Текст книги "Теория струн и скрытые измерения вселенной"
Автор книги: Стив Надис
Соавторы: Яу Шинтан
Жанр:
Технические науки
сообщить о нарушении
Текущая страница: 15 (всего у книги 29 страниц)
Как оказалось, существует не единственный способ введения квантовых поправок. Благодаря зеркальной симметрии для любого многообразия Калаби‑Яу можно построить эквивалентный ему с физической точки зрения зеркальный партнер. Многообразия, являющиеся зеркальными партнерами, описываются двумя различными по виду, но эквивалентными по сути вариантами теории струн, типа IIA и типа IIB, которые описывают одну и ту же квантовую теорию поля. Мы можем сделать эти расчеты относительно легко для модели В, где квантовые поправки оказываются равными нулю. Расчет же для модели А, в которой квантовые поправки в нуль не обращаются, практически невозможен.
Примерно через год после выхода статьи Грина и Плессера, внимание математического сообщества привлекло новое открытие в области зеркальной симметрии. Канделасу, Ксении де ла Осса, Полу Грину и Линде Паркс удалось показать, что зеркальная симметрия может оказать помощь при разрешении математических задач, в частности в области алгебраической и нумеративной геометрии, в том числе некоторых из тех, что не поддавались математикам на протяжении десятилетий. Задача, которую рассмотрел Канделас со своими коллегами, носила название задачи трехмерной поверхности пятого порядка и в то время была у всех на слуху. Свое второе название – задача Шуберта – она получила в честь немецкого математика XIX века Германа Шуберта, решившего ее первую часть. Задача Шуберта имеет отношение к определению количества рациональных кривых – то есть кривых рода 0, не имеющих дырок, таких как сфера, – которые можно провести на многообразии Калаби‑Яу пятого порядка (шестимерном).
Подобный расчет может показаться весьма странным занятием для того, кто не увлекается нумеративной геометрией, – для тех же, кто работает в этой области, подобная деятельность является вполне привычной. На самом деле задача весьма проста – это не сложнее, чем высыпать на стол конфеты из вазы и сосчитать их. Расчет числа определенных объектов на многообразии и очерчивание круга приложений, в которых полученное число может оказаться полезным, на протяжении столетия или больше были важнейшими задачами для математиков. Число, которое необходимо найти, в конце этого процесса должно оказаться конечным, поэтому поиск нужно ограничить компактными пространствами, небесконечными плоскостями. Если, к примеру, необходимо рассчитать число точек пересечения между двумя кривыми, то в случае наличия точек соприкосновения между кривыми могут возникнуть затруднения. Впрочем, математики, занимающиеся нумеративной геометрией, уже разработали методики, позволяющие разобраться с этими сложностями и получить строго определенное число.
Одна из первых задач такого типа была сформулирована приблизительно в 200 году до нашей эры греческим математиком Аполлонием, которого интересовал следующий вопрос: если даны три окружности, то сколькими способами можно нарисовать четвертую так, чтобы она касалась всех трех одновременно? Ответ на этот вопрос (восемь) может быть получен с помощью линейки и циркуля. Для решения же задачи Шуберта необходимы более сложные вычисления.
В работе над этой задачей математики избрали поэтапный подход, рассматривая за раз только одну степень. Под степенью понимается наивысшая из степеней слагаемых, входящих в многочлен. К примеру, степень полинома 4x 2 ‑ 5y 3 равна трем, 6х 3 y 4 +4x– семи (степени х 3 и y 4 складываются), а 2x+3y‑4– единице (график этой функции – прямая линия). Итак, задача состояла в том, чтобы выбрать многообразие (в нашем случае речь идет о трехмерной поверхности пятого порядка) и степень (порядок) кривых, количество которых необходимо было подсчитать.
Шуберт решил эту задачу для кривых первого порядка, показав, что на поверхности пятого порядка можно провести ровно 2875 кривых. Почти через сто лет после этого, в 1986 году, Шелдон Кац, в настоящее время работающий в Университете штата Иллинойс, показал, что число кривых второго порядка, подобных окружностям, на той же поверхности равно 609 250. Канделас, де ла Осса, Грин и Паркс, в свою очередь, рассмотрели случай кривых третьего порядка, от которого легко перейти к задаче о числе сфер, которые можно разместить в определенном пространстве Калаби‑Яу. В этом им помог прием, основанный на зеркальной симметрии. В то время как решение задачи для многообразия пятого порядка было чрезвычайно сложным, его зеркальный партнер, созданный Грином и Плессером, позволял найти намного более простой путь к решению.
Кроме того, в первой статье Грина и Плессера, посвященной зеркальной симметрии, была выдвинута ключевая идея о том, что взаимодействия Юкавы можно представить при помощи двух различных математических формул, одна из которых будет описывать исходное многообразие, а вторая – его зеркальную пару. Первая из этих формул, включающая в себя число рациональных кривых различных степеней, которые можно было обнаружить на многообразии, по словам Грина, была просто «кошмарной». Со второй формулой, зависящей от формы многообразия в более общем виде, работать было намного проще. Однако так как обе формулы описывали один и тот же физический объект, они должны быть эквивалентными – подобно словам «кот» и «cat», которые имеют различный вид, но описывают одно и то же пушистое существо. Статья Грина и Плессера содержала уравнение, из которого напрямую следовала эквивалентность этих двух столь различных формул.
Рис. 7.6.Выдающимся достижением геометрии XIX века стало доказательство математиками Артуром Кэли и Джорджем Сэлмоном утверждения, что поверхность третьего порядка, приведенная на рисунке, содержит ровно 27 прямых. Герман Шуберт впоследствии обобщил этот результат, получивший название теоремы Кэли‑Сэлмона (изображение предоставлено 3D‑XplorMath Consortium)
Рис. 7.7.Подсчет числа прямых или кривых на поверхности является обычной задачей алгебраической и нумеративной геометрии. Чтобы лучше понять, что подразумевается под числом прямых на поверхности, рассмотрим приведенный на рисунке дважды линейчатый гиперболоид как поверхность, полностью состоящую из прямых. Он называется дважды линейчатым, поскольку через каждую его точку проходят две различные прямые линии. Подобная поверхность плохо подходит для нумеративной геометрии по причине бесконечного числа прямых, которые можно на ней провести (фотография Карена Шаффнера, математический отдел Аризонского университета)
Рис. 7.8.Задача Аполлония, одна из наиболее известных задач в геометрии, посвящена вопросу о числе способов, которыми можно нарисовать окружность, касательную к трем заданным. Постановка задачи и первое решение приписывается греческому математику Аполлонию Пергскому (приблизительно 200 год до нашей эры) На рисунке приведены восемь решений этой задачи – восемь различных касательных окружностей. Спустя две тысячи лет математик Герман Шуберт рассмотрел аналогичную задачу в трехмерном пространстве, показав, что построить сферу, касательную к четырем заданным сферам, можно шестнадцатью способами
«Даже если у тебя есть уравнение, в достоверности которого с формальной точки зрения ты не сомневаешься, решить его с достаточной точностью и получить ответ в виде числа может оказаться сложной задачей, – замечает Грин. – У нас было уравнение, но не было инструментов для получения определенного числа. Канделас и его сотрудники разработали эти инструменты, что стало крупнейшим достижением, оказавшим огромное влияние на геометрию».[104]
Работа Грина и Плессера наглядно иллюстрирует всю мощь зеркальной симметрии. Теперь можно было не утруждать себя подсчетом числа кривых в пространстве Калаби‑Яу, поскольку, проведя совершенно другое вычисление – с виду не имеющее ничего общего с работой по подсчету кривых, – можно было получить тот же ответ. Когда Канделас и его коллеги применили этот подход к расчету количества кривых третьего порядка на трехмерной поверхности пятого порядка, они получили число 317 206 375.
Наш интерес, однако, заключался не столько в определении количества рациональных кривых, сколько в исследовании многообразия как такового. Дело в том, что в процессе подсчета мы по сути дела перемещаемся по кривым, используя хорошо разработанные методики, до тех пор пока не проходим все пространство. В ходе этой процедуры мы фактически определяем пространство – неважно, будет это трехмерная поверхность пятого порядка или какое‑либо другое многообразие, – в терминах данных кривых.
Результатом всего вышесказанного стало второе рождение уже порядком подзабытой области геометрии. По словам Марка Гросса, математика из Калифорнийского университета, идея использования зеркальной симметрии для решения задач нумеративной геометрии, впервые предложенная Канделасом и его сотрудниками, привела к возрождению целой дисциплины. «К тому времени эта область исследований почти полностью исчерпала себя, – говорит Гросс. – Когда все старые задачи были решены, ученые занялись перепроверкой чисел Шуберта при помощи современных вычислительных технологий, но это занятие едва ли можно было назвать увлекательным. И вдруг, как гром с ясного неба, Канделас заявил о разработке ряда новых методов, выходящих далеко за пределы того, что мог представить себе Шуберт».[105] Физики многое заимствуют из математики, а вот математики, прежде чем заимствовать из физики метод Канделаса, прежде всего потребовали более детального обоснования его строгости.
Случайно, приблизительно в это же время – в мае 1991 года, если быть точным, – я организовал конференцию в Исследовательском институте математических наук Беркли, для того чтобы математики и физики получили возможность поговорить о зеркальной симметрии. И. М. Зингер, один из основателей института, изначально выбрал для конференции другую тему, но мне удалось его переубедить, упомянув некоторые из новых открытий в области зеркальной симметрии, которые представлялись мне особенно захватывающими. Зингер как раз незадолго до этого посетил лекцию Брайана Грина и потому легко согласился со мной и попросил возглавить это мероприятие.
Я возлагал большие надежды на то, что эта конференция позволит преодолеть барьеры между родственными областями исследований, возникающие из‑за разницы в языке и накопленных знаниях. Во время конференции Канделас представил результаты, полученные им для проблемы Шуберта, но оказалось, что его число заметно отличалось от числа, полученного гораздо более строгим путем двумя норвежскими математиками Гейром Эллингсрудом и Штейном Арилдом Штремме (их ответ был – 2 682 549 425). В силу присущей им заносчивости, математики, работающие в области алгебраической геометрии, обвинили физиков в том, что те допустили ошибку. Прежде всего, по словам математика из Кайзерслаутернского университета Андреаса Газмана, «математики просто не понимали того, чем занимались физики, поскольку они [физики] использовали совершенно другие методы – не существующие в математике и далеко не всегда строго доказанные»[106].
Канделас и Грин были весьма озабочены возможностью допущенной ими ошибки, но им никак не удавалось понять, где именно они встали на неверный путь. В то время я много общался с обоими, особенно с Грином, и меня также занимал вопрос, где именно в процессе интегрирования по бесконечномерному пространству, которое нужно было затем свести к конечной размерности, могла быть допущена какая‑либо неточность. Конечно, в ходе математических преобразований неоднократно приходилось сталкиваться с проблемой выбора, причем ни один из вариантов нельзя было считать совершенным. Однако хотя все это ставило Канделаса и Грина в несколько неловкое положение, нам не удавалось обнаружить какую‑либо погрешность в их рассуждении, основанном скорее на физических идеях, нежели на строгом математическом доказательстве. Более того, несмотря на критику со стороны математиков, они остались верны зеркальной симметрии.
Все прояснилось приблизительно через месяц, когда Эллингсруд и Штремме обнаружили ошибку в своей компьютерной программе. Исправив ее, они получили тот же ответ, что и Канделас с соавторами. Норвежские математики проявили высокую степень научной честности, запустив заново свою программу, перепроверив результаты и обнародовав свою ошибку. На их месте многие постарались бы скрывать найденную ошибку как можно дольше, но Эллингсруд и Штремме сделали противоположное, моментально проинформировав научное сообщество как об ошибке, так и о ее исправлении.
Для зеркальной симметрии заявление, сделанное Эллингсрудом и Штремме, стало настоящим моментом истины. Оно не только привело к дальнейшему развитию этой области, но и помогло изменить отношение к самой идее. Если до этого многие математики считали зеркальную симметрию полной чушью, то теперь пришлось признать, что им все же есть чему поучиться у физиков. Показательно, что математик Дэвид Моррисон, в то время работавший в Университете Дьюка, на встрече в Беркли был одним из наиболее ярых критиков. Однако после описанных событий его мнение полностью изменилось, и вскоре ему даже удалось внести существенный вклад в концепцию зеркальной симметрии, теорию струн и теорию переходов с изменением топологии для многообразий Калаби‑Яу.
Разобравшись с проблемой Шуберта для кривых третьего порядка, Канделас и его коллеги применили разработанный ими метод зеркальной симметрии для нахождения решений в случае кривых со степенями от единицы до десяти. В результате они получили общую формулу, позволяющую для трехмерной поверхности пятого порядка найти число кривых любой необходимой степени. Проделав это, они встали на прямую дорогу, ведущую к решению задачи вековой давности, еще в 1900 году названной немецким математиком Дэвидом Гильбертом одной из двадцати трех важнейших математических задач современности, – речь идет о попытке построить «строгое основание исчислительной геометрии Шуберта», обеспечив таким образом «возможность заранее предсказать как степень полученных уравнений, так и число их решений».[107] Формула, выведенная Канделасом, удивила многих из нас. Численные решения задачи Шуберта оказались обычными последовательностями чисел, не имеющими ни общих особенностей поведения, ни видимых связей между собой. Впрочем, работа Канделаса и его коллег показала, что эти числа не являются случайными, а представляют собой важную часть завершенной структуры.
Существование данной структуры, установленное Канделасом и его сотрудниками, позволило получить формулу, необходимую для дальнейшей работы. Эта формула была проверена при помощи большого числа математических вычислений для полиномов со степенями от одного до четырех. О первых трех задачах уже шла речь ранее, а для кривых четвертого порядка решение было получено в 1995 году математиком Максимом Концевичем (в настоящее время работает в Институте высших научных исследований) – он получил число 242 467 530 000. Хотя формула, полученная группой Канделаса, полностью согласовывалась со всеми известными данными, вопрос о строгом доказательстве все еще был открыт. Многие математики, включая Концевича, предприняли немало усилий для представления уравнений Канделаса в форме полноценной гипотезы – в основном, за счет определения слагаемых, входящих в уравнения. Полученное в результате утверждение, известное как гипотеза о зеркальной симметрии, уже можно было подвергнуть окончательной проверке – математическому доказательству. Доказательство гипотезы о зеркальной симметрии стало обоснованием идеи зеркальной симметрии самой по себе.
Здесь я вынужден упомянуть одну из конфликтных ситуаций, которые время от времени возникают в математике. Как мне кажется, подобные ситуации неизбежны, поскольку мы живем в несовершенном мире, населенном несовершенными существами, а математика, несмотря на устоявшееся мнение о ней, совсем не является чистой интеллектуальной деятельностью, огражденной от политики, честолюбия, конкуренции и эмоций. Часто оказывается, что в подобных вопросах чем мельче причина для спора, тем большие она вызывает разногласия.
Мы с моими коллегами занимались исследованием гипотезы о зеркальной симметрии и ее обобщениями с 1991 года – со времени объявления Канделасом своих результатов. В статье, выложенной на сайт arXiv.org в марте 1996 года, Александр Гивенталь из Калифорнийского университета заявил, что ему удалось доказать гипотезу о зеркальной симметрии. Мы тщательно проработали эту статью и сочли ее – и в этом мы были не одиноки – крайне неясной. В том же году я лично пригласил моего коллегу из Массачусетского технологического института, считавшегося экспертом в этой области (который пожелал, чтобы его имя в этой книге осталось неназванным), прочитать на моем семинаре лекцию, посвященную доказательству Гивенталя. Он вежливо отказался, упомянув о своих серьезных сомнениях в убедительности аргументов, приведенных в статье. Точно так же и мне с моими коллегами не удалось шаг за шагом воспроизвести доказательство Гивенталя, несмотря на все наши попытки связаться с ним и соединить воедино те фрагменты, которые нам казались наиболее запутанными. Тогда мы приняли решение оставить эти бесплодные усилия и год спустя опубликовали наше собственное доказательство гипотезы о зеркальной симметрии.
Некоторые эксперты, в том числе Газман, назвали нашу статью «первым полным и строгим доказательством» гипотезы, аргументируя это тем, что доказательство Гивенталя «было весьма тяжелым для понимания, а в ряде мест – неполным»[108]. Дэвид Кокс, математик из колледжа Амхерст, являвшийся соавтором (вместе с Кацом) книги «Зеркальная симметрия и алгебраическая геометрия», также заявил о том, что мы представили «первое полное доказательство гипотезы».[109] С другой стороны, многие придерживались иного мнения, утверждая, что доказательство Гивенталя, опубликованное за год до нашего, было абсолютно полным и не содержало в себе каких‑либо серьезных пробелов. Оставляя другим возможность продолжать дискуссию по этому поводу, сам я полагаю наилучшим объявить, что эти две статьи, сведенные вместе, представляют собой доказательство гипотезы о зеркальной симметрии, и оставить этот вопрос. Дальнейшее продолжение спора не имеет смысла, особенно в свете того, что в математике все еще полно нерешенных проблем, являющихся куда более достойным объектом для приложения усилий.
Итак, отбросив противоречия, зададимся вопросом: что же доказывают эти две статьи? Прежде всего, доказательство гипотезы о зеркальной симметрии подтвердило правильность формулы Канделаса для числа кривых определенного порядка. Но на самом деле наше доказательство было шире. Формула Канделаса была применима для подсчета числа кривых только на трехмерной поверхности пятого порядка, тогда как наши доказательства можно было использовать для гораздо более широкого класса многообразий Калаби‑Яу, в том числе и для тех многообразий, к которым проявляют интерес физики, а также для других объектов, таких как векторные расслоения, о которых пойдет речь в девятой главе. Более того, наше обобщение позволяло использовать гипотезу о зеркальной симметрии не только для подсчета кривых, но и для получения других геометрических характеристик.
Как мне кажется, доказательство этой гипотезы позволило провести последовательную проверку некоторых идей из области теории струн с точки зрения строгой математики, что обеспечило данной теории крепкую математическую основу. Впрочем, теория струн не осталась в долгу перед математикой, поскольку зеркальная симметрия привела к созданию нового раздела алгебраической геометрии – нумеративой геометрии, – внеся существенный вклад в решение давних проблем в этой области. В самом деле, многие из моих коллег, занимающихся алгебраической геометрией, рассказывали мне, что единственной работой за последние пятнадцать лет, которая вызвала у них интерес, стала работа, вдохновленная идеями о зеркальной симметрии. Огромный вклад в математику со стороны теории струн вынудил меня признать, что физическая интуиция определенно должна чего‑то стоить. Это означало, что даже если природа и не работает строго по законам теории струн, эта теория, тем не менее, должна содержать в себе немалую долю истины, поскольку ее применение открывало путь к решению многих классических проблем, которые математики были не в состоянии решить самостоятельно. Даже сейчас, много лет спустя, невозможно представить себе независимый путь вывода формулы Канделаса, в котором не использовались бы идеи теории струн.
По иронии, единственным вопросом, который доказательство гипотезы о зеркальной симметрии так и оставило открытым, стал вопрос об определении самого понятия зеркальной симметрии. Во многих отношениях это явление, открытое физиками и впоследствии нашедшее заметное применение в математике, так и осталось загадкой, хотя в настоящее время уже определены два основных подхода, которые могут привести к ответу, – один из них известен как гомологическая зеркальная симметрия, другой же носит название гипотезы SYZ. Если гипотеза SYZ представляет собой попытку интерпретации зеркальной симметрии с геометрической точки зрения, то гомологическая зеркальная симметрия основана на алгебраическом подходе.
Для начала рассмотрим тот из двух подходов, в который мне удалось внести более заметный вклад, а именно гипотезу SYZ, название которой представляет собой аббревиатуру, образованную из первых букв фамилий авторов ключевой статьи по этой теме, вышедшей в 1996 году: Эндрю Строминджер – это S, Эрик Заслоу из Северо‑Западного университета – это Z, а я – это Y. Подобные взаимодействия между учеными редко имеют формальную отправную точку – это, например, началось с моих случайных разговоров со Строминджером на конференции 1995 года в Триесте. Строминджер рассказывал о статье, написанной им незадолго до этого совместно с Кэтрин и Мелани Беккер, сестрами, в настоящее время занимающимися физикой в Техасском университете А&М. Так как D‑браны в то время уже произвели немало шума в теории струн, целью статьи стало исследование того, как эти браны вписываются в геометрию Калаби‑Яу. Идея авторов заключалась в том, что браны могут оборачиваться вокруг подмногообразий, находящихся внутри пространств Калаби‑Яу. Сестры Беккер и Строминджер исследовали класс подмногообразий, сохраняющих суперсимметрию, что привело к открытию ряда весьма интересных свойств. Меня и Строминджера заинтересовал вопрос о той роли, которую эти подмногообразия могут играть в зеркальной симметрии.
Я вернулся в Гарвард, вдохновленный открывшейся возможностью, и сразу же обсудил ее с Заслоу, физиком, перешедшим в математику, который в то время был моим постдоком. Вскоре Строминджер приехал из Санта‑Барбары в Гарвардский университет, руководство которого развернуло активную кампанию по переманиванию его в свои ряды. Впрочем, для того чтобы Строминджер принял окончательное решение о переходе, понадобился еще год. Итак, мы втроем смогли встретиться, соединив тем самым буквы S, Y и Z в одном и том же месте, в одно и то же время – и, впоследствии, на одной и той же странице статьи, поданной нами в печать в июне 1996 года.
Окажись гипотеза SYZ верной, это стало бы аргументом в пользу существования подструктуры многообразий Калаби‑Яу, что привело бы к более глубокому пониманию их геометрии. Согласно этой гипотезе, многообразие Калаби‑Яу можно представить в виде двух трехмерных многообразий, переплетенных друг с другом. Одним из этих пространств является трехмерный тор. Отделив этот тор от другой части, «обратив» его (заменив радиус rобратной величиной 1/r) и вновь соединив части в одно целое, вы получите многообразие, являющееся зеркальным по отношению к исходному. Как утверждает Строминджер, SYZ «позволяет получить простую физическую и геометрическую картину того, чему соответствует зеркальная симметрия»[110].
Согласно гипотезе SYZ, ключ к пониманию зеркальной симметрии лежит в подмногообразиях пространств Калаби‑Яу и в способе их организации. Вы, наверное, помните приведенное ранее сравнение поверхности, содержащей в себе множество подповерхностей или подмногообразий, с куском швейцарского сыра. Подмногообразия в данном случае являются не участками поверхности, а отдельными объектами с размерностью меньше размерности многообразия, представляющими собой отдельные дырки в «сыре», каждую из которых можно по отдельности покрыть чем‑либо или пропустить что‑либо сквозь нее. Точно так же, согласно гипотезе SYZ, и подмногообразия в пространствах Калаби‑Яу обернуты D‑бранами. Не хотелось бы вносить в дальнейший рассказ путаницу, но не могу не упомянуть, что существует и другое мнение, согласно которому D‑браны сами являются подмногообразиями, а не просто их «упаковками». Физики предпочитают рассуждать в терминах бран, тогда как математикам удобнее пользоваться собственной терминологией. Подпространства такого типа, удовлетворяющие условию суперсимметрии, носят название лагранжевых подмногообразийи, как следует из их названия, обладают особыми свойствами: их размерность ровно вдвое меньше размерности пространств, в которых они находятся, а их мера (то есть длина, площадь, объем и т. д. – в зависимости от размерности) является минимальной.
Рассмотрим в качестве примера простейшее из возможных пространств Калаби‑Яу – двухмерный тор, или бублик. В роли лагранжева подмногообразия в данном случае будет выступать одномерное пространство – объект, представляющий собой петлю, пропущенную через дырку бублика. Поскольку длина петли должна быть минимальна, петля должна точно совпадать с наименьшей из окружностей, проходящих через дырку, – варианты с петлями произвольного размера, а также с волнистыми и искривленными петлями не подходят. «Все многообразие Калаби‑Яу в этом случае представляет собой объединение окружностей, – объясняет Марк Гросс, человек, сделавший больше всех остальных для развития гипотезы SYZ с того момента, как она была сформулирована. – Пусть существует некое вспомогательное пространство, назовем его В, несущее в себе информацию обо всех этих окружностях и само по себе являющееся окружностью».[111] Говорят, что В параметризируетэтот набор окружностей, то есть каждой точке на Всоответствует определенная окружность, а каждой окружности, проходящей через дырку бублика, – определенная точка пространства В. Можно представить это и по‑другому, сказав, что пространство В, называемое пространством модулей, является в определенном смысле каталогом подпространств, из которых состоит многообразие. При этом В– не просто список: помимо «перечня подпространств» оно содержит и информацию об их расположении. По словам Гросса, пространство модулей Вможет стать ключом ко всей гипотезе SYZ. Поэтому стоит потратить еще немного времени, чтобы разобраться поподробнее со вспомогательными пространствами.
Если добавить еще одно комплексное измерение, перейдя таким образом от двух вещественных измерений к четырем, многообразие Калаби‑Яу превратится в K3‑поверхность. Подмногообразия, в свою очередь, в этом случае являются уже не окружностями, а двухмерными торами, соединенными в единое целое в рамках многообразия. «Изобразить четырехмерное пространство мне не под силу, – говорит Гросс. – Но я могу описать пространство В, указывающее на то, в каком порядке расположены составляющие его подмногообразия (бублики)».[112] В этом случае пространство Впредставляет собой просто двухмерную сферу. Каждая точка этой сферы соответствует отдельному бублику, за исключением двадцати четырех «плохих» точек, соответствующих «сжатым бубликам», имеющим сингулярности, смысл которых будет вкратце объяснен далее.
Добавим еще одно комплексное измерение, превратив рассматриваемое многообразие в трехмерное многообразие Калаби‑Яу. Пространство Втеперь превратится в трехмерную сферу (трехмерную поверхность мы изобразить не в состоянии), а ее подпространства – в трехмерные бублики. В этом случае набор «плохих» точек, соответствующих сингулярным бубликам, приходится на линейные сегменты, связанные друг с другом подобием сети. «Все точки линейного сегмента являются “плохими” [или сингулярными], однако те из них, которые лежат в вершинах сети, в местах пересечения сразу трех линейных сегментов, являются совсем плохими», – говорит Гросс. Эти точки, в свою очередь, соответствуют наиболее искаженным бубликам.[113]
Рис. 7.9.Гипотеза SYZ, названная в честь ее авторов, Эндрю Строминджера, автора данной книги (Шинтана Яу) и Эрика Заслоу, предлагает способ разложения сложного пространства, такого как многообразие Калаби‑Яу, на составные части, или подмногообразия. Хотя мы не в силах изобразить шестимерное многообразие Калаби‑Яу, вместо этого мы можем нарисовать двухмерное (имеющее два вещественных измерения) пространство Калаби‑Яу, представляющее собой бублик с плоской метрикой. Подмногообразия, образующие бублик, являются окружностями, и их порядок определяется вспомогательным пространством В, также представляющим собой окружность. Каждая точка на В соответствует определенной окружности; и все многообразие – или бублик – состоит из набора подобных окружностей
Рис. 7.10. Гипотеза SYZ предоставляет новый взгляд на K3‑поверхности, являющиеся классом четырехмерных многообразий Калаби‑Яу. Согласно гипотезе SYZ, мы можем создать K3‑поверхность, взяв двухмерную сферу, являющуюся вспомогательным пространством в данном примере, и прикрепив к каждой ее точке двухмерный бублик
Именно здесь и проявляется зеркальная симметрия. Работая над первоначальной идеей SYZ, оксфордский геометр Найджел Хитчин, Марк Гросс и некоторые из моих бывших студентов (Найчанг Линг, Вейдонг Руан и другие) построили следующую картину. Рассмотрим многообразие X, состоящее из набора подмногообразий, перечисленных в пространстве модулей В. Теперь возьмем подмногообразия, имеющие радиус r, и заменим его на обратную величину 1/r. Одной из неожиданных, хотя и прекрасных особенностей теории струн, не присущей классической механике, является возможность провести подобную замену, а именно перевернуть радиус цилиндра, сферы или пространства, не изменив при этом их физические характеристики. Движение точечной частицы по окружности радиуса rможно описать при помощи ее момента импульса, который при этом квантуется – принимает строго определенные значения, кратные постоянной Планка – ℏ. Струна, движущаяся по окружности, также обладает моментом импульса, но, в отличие от точечной частицы, она может наматываться на окружность один или более раз. Число оборотов струны вокруг окружности называется ее топологическим числом. Итак, движение струны, в отличие от движения частицы, характеризуется двумя квантующимися величинами: ее моментом импульса и ее топологическим числом. Рассмотрим струну с топологическим числом, равным двум, и моментом импульса, равным нулю, движущуюся по окружности радиуса r, и струну с топологическим числом, равным нулю, и моментом импульса, равным двум (то есть 2ℏ), движущуюся по окружности радиуса 1/r. Хотя описания этих двух случаев звучат по‑разному и вызывают в воображении разные картины, с математической точки зрения оба случая идентичны и приводят к одним и тем же физическим характеристикам. Это свойство известно как T‑дуальность. «Эта эквивалентность переходит с окружностей на их [декартовы] произведения – торы», – говорит Заслоу.[114] Буква T в названии «T‑дуальность» и означает «торы». Строминджер, Заслоу и я сочли эту дуальность столь важной для зеркальной симметрии, что назвали нашу первую статью, посвященную гипотезе SYZ, «T‑дуальность – это зеркальная симметрия».