355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Стив Надис » Теория струн и скрытые измерения вселенной » Текст книги (страница 24)
Теория струн и скрытые измерения вселенной
  • Текст добавлен: 28 сентября 2016, 22:55

Текст книги "Теория струн и скрытые измерения вселенной"


Автор книги: Стив Надис


Соавторы: Яу Шинтан
сообщить о нарушении

Текущая страница: 24 (всего у книги 29 страниц)

Невидимое движение в дополнительных измерениях сообщит частице импульс и кинетическую энергию, поэтому ожидается, что частицы Калуцы‑Клейна будут тяжелее, чем их медленные четырехмерные коллеги. В качестве примера можно привести гравитоны Калуцы‑Клейна. Они будут выглядеть как обычные гравитоны, будучи частицами‑переносчиками гравитационного взаимодействия, только они будут тяжелее за счет дополнительного импульса. Один из способов выделить такие гравитоны среди огромного моря других частиц, рождаемых коллайдером, – обратить внимание не только на массу частицы, но и на ее спин. Фермионы, такие как электроны, имеют определенный угловой момент, который мы квалифицируем как спин‑1/2. Бозоны, такие как фотоны и глюоны, имеют чуть больший угловой момент, квалифицируемый как спин‑1. Любые частицы, у которых на коллайдере будет обнаружен спин‑2, вероятно, являются гравитонами Калуцы‑Клейна.

Такое открытие будет иметь большое значение, так как физики не только поймают первый проблеск долгожданной частицы, но и получат убедительное доказательство существования самих дополнительных измерений. Обнаружение существования, по крайней мере, одного дополнительного измерения является потрясающим открытием само по себе, но Шую и его коллегам хотелось пойти дальше и получить подсказки, указывающие на геометрию этого дополнительного пространства. В 2008 году в статье, написанной совместно с Ундервудом, Девином Уолкером из Калифорнийского университета Беркли и Катериной Журек из Висконсинского университета, Шуй и его команда обнаружили, что небольшое изменение в форме дополнительных измерений вызывает огромные – от 50% до 100% – изменения, как в массе, так и в характере взаимодействия гравитонов Калуцы‑Клейна. «Когда мы чуть‑чуть изменили геометрию, числа изменились кардинально», – замечает Андервуд.[245]

Хотя анализ, выполненный Шуем с сотрудниками, далек от того, чтобы делать выводы о форме внутреннего пространства или уточнять геометрию Калаби‑Яу, он дает некоторую надежду использовать данные экспериментов, чтобы «сократить класс разрешенных форм до небольшого диапазона». «Секрет нашего успеха лежит в кросс‑корреляции между разными типами экспериментов в космологии и физике высоких энергий», – говорит Шиу.[246]

Масса частиц, регистрируемых на Большом адронном коллайдере, также даст нам намеки на размер дополнительных измерений. Дело в том, что для частиц это проход в многомерную область, и чем меньше эти области, тем тяжелее будут частицы. Вы можете спросить, сколько энергии необходимо для прогулки по проходу. Вероятно, немного. Но что, если проход окажется не коротким, но очень узким? Тогда проход через туннель выльется в борьбу за каждый дюйм пути, сопровождаемый, без сомнения, проклятиями и обещаниями, и конечно, большей затратой энергии. Вот примерно то, что здесь происходит, а говоря техническим языком, все сводится к принципу неопределенности Гейзенберга, который гласит, что импульс частицы обратно пропорционален точности измерения ее местоположения. Иначе говоря, если волна или частица зажаты в очень, очень крошечном пространстве, где ее положение ограничено очень узкими границами, то она будет иметь огромный импульс и соответственно большую массу. И наоборот, если дополнительные измерения огромны, то волна или частица будет иметь больше места для движения и соответственно обладать меньшим импульсом и обнаружить их будет легче.

Однако здесь скрыта ловушка: Большой адронный коллайдер зафиксирует такие вещи, как гравитоны Калуцы‑Клейна, только если эти частицы много, много легче, чем предполагалось, а это говорит о том, что или дополнительные размерности чрезвычайно искривлены, или они должны быть намного больше планковского масштаба, традиционно принятого в теории струн. Например, в модели искривления Рандалла‑Сандрама пространство с дополнительными измерениями ограничено двумя бранами, между которыми находится свернутое пространство‑время. На одной бране – высокоэнергетической, гравитация сильная; на другой бране – низкоэнергетической, гравитация слабая. Вследствие такого расположения масса и энергия изменяются радикально в зависимости от положения пространства по отношению к этим двум бранам. Это означает, что массу элементарных частиц, которую мы обычно рассматривали в пределах планковской шкалы (порядка 10 28электрон‑вольт), придется «перемасштабировать» до более близкого диапазона, то есть до 10 12электрон‑вольт, или 1 тераэлектронвольта, что уже соответствует диапазону энергий, с которыми работает коллайдер.

Размер дополнительных измерений в этой модели может быть меньше, чем в обычных моделях теории струн (хотя такое требование не выдвигается), в то время как сами частицы, вероятно, должны быть намного легче и, следовательно, обладать меньшей энергией, чем это предполагается.

Другой новаторский подход, рассматриваемый сегодня, был впервые предложен в 1998 году физиками Нимой Аркани‑Хамедом, Савасом Димопулосом и Гиа Двали, когда все они работали в Стэнфорде. Оспаривая утверждение Оскара Клейна о том, что мы не можем видеть никаких дополнительных измерений из‑за их малого размера, трио физиков, которых обычно называют аббревиатурой АДД, заявили, что дополнительные измерения могут быть больше планковской длины, по крайней мере 10‑ 12см и, возможно, даже больше, до 10‑ 1см (1 миллиметр). Они утверждали, что такое было бы возможным, если бы наша Вселенная «застряла» на трехмерной бране с дополнительным измерением – временем и если этот трехмерный мир – все, что мы можем видеть.

Это может показаться довольно странным аргументом: ведь идея о том, что дополнительные измерения очень маленькие, является допущением, на котором построено большинство моделей теории струн. Но оказывается, что общепринятый размер пространства Калаби‑Яу, часто воспринимаемый как нечто само собой разумеющееся, «все еще является открытым вопросом, – полагает Полчински. – Математикам размер пространства неинтересен. В математике удвоение чего‑либо является обыденным делом. Но в физике размер имеет значение, поскольку он говорит вам, сколько энергии требуется, чтобы увидеть объект».[247]

Сценарий АДД позволяет не только увеличить размер дополнительных измерений; он сужает энергетическую шкалу, при которой гравитация и другие силы становятся унифицированными, и следовательно, сужает планковскую шкалу. Если Аркани‑Хамед и его коллеги правы, то энергия, генерируемая при столкновении частиц на Большом адронном коллайдере, может проникать в высшие размерности, что будет выглядеть как явное нарушение законов сохранения энергии. В их модели даже сами струны, базовые единицы теории струн, могут стать достаточно большими для наблюдения – о чем раньше невозможно было даже думать. Команду АДД вдохновляет возможность рассмотреть проблему очевидной слабости гравитации по сравнению с другими взаимодействиями, учитывая, что убедительного объяснения этого неравенства сил пока не существует. Теория АДД предлагает новый ответ: гравитация не слабее других сил, но только кажется слабее, потому что в отличие от других взаимодействий она «утекает» в другие измерения так, что мы чувствуем только крошечную долю ее истинной силы. Можно провести аналогию: когда сталкиваются бильярдные шары, часть кинетической энергии их движения, ограниченного двумерной поверхностью стола, ускользает в форме звуковых волн в третье измерение.

Выяснение подробностей такой утечки энергии предполагают следующие стратегии наблюдения: гравитация, как нам известно, в четырехмерном пространстве‑времени подчиняется закону обратных квадратов. Гравитационное притяжение объекта обратно пропорционально квадрату расстояния от него. Но если мы добавим еще одно измерение, гравитация будет обратно пропорциональна кубу расстояния. Если у нас десять измерений, как это положено в теории струн, гравитация будет обратно пропорциональна восьмой степени расстояния. Другими словами, чем больше дополнительных измерений, тем слабее гравитация по сравнению с той, которая измеряется с нашей четырехмерной точки зрения. Электростатическое взаимодействие также обратно пропорционально квадрату расстояния между двумя точечными зарядами в четырехмерном пространстве‑времени и обратно пропорционально восьмой степени расстояния в десятимерном пространстве‑времени. Если рассматривать гравитацию на таких больших расстояниях, какими принято оперировать в астрономии и космологии, то закон обратных квадратов работает хорошо, потому что в этом случае мы находимся в пространстве трех гигантских измерений плюс время. Мы не заметим гравитационного притяжения в необычном для нас новом направлении, которое соответствует скрытому внутреннему измерению, до тех пор пока не перейдем на достаточно маленький масштаб, чтобы перемещаться в этих измерениях. А так как физически нам запрещено это делать, то нашей главной и, вероятно, единственной надеждой остается искать признаки дополнительных измерений в форме отклонений от закона обратных квадратов. Именно этот эффект физики из Вашингтонского университета, университета Колорадо, Стэнфордского и других университетов ищут путем выполнения гравитационных измерений на малых расстояниях.

Несмотря на то что исследователи располагают различным экспериментальным оборудованием, их цели, тем не менее, одинаковы: измерить силу гравитации в малом масштабе с такой точностью, о которой никто ранее и не мечтал. Команда Эрика Адельбергера из Вашингтонского университета, например, выполняет эксперименты по «крутильному балансу», в духе тех опытов, что проводил Генри Кавендиш в 1798 году. Основная цель заключается в том, чтобы сделать вывод о силе гравитации путем измерения вращающего момента на крутильном маятнике.

Группа Адельбергера использует небольшой металлический маятник, висящий над двумя металлическими дисками, которые оказывают гравитационное воздействие на маятник. Силы притяжения от двух дисков сбалансированы таким образом, что если ньютоновский закон обратных квадратов работает точно, то маятник вообще не будет крутиться.

Рис. 12.3.Бесконечно малые вращения, вызываемые гравитационным притяжением, измеряют на малых масштабах и с большой точностью с помощью маятника Mark VI, разработанного и введенного в эксплуатацию исследовательской группой «Эёт‑Уош» из Вашингтонского университета. Если наблюдения позволят обнаружить отклонение от закона обратных квадратов на малых расстояниях, это может сигнализировать о наличии дополнительных измерений, предсказанных теорией струн (Вашингтонский университет/Мэри Левин)

В экспериментах, выполненных на данный момент, маятник не показал никаких признаков кручения при измерении с точностью до одной десятой части миллионных долей градуса. Размещая маятник все ближе к дискам, исследователи исключили существование измерений, радиус которых больше 40 микрон. В своих будущих экспериментах Адельбергер намерен проверить закон обратных квадратов на еще меньших масштабах, доведя верхнюю оценку до 20 микрон. Адельбергер считает, что это не предел. Но чтобы провести измерения на еще меньших масштабах, необходим другой технологический подход.

Адельбергер считает гипотезу о больших дополнительных измерениях революционной, но замечает, что это не делает ее истинной.[248] Нам необходимы новые тактики не только для исследования вопроса о больших измерениях, но также и для того, чтобы найти ответы на более общие вопросы, касающиеся существования дополнительных измерений и истинности теории струн.

Таково положение дел на сегодня – множество различных идей, из которых мы обсудили только небольшую горстку, и недостаточно сенсационные результаты, чтобы о них говорить. Заглядывая в будущее, Шамит Качру, например, надеется, что ряд экспериментов, планируемых или еще не придуманных, предоставит много возможностей увидеть что‑то новое. Однако он признает возможность и менее радужного сценария, предполагающего, что мы живем в разочаровывающей Вселенной, дающей не так уж много эмпирических подсказок. «Если мы ничего не узнаем из космологии, ничего из экспериментов по ускорению частиц и ничего не извлечем из лабораторных экспериментов, тогда мы попросту застряли», – говорит Качру. Хотя он рассматривает такой сценарий как маловероятный, поскольку подобная ситуация не характерна ни для теории струн, ни для космологии, он замечает, что недостаток данных будет влиять аналогичным образом на другие области науки.[249]

Что мы будем делать дальше, после того как с пустыми руками достигнем конца этого отрезка пути? Окажется ли это для нас еще большим испытанием, чем поиск гравитационных волн в КМФ или бесконечно малых отклонений при измерениях на крутильных весах, в любом случае это будет испытанием нашего интеллекта. Каждый раз, когда происходит нечто подобное, когда каждая хорошая идея развивается не так, как хотелось бы, а каждая дорога приводит в тупик, вы или сдаетесь или пытаетесь придумать другие вопросы, на которые можно постараться найти ответы.

Эдвард Виттен, который, как правило, консервативен в своих заявлениях, смотрит в будущее с оптимизмом, чувствуя, что теория струн является слишком хорошей, чтобы не быть правдой. Хотя он признает, что в ближайшее время будет трудно точно определить, где мы находимся. «Чтобы проверить теорию струн, на нашу долю, вероятно, должно выпасть большое счастье, – говорит он. – Оно может звучать, как звучит тонкая струна, на которой записаны чьи‑то мечты о теории всего, почти такая же тонкая, как сама космическая струна. Но, к счастью, в физике существует много способов поймать удачу».[250]

У меня нет возражений против этого утверждения, и я склонен согласиться с Виттеном, потому что считаю это мудрой политикой. Но если физики решат, что удача отвернулась от них, они, возможно, захотят обратиться к своим коллегам‑математикам, которые с удовольствием возьмут на себя часть решения этой задачи.

Тринадцатая главаИстина, красота и математика

Насколько далеко могут зайти исследователи в своих попытках изучить скрытые измерения Вселенной при отсутствии физических доказательств? Аналогичный вопрос можно задать и струнным теоретикам, пытающимся создать всеобъемлющую теорию природы, не опираясь на обратную связь с экспериментом. Это похоже на исследование огромной темной пещеры с помощью только колеблющегося пламени свечи. Хотя некоторым исследования в таких обстоятельствах могут показаться чистым безумием, подобная ситуация далеко не беспрецедентна в истории науки. На ранних этапах создания теории периоды блуждания во тьме – скорее правило, чем исключение, особенно когда речь идет о развитии и продвижении широкомасштабных идей. На подобных этапах, когда нет экспериментальных данных, на которые можно опереться, математическая красота – это все, что может служить нам путеводной нитью.

Поль Дирак «называл математическую красоту единственным критерием для выбора пути движении вперед в теоретической физике», – писал физик Питер Годдар.[251] Иногда такой подход полностью себя оправдывает, как это было в случае прогноза Дирака о существовании позитрона (как электрона с положительным зарядом), что стало возможным только потому, что математическое рассуждение навело его на мысль, что такие частицы должны существовать. Действительно, спустя несколько лет позитрон был открыт, подтвердив тем самым его веру в математику.

Действительно, мы снова и снова открываем для себя, что идеи, которые опираются на математику и соответствуют критерию простоты и красоты, обычно являются теми идеями, которые мы, в конце концов, наблюдаем реализованными в природе. Совершенно непостижимо, почему это происходит. Например, физик Юджин Вигнер пребывал в недоумении от «необоснованной эффективности математики в естественных науках», то есть остается загадкой, как чисто математические конструкции, не имеющие видимой связи с миром природы, тем не менее описывали этот мир с такой точностью.[252]

Физик Чженьнин Янг тоже удивился, обнаружив, что уравнения Янга‑Миллса, описывающие взаимодействия между частицами, уходят своими корнями в физические калибровочные теории, обладающие удивительным сходством с идеями теории расслоения, которую математики начали разрабатывать тридцатью годами раньше и, по словам Янга, «без ссылки на физический мир». Когда он спросил геометра Ч. Ш. Черна, как такое возможно, что «математики выдумали эти понятия из ниоткуда», Черн запротестовал: «Нет, нет. Эти понятия не выдуманы. Они естественны и реальны».[253]

Конечно, нет недостатка в абстрактных идеях, пришедших к математикам чуть ли не из воздуха, которые, как обнаруживалось впоследствии, описывают природные явления. Не все они, между прочим, были продуктами современной математики. Считается, что конические сечения – круг, эллипс, парабола и гипербола – кривые, получаемые при сечении конуса плоскостью, были открыты греческим геометром Менехмом примерно в 300 году до нашей эры и широко использовались столетие спустя Аполлонием Пергским в его трактате «Коники». Однако эти формы не находили широкого научного применения до начала XVII века, когда Кеплер обнаружил, что орбиты планет Солнечной системы являются эллипсами.

Аналогично фуллерены или бакминстерфуллерены, новая форма углерода, содержащая 60 атомов углерода, соединенные в сфероподобную структуру с пятиугольными и шестиугольными гранями, была открыта химиками в 1980‑е годы. А форма этих молекул была описана Архимедом более двух тысяч лет назад.[254] Теория узлов, раздел чистой математики, сформулированная в конце XIX века, нашла свое применение спустя более чем столетие в теории струн и в исследованиях ДНК.

Трудно сказать, почему математические идеи находят подтверждение в природе. Ричард Фейнман находил в той же степени сложным и объяснение, почему «каждый из наших физических законов может быть представлен чисто математической формулировкой». Ключ к разгадке, как он считал, может таиться в связи между математикой, природой и красотой. «Тем, кто не знает математики, – считал Фейнман, – сложно ощутить красоту, глубочайшую красоту природы».[255]

Но если красота и является ориентиром, позволяющим выбрать верный путь, по крайней мере пока у нас нет более объективных критериев, следует оставить все попытки дать ей какое бы то ни было определение, предоставив это поэтам. Хотя математики и физики рассматривают концепцию красоты несколько иначе: в обеих дисциплинах мы называем красивыми, как правило, те идеи, которые, с одной стороны, могут быть изложены четко и лаконично, а с другой – обладают чрезвычайной мощью и широким охватом. Тем не менее для такого субъективного понятия, как красота, большую роль неизбежно играет и личный вкус. Я вспоминаю тост, произнесенный на свадьбе старого холостяка, который остепенился сравнительно поздно, после многих лет холостяцкой жизни. Его знакомые гадали, какая девушка сумеет заставить этого парня связать себя узами брака? Старого холостяка это тоже интересовало. «Ты узнаешь, когда увидишь ее», – неоднократно говорил ему друг задолго до того, как холостяк нашел свою единственную.

Я знаю, что он имел в виду. У меня были аналогичные ощущения, когда я встретил свою будущую жену в математической библиотеке Беркли много лет назад, хотя сложно передать словами чувства, охватившие меня в тот момент. Не хочу обидеть свою жену, но похожее неуловимо трепетное чувство эйфории я испытал, когда доказал гипотезу Калаби в середине 1970‑х годов. Закончив доказательство гипотезы после месяцев напряженных усилий, растянувшихся на годы, я, наконец, смог расслабиться и насладиться комплексными многомерными пространствами, открытыми мною. Можно сказать, что это была любовь с первого взгляда, хотя после работы над задачей, мне кажется, что я уже хорошо знал эти объекты, даже когда впервые увидел их. Может быть, моя уверенность была неуместной, но тогда я чувствовал (и чувствую до сих пор), что эти пространства, возможно, будут каким‑то образом играть чрезвычайно важную роль в физическом мире. Теперь все зависит от струнных теоретиков или, возможно, от исследователей в других, не связанных с ними областях науки, которые покажут, была ли моя догадка правильной.

Рис. 13.1.Конические сечения – это три фундаментальные кривые, которые получаются при пересечении конуса плоскостью (или фактически двух конусов, прикрепленных друг к другу острыми концами). Эти три кривые: парабола, эллипс (в частном случае – окружность) и гипербола

Рис. 13.2.В то время как правильный икосаэдр состоит из двадцати треугольных граней, показанный на рисунке усеченный икосаэдр состоит из двадцати шестиугольных и двенадцати пятиугольных граней, причем никакие два пятиугольника не имеют общей стороны. В отличие от правильных икосаэдров, которые относятся к Платоновым телам, усеченные икосаэдры относятся к архимедовым телам, названным в честь греческого математика, исследовавшего эти фигуры более двух тысяч лет назад. Эта форма напоминает футбольный мяч и один из вариантов так называемых фуллеренов – молекулярной структурированной формы углерода, состоящей из шестидесяти атомов, открытой в 1985 году химиками Гарольдом Крото и Ричардом Смэлли. Термин фуллеренявляется сокращением от бакминстерфуллерена, класса молекул, названного в честь архитектора Ричарда Бакминстера Фуллера, изобретателя геодезического купола похожей формы

По утверждению математика Майкла Атья, струнным теоретикам должно быть приятно, «что то, с чем они “играют”, если даже это невозможно измерить экспериментально, может оказаться очень богатой… математической структурой, которая не только согласуется с теорией, но фактически открывает новые двери, дает новые результаты и т. д…. Очевидно, они кое в чем разбираются. Остается выяснить, является ли это “кое‑что” тем, что Бог создал для Вселенной. Но если Бог создал это не для Вселенной, то, вероятно, для чего‑то еще».[256]

Я не знаю, чем является это «кое‑что», но оно поражает меня слишком сильно, чтобы быть ничем. Но Атья, по его словам, также осознает риск быть убаюканным элегантностью, базирующейся на зыбкой почве. «Красота может быть скользкой вещью», – предупреждает Джим Холт, скептически относящийся к теории струн и публикующий свои статьи в «New Yorker».[257] Или, как выразился Атья: «подчинение физики математике таит в себе опасность, поскольку может завести нас в область измышлений, воплощающих математическое совершенство, но слишком далеких от физической реальности или даже не имеющих с ней ничего общего».[258]

Безусловно, слепое следование математической красоте способно ввести нас в заблуждение, и даже если красота указывает нам верное направление, то одна лишь красота никогда не сможет привести нас к цели. В конце концов, красота должна быть подкреплена чем‑то еще – чем‑то более существенным, в противном случае наши теории никогда не выйдут за пределы уровня убедительных спекуляций, независимо от степени их обоснованности и правдоподобия.

«Красота не может гарантировать истины, – утверждал физик Роберт Миллс, соавтор теории Янга‑Миллса. – У нас нет никаких логических оснований утверждать, что истина должна быть прекрасной, но наш опыт постоянно подсказывает, что следует ожидать красоту в самой сути вещей и использовать это ожидание в качестве руководства в поисках более глубокого теоретического понимания фундаментальных структур природы». И наоборот, добавляет Миллс, «если предложенная теория неэлегантна, мы считаем ее сомнительной».[259]

Итак, где же заканчивается математика и начинается теория струн? Физик из Корнеллского университета Генри Тай считает, что «теория струн слишком красива, богата, креативна и утонченна, чтобы ее не использовала природа. Это было бы слишком расточительно»[260]. Только этого недостаточно, чтобы сделать теорию струн верной, а такие критические трактовки, как «The Trouble with Physics»и «Not Even Wrong»,сеют сомнения в общественном сознании в тот момент, когда сама эта теория находится в некотором упадке. Даже такой энтузиаст, как Брайан Грин, автор книги «The Elegant Universe»(«Элегантная Вселенная»), признает, что физическая теория не может быть оценена только на основании элегантности: «Вы судите о ней на основании того, может ли она делать предсказания, которые будут подтверждены экспериментом».[261]

Во время написания этой книги я имел возможность обсуждать ее содержание со многими людьми, имеющими образование в соответствующей области, которым, по моему мнению, было бы интересно читать о подобного рода вещах. Когда они слышали, что книга связана с математическими основами теории струн, то часто их реакция была примерно следующей: «Подождите минуту. Разве с теорией струн что‑нибудь не так?» Их вопросы предполагали, что написание книги о математических основах теории струн – это примерно то же, что книга о фантастических инженерных разработках, которые легли в основу строительства «Титаника». Мой коллега‑математик, которому, вероятно, виднее, даже публично заявил, что поскольку «суд присяжных по теории струн еще не состоялся», нечего судить о математической базе, связанной с теорией струн.

Такое заявление подразумевает фундаментальное заблуждение о природе математики и ее отношении к эмпирическим наукам. В то время как окончательным доказательством в физике считается эксперимент, в математике это не так. Можно иметь миллиард частных свидетельств о том, что что‑то является верным, но миллиард первое опрокинет все здание. До тех пор пока что‑то полностью не доказано при помощи чистой логики, оно остается гипотезой.

В физике и других эмпирических науках истинность любого утверждения всегда является предметом ревизии. Теория тяготения Ньютона продержалась более двух столетий, но из‑за присущих ей ограничений в конце концов была заменена теорией Эйнштейна, имеющей собственные ограничения, которые когда‑нибудь приведут к замене ее теорией квантовой гравитации, например теорией струн. В то же время математика, на которой базируется ньютоновская механика, является на сто процентов верной и никогда не изменится.

Чтобы сформулировать теорию гравитации, Ньютону пришлось попутно изобрести математический анализ. Когда теория гравитации Ньютона оказалась бессильной объяснить новые эксперименты из‑за присущих ей ограничений и была разработана общая теория относительности, мы не отказались от математического анализа. Мы держимся за математику, которая является не пустым звуком, но жизненной необходимостью, понимая, что ньютоновская механика представляет собой удивительно хороший инструмент для большинства ситуаций, хотя ее и нельзя применять в предельных случаях.

Теперь перейдем к более современным вещам, которые ближе моему сердцу. Тридцать с лишним лет назад я доказал существование пространств, которые сегодня называются многообразиями Калаби‑Яу. И их существование вовсе не зависит от того, окажется ли теория струн всеобъемлющей теорией природы. Следует признать, что в доказательстве могут быть обнаружены слабые места и все аргументы могут рассыпаться, как карточный домик. Но в случае гипотезы Калаби доказательство было проверено столько раз, что вероятность найти ошибку, по существу, равна нулю. Не только пространства Калаби‑Яу остались в физике, но и методы, которые я использовал для решения задачи, применяются с большим успехом для многих других математических задач, в том числе и для задач алгебраической геометрии, которые не имеют явных связей с исходной гипотезой.

Действительно, полезность пространств Калаби‑Яу в физике в некотором смысле не имеет отношения к вопросу о важности математики. Рискуя показаться нескромным, я мог бы добавить, что в 1982 году я получил медаль Филдса, одну из самых почетных наград в математике, главным образом за доказательство теоремы Калаби. Вы можете заметить, что эту награду мне вручили за несколько лет до того, как физики узнали о многообразиях Калаби‑Яу и до появления на карте самой теории струн.

Что касается теории струн, то математика, лежащая в ее основе, или вытекающие из нее следствия, являются абсолютно верными, независимо от того, какое окончательное решение примет суд присяжных в отношении самой теории. Я пойду дальше: если математическая теория, лежащая в основе теории струн, является веской и строго доказанной, то она будет прочно стоять на ногах, независимо от того, живем ли мы на самом деле в десятимерной Вселенной, состоящей из струн и бран.

Что это может означать для физики? Как я уже упоминал, поскольку я математик, не мне судить о справедливости теории струн, но я выскажу некоторые идеи и замечания. Конечно, теория струн остается не только недоказанной, но и непроверенной. Тем не менее главным инструментом проверки работы физиков остается математическая последовательность теории, и пока теория струн выдержала этот экзамен с честью. Последовательность в данном случае означает отсутствие противоречий. Это означает, что если то, что вы вставляете в уравнения теории струн, является корректным, то и то, что вы получите с помощью этих уравнений, тоже должно быть корректным. Это означает, что когда вы делаете расчеты, результаты не расходятся и не стремятся к бесконечности. Функции остаются разумными и не превращаются в тарабарщину. Хотя этого далеко не достаточно, чтобы удовлетворить суровых критиков, но это важная отправная точка. На мой взгляд, в этой идее есть доля истины, даже если природа и не играет по такому сценарию.

Эдвард Виттен, похоже, разделяет эту точку зрения. Он утверждает, что математическая непротиворечивость «была одним из самых надежных проводников для физиков в минувшем столетии».[262]

Учитывая, насколько трудно разработать эксперимент, который мог бы проникнуть в физику планковских масштабов, и насколько дорогим он может быть, если нам когда‑нибудь удастся его придумать, то все, что мы, вероятно, сможем сделать, это именно проверка теории на непротиворечивость, которая, тем не менее, по словам математика из Беркли Николая Решетихина, «может быть очень мощной». «Именно поэтому вершина теоретической физики все больше становится математической. Если ваши идеи не являются математически непротиворечивыми, то их можно сразу же отбросить».[263]

Теория струн не только математически непротиворечива, но и, вроде бы, соответствует всему, что мы знаем о физике элементарных частиц, а также предлагает новые пути для решения проблем пространства и времени – гравитации, черных дыр и других головоломок. Мало того, что теория струн согласуется с устоявшейся, хорошо проверенной физикой квантовых теорий поля, но, похоже, и неразрывно связана с этими теориями. «Никто не сомневается, что, например, такие калибровочные теории, как теория Янга‑Миллса для описания сильного взаимодействия, дают фундаментальное описание природы, – утверждает Роберт Дикграаф, физик из Амстердамского университета. – Но калибровочные теории фундаментально связаны со струнами». Это следует из принципа дуализма, который декларирует эквивалентность теории поля и струнной теории, демонстрируя взгляд на одну и ту же задачу с разных точек зрения. «Невозможно доказать принадлежность теории струн к физике, поскольку она неразрывно связана со всеми вещами, которые нам дороги, – добавляет Дикграаф. – Поэтому мы не можем избавиться от теории струн, независимо от того, описывает она нашу Вселенную или нет. Это всего лишь еще один инструмент для осмысления фундаментальных свойств физики».[264]


    Ваша оценка произведения:

Популярные книги за неделю