лента достаточно эластична, то, достигнув полюса, она фактически стянется в одну точку. В случае тора ситуация будет иная. Представим себе, что резиновая лента проходит через дырку тора и выходит с противоположной стороны. В данном случае стянуть резиновую ленту в одну точку, не разрезая при этом тор, невозможно. Резиновую ленту, идущую вокруг внешней поверхности тора, можно переместить в его верхнюю часть и оттуда уже спустить на внутреннюю поверхность. Однако пока лента находится на поверхности тора, стянуть ее в точку не удастся. По этой причине для тополога сфера имеет фундаментальное отличие от тора или любого другого многообразия, имеющего одну или несколько дырок. Гипотеза Пуанкаре, по сути, представляет собой вопрос, чем в действительности является топологическая сфера.

Прежде чем перейти к доказательству, я хотел бы вернуться на несколько десятилетий назад, в 1979 год, когда я еще работал в Институте перспективных исследований. В тот год я пригласил в Принстон более дюжины исследователей со всего мира, работающих в области геометрического анализа, чтобы вместе с ними попытаться заложить основы этой новой дисциплины. Мною было отобрано 120 важнейших геометрических вопросов, почти половина из которых в настоящее время полностью решена. Гипотеза Пуанкаре в этот список не входила. Причиной тому, с одной стороны, было отсутствие необходимости привлекать внимание к задаче, которая и без того являлась одной из известнейших в математике. С другой стороны, я искал задачи, имеющие более узкую формулировку, – такие, на которые можно найти однозначный ответ, – причем, по возможности, в обозримое время. И хотя нам порой приходилось бороться за то, чтобы узнать что‑то новое, мы достигли заметного прогресса именно на пути решения подобных задач; это как раз то, что стимулирует математиков к работе сильнее, чем что‑либо другое. В то время, однако, никто не знал, что делать с гипотезой Пуанкаре.

Одним из тех, кто не принимал участия в наших дискуссиях, был математик Ричард Гамильтон, работавший тогда в Корнеллском университете и впоследствии осевший на математическом факультете Колумбийского университета. В то время он как раз приступал к выполнению амбициозного проекта, посвященного поиску методов преобразования сложной и не обладающей гладкостью метрики в более гладкую. Несмотря на все упования Гамильтона, эти разработки не принесли столь быстрого успеха, на который он рассчитывал. Его интересовала чрезвычайно сложная система уравнений, относящаяся к вопросу о потоке Риччи – одном из видов геометрического потока, которые уже упоминались ранее. По сути дела, геометрический поток представляет собой метод, позволяющий разгладить выпуклости и прочие неровности на неоднородной поверхности, придавая таким образом поверхностям более однородную кривизну и выявляя фундаментальные формы, лежащие в их основе. Идеи Гамильтона не вошли в мой список из 120 основных задач хотя бы потому, что в то время он еще ничего не опубликовал по этой теме. Он скорее забавлялся ими, чем пытался найти решение.

Возможность познакомиться с его достижениями на 1979 год я получил, выступая с докладом в Корнеллском университете. Гамильтон тогда не считал свои уравнения применимыми к доказательству гипотезы Пуанкаре – он рассматривал их просто как задачу, небезынтересную для исследователя. Впервые столкнувшись с подобными уравнениями, я также занял весьма скептическую позицию по поводу их применимости… Уравнения выглядели слишком сложными, чтобы их можно было использовать на практике. Однако работа, проделанная Гамильтоном после этого, позволила ему опубликовать в 1983 году статью, посвященную решению уравнений, которые сейчас носят название гамильтоновых. В этой статье Гамильтон доказал особый случай гипотезы Пуанкаре, а именно тот случай, при котором кривизна Риччи положительна. О кривизне Риччи, тесно связанной с физикой, более подробно будет рассказано в следующей главе.

Мой изначальный скептицизм побудил меня досконально исследовать статью Гамильтона, вчитываясь буквально в каждую строку, прежде чем я окончательно согласился с ней. При этом доказательство Гамильтона столь захватило меня, что по прочтении я немедленно поручил трем моим аспирантам из Принстона начать работу над его уравнениями. Тогда же я посоветовал Гамильтону попытаться воспользоваться своим подходом для доказательства гипотезы геометризации Тёрстона, относящейся к классификации трехмерных многообразий по восьми типам геометрий, расширенная форма которой включает в себя и общее доказательство гипотезы Пуанкаре. К сожалению, в то время я был мало осведомлен о каких‑либо других методах, которые бы пригодились для дальнейшей работы над этим вопросом. Как ни удивительно, Гамильтон взялся за эту задачу с огромной энергией, постепенно продвигаясь в области исследований потока Риччи на протяжении следующих двадцати лет, работая в основном самостоятельно, хотя и находясь в тесном контакте со мной и моими студентами. Контакты между нами заметно оживились в 1984 году, когда мы с Гамильтоном вместе поступили на работу в Калифорнийский университет в Сан‑Диего, где заняли смежные офисы. Посещение его семинаров по потокам Риччи было обязательным для всех моих студентов. Сотрудничество с Гамильтоном позволило нам узнать много нового, впрочем, я надеюсь, что он также перенял кое‑что и от меня. Переехав в Гарвард в 1987 году, я больше всего жалел об утраченной возможности работать в тесном контакте с Гамильтоном.

Не обращая внимания на окружающих, Гамильтон с неколебимой решительностью занимался решением своей задачи. Помимо прочего им было опубликовано полдюжины важнейших статей – порядка девяноста страниц каждая, – и в конце концов, ни один из его аргументов не оказался бесполезным. Все они пригодились при восхождении на гору Пуанкаре.

Так, например, Гамильтон показал, что все без исключения геометрические объекты, имеющие округлую форму, могут быть преобразованы в сферы при помощи потока Риччи – в полном соответствии с идеями Пуанкаре. Однако, как им было установлено, при деформации более сложных объектов будут неминуемо возникать выступы, складки и прочие сингулярности. Возможности обойти эти сингулярности не было, поэтому столь важным являлся вопрос, с какими именно сингулярностями можно столкнуться в данном процессе. Полный список всевозможных особенностей, которые могут возникнуть при деформации, был сформулирован Гамильтоном на основании моей совместной работы с Питером Ли, к которой я привлек его внимание за несколько лет до этого, – впрочем, Гамильтон весьма впечатляюще обобщил наши результаты.

Мой личный вклад в описываемые исследования восходит к 1973 году, когда я приступил к использованию нового метода, разработанного мной для гармонического анализа – области математики, насчитывающей несколько сотен лет и используемой для описания равновесных ситуаций. Созданный мной метод был основан на так называемом принципе максимума, который предполагает рассмотрение худшего из всех возможных сценариев. Представим, к примеру, что нам требуется доказать неравенство А < 0 .Для этого нужно сформулировать вопрос так: «Какое максимальное значение может принимать А?» Если рассмотреть наихудший случай, то есть взять наибольшее из возможных значений А и его величина все равно останется меньше нуля, то этим мы и подтвердим истинность исходного утверждения. На этом работу по доказательству можно считать законченной и насладиться заслуженным отдыхом. Я, иногда работая сам, иногда – совместно с Ш. Ю. Ченгом, моим бывшим однокурсником из Китайского университета Гонконга, применил этот принцип к огромному количеству нелинейных проблем. Работа включала в себя исследование уравнений, повсеместно возникающих в геометрии и физике и носящих в математике название эллиптических. Хотя подобные задачи, как правило, чрезвычайно сложны, в них отсутствует зависимость от времени, и поэтому их можно рассматривать как стационарные, что заметно упрощает решение.

В 1978 году мы с Питером Ли рассмотрели более сложную, зависящую от времени – динамическую ситуацию. В частности, мы исследовали уравнения, описывающие процессы распространения тепла через тело или многообразие. Мы рассмотрели случай, в котором одна из переменных, например энтропия – величина, характеризующая беспорядок системы, – изменяется во времени. Наиболее известным нашим вкладом в эту область стало неравенство Ли‑Яу, описывающее с математической точки зрения процесс изменения теплового потока или другой аналогичной ему переменной во времени. Гамильтон и Перельман, в свою очередь, рассмотрели изменение во времени не теплового потока, как мы, а именно энтропии, отвечающей за беспорядок в системе. Соотношение Ли‑Яу называется «неравенством», поскольку значение некой величины – в данном случае значение теплового потока или энтропии – в конкретной точке в определенный момент времени больше или меньше значения теплового потока или энтропии в той же точке в другой момент времени.

Наш подход дал в руки ученым количественный метод исследования процессов развития сингулярностей в нелинейных системах путем отслеживания расстояния между двумя точками с течением времени. Когда две точки сближаются настолько, что расстояние между ними становится равным нулю, вы получаете сингулярность. И сингулярность, и понимание этих сингулярностей является ключевым моментом для исследования процессов распространения тепла в целом. В частности, наш метод позволил подобраться к сингулярности настолько близко, насколько только это возможно, показывая, что происходило непосредственно перед столкновением – например, какова была скорость сближения точек. Это напоминает попытку реконструкции событий, предшествовавших автомобильной аварии.

Для того чтобы увидеть сингулярность крупным планом – или разрешить ее, как принято говорить в математике, – нами был изобретен особый вид «увеличительного стекла». Этот прибор мы используем для того, чтобы получше рассмотреть ту область, в которой пространство сходится в особую точку. Затем мы увеличиваем выбранную область, сглаживая при этом все складки и неровности. Этот процесс повторяется не один или два, но бесконечное число раз. Чтобы увидеть полную картину, мы растягиваем не только пространство, но и время – то есть замедляем его. На следующем этапе происходит сравнение полученного описания точки сингулярности, соответствующее бесконечно большому числу увеличений, с описанием системы до столкновения точек. Неравенство Ли‑Яу позволяет непосредственно сопоставить то, что было до столкновения, с тем, что стало после.

Гамильтон воспользовался нашим подходом, чтобы более пристально взглянуть на поток Риччи, исследуя структуру сингулярностей, которые могут возникать в процессе преобразования. Введение неравенства Ли‑Яу в модель потока Риччи оказалось сложной задачей, на которую Гамильтону потребовалось почти пять лет, поскольку те уравнения, с которыми он имел дело, характеризовались куда большей нелинейностью – и, следовательно, куда большей сложностью, чем наши.

Один из подходов Гамильтона заключался в исследовании особого класса решений, являющихся стационарными в определенной системе координат. Выбор подходящей системы координат позволяет упростить многие задачи – например, при рассмотрении движения людей, находящихся на вращающейся карусели, оптимальным будет выбор системы координат, вращающейся с той же скоростью, что и карусель. Путем отбора стационарных решений, являющихся более простыми для понимания, Гамильтон разработал оптимальный метод введения методов оценки Ли‑Яу в свои уравнения. Это, в свою очередь, позволило ему уяснить динамику потока Риччи – то есть процессов движения и развития объектов. В частности, Гамильтон был очень заинтересован исследованием процесса порождения сингулярностей в результате сложного движения в пространственно‑временном континууме. В конечном итоге ему удалось описать структуру всех возможных сингулярностей, которые могли бы возникнуть в процессе преобразования, хотя он и не мог доказать, что все эти сингулярности обязательно возникнут. Из тех сингулярностей, которые удалось идентифицировать Гамильтону, все, кроме одной, были устранимы – удалить их можно было при помощи методов топологической «хирургии», методики, разработанной и широко применяемой в четырехмерном пространстве. «Хирургические» процедуры весьма сложны, но при удачной реализации дают возможность убедиться в эквивалентности исследуемого пространства сфере, что и требовал Пуанкаре.

Однако существовал еще один тип сингулярностей, представляющих собой сигарообразные выступы, от которого Гамильтон подобным образом избавиться не сумел. Если бы он смог показать, что «сигары» в процессе трансформации многообразий не возникают, проблема сингулярностей стала бы намного яснее, что позволило бы сделать огромный шаг в направлении доказательства гипотез Пуанкаре и Тёрстона. Ключевым моментом, согласно идее Гамильтона, стало применение оценок Ли‑Яу в случае любой, не обязательно положительной, кривизны многообразия. Он немедленно привлек меня к решению этой задачи, оказавшейся на удивление трудной. Однако нам все же удалось достичь некоторых результатов, и окончание всей работы казалось только вопросом времени.

Мы были весьма удивлены, когда в ноябре 2002 года в Интернете появилась первая из трех статей под авторством санкт‑петербургского математика Григория Перельмана, посвященная геометрическим применениям методов потока Риччи. Менее чем через год на том же сайте были выложены вторая и третья статьи. В этих статьях Перельман задался целью «прояснить некоторые детали программы Гамильтона» и «дать краткий набросок доказательства гипотезы геометризации».[41] Он, так же как и Гамильтон, использовал неравенства Ли‑Яу для контроля над поведением сингулярностей, хотя и ввел их несколько иным образом, добавив помимо этого много собственных нововведений.

В определенном смысле статьи Перельмана появились буквально из ниоткуда. Никто не знал, что Перельман когда‑либо занимался проблемами, связанными с потоком Риччи, поскольку он был известен благодаря своим успехам в совершенно иной области математики – так называемой метрической геометрии, где он доказал знаменитую гипотезу, предложенную геометрами Джефом Чигером и Детлефом Громоллом. Но за несколько лет до появления в Интернете его статей Перельман надолго пропал из виду. Иногда другие математики получали от него электронные письма, в которых он интересовался литературой по вопросам потока Риччи. Однако никто не догадывался, что Перельман серьезно работает над использованием потока Риччи для доказательства гипотезы Пуанкаре, поскольку он практически никому не сообщал об этом. По сути дела его деятельность была столь незаметна, что многие из его бывших коллег сомневались в том, что он все еще вообще занимается математикой.

Сами по себе статьи были не менее поразительны – всего шестьдесят восемь страниц текста, – что привело к тому, что другим ученым пришлось потратить немало времени на то, чтобы понять их содержание и извлечь из них ключевые аргументы, кратко набросанные Перельманом. На сегодняшний день является общепризнанным, что программа исследований, начатая Гамильтоном и продолженная Перельманом, в конце концов привела к разрешению как давней гипотезы Пуанкаре, так и более свежей проблемы Тёрстона.

Если это единодушное признание действительно имеет под собой основу, то совместные успехи Гамильтона и Перельмана представляют собой важнейшее достижение геометрического анализа. Согласно моим расчетам, почти половина теорем, лемм и прочих вспомогательных утверждений, полученных в этой области на протяжении последних тридцати лет, были использованы в работах Гамильтона и Перельмана, что и привело в конце концов к доказательству гипотезы Пуанкаре.

Итак, вы увидели некоторые из тех гвоздей, которые по самые шляпки загнал в дерево молоток геометрического анализа. Однако вы, наверное, помните, что я обещал описать триважнейших достижения геометрического анализа. Успехи в области четырехмерной топологии и доказательство гипотезы Пуанкаре вместе с методами потока Риччи, понадобившимися для ее доказательства, представляют собой только два из них. Остается еще и третье достижение – то, в котором я принял непосредственное участие и о котором пойдет речь далее.

Четвертая главаСлишком хорошо, чтобы быть правдой

Третье важнейшее достижение, полученное при помощи нашего нового «молотка» – геометрического анализа, – относится к гипотезе, выдвинутой в 1953 году Эудженио Калаби, математиком, с 1964 года работающим в Пенсильванском университете. Эта гипотеза, как будет показано далее, стала ключевой в обсуждаемой области и оказала огромнейшее влияние на всю мою дальнейшую научную карьеру. Я считаю своей особенной удачей то, что мне довелось наткнуться на идеи Калаби, точнее, налететь на них лбом – тогда еще не было принято носить шлемы. Конечно, каждый математик, достаточно талантливый и подготовленный, с большой вероятностью внесет определенный вклад в исследуемую им область, однако чтобы найти задачу, специально предназначенную для твоего таланта и образа мыслей, необходимо иметь еще и особое везение. В математике мне везло не один раз, но столкновение с гипотезой Калаби в этом отношении для меня является удачей из удач.

Задача имеет форму теоремы, связывающей топологию комплексных пространств, о которых мы поговорим далее, с их геометрией, или кривизной. Основная идея состоит в следующем. Возьмем некое необработанное топологическое пространство, представляющее собой что‑то вроде пустого участка земли, специально расчищенного для предстоящего строительства. Соорудим на нем некую геометрическую структуру, которую впоследствии можно еще и декорировать различными способами. Вопрос, который задал Калаби, хотя и содержит некоторые оригинальные идеи, тем не менее принадлежит к тому типу вопросов, которые очень часто ставятся геометрами, а именно: какие из строго определенных геометрических структур допустимы для заданной топологии или, грубо говоря, для заданной формы объекта?

Рис. 4.1.Геометр Эудженио Калаби (фотография Дирка Феруса)

Ответ на этот вопрос едва ли покажется кому‑либо имеющим важное значение для физики. Но посмотрим на него с другой стороны. Гипотеза Калаби касается пространств, имеющих особый тип кривизны, известный как кривизна Риччи, которая вкратце будет описана позже. Как оказалось, кривизна Риччи определенного пространства напрямую зависит от распределения материи в этом пространстве. Пространство, называемое риччи‑плоским– кривизна Риччи которого равна нулю, – представляет собой пространство, материя в котором отсутствует. Рассматривая поставленный Калаби вопрос с этой точки зрения, можно увидеть его непосредственную взаимосвязь с общей теорией относительности Эйнштейна: возможно ли существование гравитации во Вселенной, представляющей собой полностью лишенный материи вакуум? Если Калаби прав, то кривизна делает возможной гравитацию даже при отсутствии материи. Калаби сформулировал эту задачу в еще более общей форме, поскольку его гипотеза относилась к пространствам любой возможной размерности, а не только к четырехмерным, лежащим в основе общей теории относительности. Такая формулировка казалась мне наиболее правильной, так как она полностью согласовывалась с моим убеждением о том, что самые глубокие математические идеи в случае их истинности всегда находят применение в физике и должны проявлять себя в природе вообще.

Калаби утверждает, что, когда эта гипотеза впервые пришла ему в голову, «она совершенно не была связана с физическими представлениями. Это была чистая геометрия»[42]. Я не сомневаюсь в истинности его слов. Это утверждение могло бы быть точно так же сформулировано, даже если бы Эйнштейну никогда не приходила в голову идея общей теории относительности. И доказательство этой гипотезы могло бы быть получено, даже если бы теории Эйнштейна не существовало. Впрочем, я уверен, что в то время, когда Калаби сформулировал свою задачу – почти через сорок лет после публикации Эйнштейном его революционных статей, – теория Эйнштейна была уже широко распространена. Едва ли найдется хотя бы один математик, который никогда не размышлял над физическими идеями Эйнштейна, пусть даже без какой‑либо определенной цели. К тому времени уравнения Эйнштейна прочно связали искривление пространства и гравитацию, глубоко пустив корни в математику. Можно сказать, что общая теория относительности стала частью коллективного сознания или, наоборот, «коллективного бессознательного», – как сказал бы Юнг.


    Ваша оценка произведения:

Популярные книги за неделю