355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Стив Надис » Теория струн и скрытые измерения вселенной » Текст книги (страница 19)
Теория струн и скрытые измерения вселенной
  • Текст добавлен: 28 сентября 2016, 22:55

Текст книги "Теория струн и скрытые измерения вселенной"


Автор книги: Стив Надис


Соавторы: Яу Шинтан
сообщить о нарушении

Текущая страница: 19 (всего у книги 29 страниц)

«Именно это наблюдается в Стандартной модели, – говорит Оврут. – Материальные частицы похожи на парней на роликах, а силовые частицы – фотоны, глюоны и бозоны ( W + , W‑ и Z) – на волейбольные мячи, которые они перекидывают».[167]

Поговорим еще немного о материальных частицах. Все обычные материальные частицы, такие как электроны и кварки, обладают спином ‑1/2. Спин – это внутренняя, квантованная механическая характеристика всех элементарных частиц, связанная с внутренним моментом импульса частицы. Эти частицы со спином ‑1/2 являются решениями уравнения Дирака, которое обсуждалось в шестой главе. В теории струн следует решать это уравнение в десяти измерениях. Но когда в качестве геометрии, лежащей в основе, выбирается многообразие Калаби‑Яу, уравнение Дирака можно разбить на шести‑ и четырехмерные компоненты. Решения шестимерного уравнения Дирака делятся на две категории: тяжелые частицы, которые во много триллионов раз тяжелее всех частиц, наблюдаемых при экспериментах на ускорителях с высокими энергиями, и обычные частицы, масса которых настолько мала, что можно считать ее равной нулю.

Независимо от массы частицы чрезвычайно сложно найти решения для уравнений с такими компонентами. К счастью, геометрия и топология снова могут помочь нам избежать решения сложнейших дифференциальных уравнений. В этом случае нам необходимо вычислить когомологию касательного расслоения, как это показали исследователи из Университета Пенсильвании, включая Брауна (ранее работал у Пенна), Донаги, Оврута и Тони Пантева. Когомология тесно связана с гомологией и, как гомология, имеет дело с возможностью трансформирования одного объекта в другой. Две концепции, как считает Донаги, представляют различные способы отслеживания одних и тех же свойств.[168] Когда вы определяете когомологический класс расслоения, то можно использовать его для нахождения решений уравнения Дирака и получения материальных частиц. «Это отличный математический метод», – утверждает Оврут.[169]

Используя этот и другие методы, Винсент Бушар из Университета Альберта и Донаги, а также Оврут с коллегами разработали модели, которые, как оказалось, дали много полезного. Обе группы ученых утверждают, что получили верную калибровочную группу симметрии, правильную суперсимметрию, хиральные фермионы и правильные спектры частиц – три поколения кварков и лептонов плюс отдельную частицу Хиггса, и никаких экзотических частиц типа экстра‑кварков или лептонов, не входящих в Стандартную модель.

Но разгорелись серьезные дебаты о том, насколько близко эти научные группы подошли к Стандартной модели. Например, были подняты вопросы о методологиях и таких феноменологических деталях, как наличие модульных частиц, которые будут обсуждаться в следующей главе. Физики, с которыми я разговаривал, имеют различные точки зрения на этот вопрос. Лично я пока не в восторге от этой работы, а если быть откровенным, то и от любой попытки на сегодняшний день реализовать Стандартную модель. Шамит Качру из Стэнфорда считает, что последние шаги в этом направлении являются закреплением успехов Канделаса и Грина с коллегами. «Но пока еще никто, – говорит Качру, – не создал модель, которая попала бы в яблочко».[170] Майкл Дуглас из Центра Саймона по изучению геометрии и физики в Стоуни‑Брук согласен, «что все эти модели являются еще сырыми, ни одна из них пока не может пройти всех испытаний на непротиворечивость реальному миру. Но хотя обе модели являются незавершенными, мы многое узнаем из этой работы».[171] Канделас доверяет моделям Бушара‑Донаги и Оврута с коллегами, поскольку они показывают, как использовать другие расслоения помимо касательного. Он считает, что этот труд со временем укажет путь к другим моделям, отмечая, что «вероятно, существуют и другие возможности. Но пока мы их не реализуем, мы не будем знать, как они работают»[172]. И работают ли они вообще.

Следующие шаги включают не только получение правильных частиц, но также попытки вычисления их масс, без которых невозможно провести значимые сравнения со Стандартной моделью. До того как мы сможем вычислить массу, мы должны определить значение того, что называется константой взаимодействия Юкавы, описывающей силу взаимодействия между частицами: взаимодействия между материальными частицами Стандартной модели и полем Хиггса, а также его частицей, бозоном Хиггса, являющейся чрезвычайно важной. Чем сильнее взаимодействие, тем больше масса частицы.

Давайте возьмем одну частицу, скажем, d‑кварк. Как и в случае других материальных частиц, в описание поля d‑кварка входят два компонента: один – соответствующий правосторонней форме этой частицы, а второй – левосторонней. Поскольку масса в квантовой теории поля является результатом взаимодействия с полем Хиггса, мы умножаем два поля для d‑кварка (лево‑ и правосторонние формы) на само поле Хиггса. Результат умножения в этом случае соответствует этому взаимодействию, то есть величина произведения, а точнее величина смешанного произведения, показывает, насколько сильным или слабым является взаимодействие d‑кварка и поля Хиггса.

Но это только первая часть сложной процедуры. Следующая сложность возникает из‑за того, что величина смешанного произведения может меняться по мере перемещения по «поверхности» Калаби‑Яу. С другой стороны, константа взаимодействия Юкавы не является переменной величиной, зависящей от месторасположения на многообразии. Это глобальная величина номер один, а способ вычисления этой величины состоит в интегрировании произведения d‑кварка и полей Хиггса по всему многообразию.

Следует помнить, что интегрирование фактически является процессом усреднения. У вас есть некоторая функция (в нашем случае произведение трех полей), которая принимает различные значения в разных точках на многообразии, а вам необходимо получить ее среднее значение. Это необходимо сделать, поскольку константа взаимодействия Юкавы является числом, а не функцией, тогда как масса частицы также является числом. Поэтому следует разбить многообразие на мелкие участки и определить значение функции на каждом участке. Затем сложить все значения и разделить на количество участков, получив среднее значение.

Хотя этот метод может показаться довольно простым, он не даст точного правильного ответа. Проблема состоит в том, что многообразие Калаби‑Яу, с которым мы работаем, обладает кривизной, и если взять крошечную «прямоугольную» заплатку, допустив на мгновение, что мы находимся в двухмерном пространстве размером dx Ч dy, то размер такого участка будет изменяться в зависимости от того, насколько велика его кривизна. Вместо этого следует взять значение функции в точке, где находится заплатка, и затем умножить это значение на весовой коэффициент, зависящий от размера заплатки. Другими словами, необходим способ измерения размера заплатки. А для этого необходима метрика, которая подробно описывала бы геометрию многообразия. Но здесь имеется одна загвоздка, о которой мы уже неоднократно упоминали: пока еще никто не смог предложить метод вычисления метрики Калаби‑Яу явно, то есть точно.

Здесь вас может ждать ловушка: без метрики невозможно получить массу, а без массы невозможно узнать, насколько близка имеющаяся модель к Стандартной модели. Но существуют несколько математических методов, а именно численные методы, реализуемые с помощью компьютера, которые можно использовать для приближенного вычисления метрики. Затем возникает вопрос, достаточно ли хороша использованная аппроксимация для получения приемлемого ответа.

В настоящее время применяют два основных метода, и оба в некоторой степени опираются на гипотезу Калаби. Эта гипотеза гласит (как уже отмечалось неоднократно), что если многообразие удовлетворяет определенным топологическим условиям, то оно обладает риччи‑плоской метрикой. Не создав саму метрику, я не мог бы доказать, что такая метрика существует. При доказательстве был применен так называемый аргумент деформации, это означает, что если начать с чего‑то, скажем, с некой метрики, и деформировать ее определенным образом, то этот процесс в конце концов сойдется к необходимой метрике. Если вы можете доказать, что такой процесс деформации стремится к нужному решению, то существует хороший шанс, что можно найти численную модель, которая также будет сходиться.

Недавно два физика, Мэтт Хедрик из Университета Брандейса и Тоби Вайсман из Королевского колледжа, произвели численные расчеты в соответствии с этими принципами, разработав аппроксимированную метрику для поверхности K3, четырехмерного многообразия Калаби‑Яу, с которым мы часто имеем дело. Они использовали общую стратегию под названием дискретизация, заключающуюся в том, чтобы взять объект с бесконечным числом точек, например точки, составляющие непрерывную кривую, и представить ее конечным (дискретным) числом точек, надеясь, что этот процесс, в конце концов, сойдется непосредственно на этой кривой. Хедрик и Вайсман считают, что этот процесс сходится, и хотя полученные ими результаты выглядят обнадеживающе, пока они не смогли доказать наличие сходимости.

Один из недостатков описанного метода, не имеющий отношения к анализу Хедрика и Вайсмана, связан с ограничениями современной техники: нынешним компьютерам просто не хватает мощности, чтобы рассчитать подробную метрику для шестимерных многообразий Калаби‑Яу. Вычисление в шести измерениях требуют неимоверно больше операций, чем решение четырехмерной задачи. Несомненно, компьютеры продолжают совершенствоваться, и, возможно, они вскоре станут достаточно мощными, чтобы выполнять вычисления и для шести измерений.

Между тем, существует другой метод, который меньше зависит от вычислительных ограничений. Его начало было положено еще в 1980‑е годы, когда я предположил, что риччи‑плоскую метрику всегда можно аппроксимировать, поместив (или, говоря техническим языком, – «вложив») многообразие Калаби‑Яу в опорное пространство очень высокой размерности. Такое опорное пространство называется проективным пространством, и оно напоминает комплексный вариант плоского евклидова пространства, за исключением того, что оно компактно. При размещении, например, многообразия в большем пространстве, подпространство автоматически наследует метрику (которая называется индуцированной метрикой)из опорного пространства. Аналогичная ситуация наблюдается, если поместить сферу в обычное евклидово пространство – сфера примет метрику опорного пространства. Если следовать похожей аналогии, то можно также считать, что дырка в швейцарском сыре встроена в более крупное пространство.

Рис. 9.5.С помощью процесса дискретизацииможно аппроксимировать одномерную кривую и двухмерную поверхность конечным числом точек. Такая аппроксимация, естественно, будет точнее при увеличении количества точек

Если мы знаем, как измерить расстояние в более крупном пространстве (большом сыре), то мы также будем знать, как измерить размер дырки. В этом смысле вложенное пространство, или дыра, наследует метрику из «сырного» опорного пространства, в котором она находится. В 1950‑е годы Джон Нэш доказал, что если поместить римановы многообразия в пространство с достаточно большим количеством измерений, то можно получить любую желаемую индуцированную метрику. Но теорема Нэша о вложении, являющаяся одной из самых великих работ этого знаменитого математика, применима к действительным многообразиям, помещенным в действительное пространство. В общем случае, комплексный вариант теоремы Нэша неверен. Но я считал, что комплексная версия этой теоремы может быть верной при определенных обстоятельствах. Например, я аргументировал, что большой класс кэлеровых многообразий может быть вложен в проективное пространство высокой размерности таким образом, что индуцированная метрика будет сколь угодно близка к исходной метрике при условии, что индуцированная метрика соответствующим образом масштабирована или «нормализована», то есть все ее векторы умножены на константу. Будучи специальным случаем кэлеровых многообразий, многообразия Калаби‑Яу с риччи‑плоской метрикой удовлетворяют этому топологическому условию. Это означает, что можно всегда индуцировать риччи‑плоскую метрику, и ее можно всегда аппроксимировать путем вложения многообразия в опорное или проективное пространство со значительно большей размерностью.

Рис. 9.6.В геометрии часто говорят о «вложении» объекта или пространства в «опорное пространство» высокой размерности. В данном случае мы вложили квадрат, то есть одномерный объект, поскольку он состоит из изогнутого несколько раз отрезка прямой, в двухмерное опорное пространство – сферу

Ганг Тиан, будучи в то время моим аспирантом, доказал это в статье, вышедшей в 1990 году, которая фактически была его диссертационной работой. С тех пор к моему исходному утверждению было добавлено несколько важных уточнений, включая диссертацию еще одного моего аспиранта Вей‑Донг Руана о том, что возможна более точная аппроксимация риччи‑плоской метрики. Главное уточнение было посвящено способу вложения многообразия Калаби‑Яу в опорное пространство. Нельзя сделать это бессистемно. Идея состоит в том, чтобы выбрать соответствующее вложение так, чтобы индуцированная метрика была наиболее близка к риччи‑плоской метрике. Для этого следует поместить многообразие Калаби‑Яу на возможно лучшее место, так называемую сбалансированную позицию, которая является той позицией среди всех возможных, где наследуемая метрика приближается вплотную к риччи‑плоской.

Понятие сбалансированной позиции ввели в 1982 году Петер Ли и я для случая подмногообразия (или подповерхностей) на сфере, находящейся в действительном пространстве. Затем мы пошли дальше – к общему случаю подмногообразия в сложном опорном (или проективном) пространстве со множеством измерений. В те годы Жан‑Пьер Бургиньон, являющийся в настоящее время директором Института высших научных исследований, начал с нами сотрудничество, которое вылилось в 1994 году в совместную статью по этой теме.

Ранее на конференции по геометрии в Калифорнийском университете в Лос‑Анджелесе я предположил, что каждое кэлерово многообразие, допускающее риччи‑плоскую метрику, включая Калаби‑Яу, является устойчивым, но такое понятие устойчивостисложно определить. На последующих семинарах по геометрии я продолжал подчеркивать важность работы Бургиньона‑Ли‑Яу, как теперь ее называют, в отношении идеи устойчивости. Наконец, несколько лет спустя мой аспирант Вей Луо из Массачусетского технологического института установил связь между устойчивостью Калаби‑Яу и условием равновесия. Благодаря работе Луо я смог видоизменить свою гипотезу, придя к заключению, что если вложить Калаби‑Яу в многомерное пространство, то можно всегда найти положение, в котором позиция будет равновесной.

Саймон Дональдсон доказал, что эта гипотеза является верной. Его доказательство также подтвердило суть этой новой схемы аппроксимации: если вложить Калаби‑Яу в высокоразмерное опорное пространство и выполнить условие равновесия, то метрика будет значительно ближе к риччи‑плоской. Дональдсон доказал это, показав, что индуцированные метрики образуют последовательность в опорных пространствах увеличивающейся размерности и что эта последовательность сходится, стремясь к идеальной риччи‑плоской метрике при стремлении числа измерений к бесконечности. Однако это заявление справедливо лишь постольку, поскольку верна гипотеза Калаби: когда Дональдсон продемонстрировал, что эта метрика сходится к риччи‑плоской метрике, его доказательство опиралось на существование риччи‑плоской метрики.

Доказательство Дональдсона имело также и практические результаты, поскольку он показал, что существует лучший способ выполнения встраивания – равновесный метод. Разрешение проблемы таким способом дает средства ее решения и возможную стратегию для вычислений. В 2005 году Дональдсон применил этот метод, численно получив метрику для K3‑поверхности, а также показав, что не существует фундаментальных препятствий для использования этого метода в случае увеличения числа измерений.[173] В 2008 году Майкл Дуглас с сотрудниками в своей статье, основанной на работе Дональдсона, получили численными методами метрику для семейства шестимерных многообразий Калаби‑Яу – вышеупомянутой квинтики.

В настоящее время Дуглас сотрудничает с Брауном и Оврутом в вопросах вычисления метрики для многообразия Калаби‑Яу в их модели. Пока никто не смог вычислить константы связи или массы. Но Оврута привлекает перспектива вычисления масс частиц. «Не существует способа выведения этих величин из самой Стандартной модели, – говорит он, – но теория струн, по крайней мере, предлагает возможность, которой никогда не было ранее». Не все физики согласны с тем, что эта цель достижима, однако Оврут считает, «что дьявол кроется в деталях. Нам еще предстоит вычислить константы взаимодействия Юкавы и массы, которые могут оказаться полностью неверными».[174]

Канделас считает маловероятным, что современные модели окажутся конечной моделью Вселенной. Он придерживается мнения, что при попытке создать такую модель можно получить «много верных подтверждений. Но если углубиться в эти модели, то рано или поздно окажется, что в них что‑то не работает».[175] Не стоит считать современные модели последним словом, лучше рассматривать их как часть общего процесса изучения природы, в ходе которого разрабатываются важные инструментальные средства. Все сказанное относится и к работам по реализации Стандартной модели, включающей браны, орбиобразия или торы, ни одна из которых не доведена до конца.

Но Строминджер считает, что прогресс налицо. «Люди находят все больше и больше моделей, а некоторые из этих моделей подходят все ближе к тому, что мы наблюдаем вокруг нас. Но мы еще не видели как “баскетбольный мяч летит через всю площадку”. Именно этого мы ждем с нетерпением».[176] Используя еще одну аналогию со спортом, Строминджер сравнил статью 1985 года о компактификации Калаби‑Яу, написанную им совместно с Канделасом, Горовицом и Виттеном, с попаданием мяча для гольфа в лунку, находящуюся на расстоянии двух сотен ярдов. «Было чувство, что необходим еще только один удар, чтобы попасть в лунку. Но прошло уже два десятилетия, а физики все еще пытаются это сделать», – говорит он.[177]

«Двадцать пять лет – это большой срок для теоретической физики, и только сейчас заметно явное продвижение вперед, – говорит Канделас. – Мы, наконец, достигли стадии, когда люди могут делать что‑то практическое с этими новыми идеями».[178]

Прекрасно осознавая, что исследователи добились значительных успехов, Аллан Адамс (Массачусетский технологический институт) все же считает, что «неправильно предполагать, будто близость к Стандартной модели означает, что мы уже все сделали». «Наоборот, – утверждает он, – сложно понять, как далеко нам предстоит еще идти вперед. Хотя может показаться, что мы уже близки к нашей цели, но все еще существует “большая пропасть” между Стандартной моделью и тем, где мы находимся сейчас».[179]

В конце своих приключений в Стране Оз Дороти узнает, что у нее с самого начала была возможность вернуться домой. После нескольких десятилетий исследований Страны Калаби‑Яу струнные теоретики и их коллеги‑математики (даже те, кто вооружен разящей мощью геометрического анализа) считают, что вернуться домой, к реалиям обычной физики, известной как Стандартная модель, а оттуда к физике, которая, как мы знаем, должна находиться еще дальше, все еще очень сложно. Если бы это можно было сделать так же легко, как закрыть глаза, щелкнуть каблуками башмачков и сказать: «Нет лучше места, чем дом»… Но тогда бы мы пропустили все самое интересное.

Десятая главаДальше за Калаби‑Яу

Создание удачной теории похоже на бег с препятствиями. Как только вы преодолеваете один барьер, перепрыгнув его, обойдя вокруг или даже пробежав под ним, оказывается, что впереди еще много барьеров. И даже если вы успешно расчистили себе путь, оставив преграды позади, вы не знаете, как много их еще впереди и не остановит ли вас навсегда какой‑либо высокий барьер. Вот так и с теорией струн и многообразиями Калаби‑Яу, где нам известно по крайней мере одно препятствие, которое туманно маячит где‑то впереди, но, будучи достаточно большим, может оказаться непреодолимым для блестяще выстроенной теории.

Я говорю о проблеме модулей, которая является предметом многих дискуссий и статей, а также источником неприятностей и разочарований. Как мы увидим, относительно простая на первый взгляд задача может увести нас очень далеко от стартовой точки, порой не оставляя никаких ориентиров в поле зрения.

Размер и форма любого многообразия с дырками определяются параметрами, которые называются модулями. Например, двухмерный тор во многих отношениях определяется двумя независимыми петлями, или окружностями, из которых одна обходит вокруг дырки, а вторая идет через нее. Модули, по определению, измеряют размер окружностей, которые, в свою очередь, управляют как размером, так и формой многообразия. Если окружность, проходящая через дырку, меньше второй окружности, то вы получаете тонкое кольцо; если больше, то вы получаете толстое кольцо с относительно маленькой дыркой в середине. Третий модуль описывает степень скрученности тора.

Так обстоят дела с тором. Многообразие Калаби‑Яу, как мы уже отмечали, может иметь до пяти сотен дырок, множество многомерных окружностей и, следовательно, характеризуется большим числом модулей – от десятков до сотен. Обычно его представляют как поле в четырехмерном пространстве‑времени. Поле для модуля размера присваивает число каждой точке в обычном пространстве, соответствующее размеру (или радиусу) невидимого многообразия Калаби‑Яу. Поле такого сорта, которое полностью характеризуется единственным числом в каждой точке пространства, без направления, называется скалярным полем. Примеры скалярных полей вокруг нас: температура, влажность, атмосферное давление и т. д.

Ловушка состоит в том, что если ничто не ограничивает размер и форму многообразия, то вы полностью погружаетесь в вышеупомянутую проблему модулей, которая похоронит вашу надежду вытянуть реальную физику из геометрии. Мы столкнулись с этой проблемой, выяснив, что скалярные поля, связанные с размером и формой многообразия, являются безмассовыми полями, то есть для их изменения не требуется энергия. Другими словами, их можно беспрепятственно изменять. Попытка расчета Вселенной в этих постоянно меняющихся обстоятельствах напоминает «соревнования по бегу, где финишная черта все время движется в дюйме перед вами», – заметил физик Гэри Шуй из Висконсинского университета.[180]

Но проблема еще серьезнее: мы знаем, что такие поля не могут существовать в природе. Поскольку если бы они существовали, то представляли бы собой все виды модульных безмассовых частиц, связанных со скалярными (модульными) полями, летающих вокруг со скоростью света. Эти модульные частицы взаимодействовали бы с другими частицами примерно с той же силой, как гравитоны (частицы, являющиеся переносчиками силы гравитации), и тем самым сеяли бы хаос в теории гравитации Эйнштейна. Но из того, что эта теория в том виде, в каком она описана в общей теории относительности, работает достаточно хорошо, мы можем сделать вывод, что этих безмассовых полей и частиц не существует. Помимо того что существование таких полей несовместимо с известными законами гравитации, оно еще и приводит к существованию пятой силы и, вероятно, других дополнительных сил, которые никто никогда не наблюдал.

Рис. 10.1.Потоки можно рассматривать как силовые линии, не отличающиеся от показанных здесь линий магнитного поля, хотя теория струн включает и более экзотические поля, которые указывают на шесть компактных, невидимых для нас направлений

И это является камнем преткновения. Учитывая, что сегодня большая часть теории струн базируется на компактификации многообразий Калаби‑Яу, содержащих эти модули со скалярными полями и безмассовыми частицами, которые, скорее всего, не существуют, не означает ли это, что теория струн сама по себе обречена?

Необязательно. Возможно, существует способ обойти указанную проблему, если учесть другие элементы теории, о которых мы уже знаем, но которые не принимали во внимание, чтобы упростить вычисления.

Если включить эти элементы в расчеты, то ситуация будет выглядеть совершенно по‑другому. Эти дополнительные компоненты включают в себя элементы, называемые потоками, представляющими собой поля, подобные электрическим и магнитным, хотя новые поля из теории струн не имеют ничего общего ни с электронами, ни с фотонами.

Давайте снова рассмотрим двухмерный тор, и в частности текучее кольцо, форма которого постоянно меняется, и кольцо становится то тонким, то толстым. Мы можем стабилизировать этот тор, зафиксировав его форму путем оборачивания проволоки сквозь дырку и вокруг нее. Здесь существенную роль играет поток. Многие из нас видели аналогичный эффект, когда после включения магнитного поля железные опилки, рассеянные беспорядочным образом, образуют правильный узор. Поток удерживает опилки на месте до тех пор, пока приложенная к ним дополнительная энергия не заставит их двигаться. Точно так же наличие потоков в нашем случае означает, что для изменения формы многообразия требуется дополнительная энергия, поскольку скалярные безмассовые поля становятся скалярными полями с массой.

Рис. 10.2.Так же как мы можем фиксировать и стабилизировать расположение железных опилок путем приложения к ним магнитного потока, мы, в принципе, можем стабилизировать форму и размер многообразия Калаби‑Яу, включив разные потоки в теорию струн (фото любезно предоставлено TechnoFrolics, www.technofrolics.com)

Конечно, шестимерные многообразия Калаби‑Яу сложнее, так как они имеют намного больше «дырок», чем «бублик», и сами дырки могут иметь более высокую размерность (до шести измерений). Это означает, что здесь больше внутренних направлений, в которых может течь поток, что приводит к увеличению количества возможных путей прохождения линий поля через дырки. Теперь, когда у нас есть все потоки, проходящие через ваше многообразие, мы можем рассчитать, какое количество энергии запасено в сопутствующих полях. Стэнфордский физик Шамит Качру объяснил, что для расчета энергии необходимо взять интеграл от квадрата напряженности поля «по точной форме компактифицированных измерений», или по поверхности Калаби‑Яу. Итак, вы делите пространство на бесконечно малые участки, определяете квадрат напряженности поля на каждом участке, складываете все значения, делите на число участков и получаете среднее значение, или интеграл. «Поскольку форма меняется, то изменяется и значение общей энергии поля, – говорит Качру, – многообразие выбирает такую форму, чтобы минимизировать энергию потока этого поля».[181] Вот так, путем включения потоков в картину можно стабилизировать форму модулей и таким образом стабилизировать форму самого многообразия.

Но это только часть истории, ведь мы забыли об одном важном аспекте процесса стабилизации. Подобно магнитному и электрическому полю, потоки в теории струн квантуются, то есть принимают только целые значения. Вы можете добавить одну единицу потока или две единицы потока, но не можете добавить 1,46 единицы потока. Когда мы говорим, что потоки стабилизируют модуль, мы подразумеваем, что они накладывают на значения модуля определенные ограничения. Вы не можете присвоить модулю любое выбранное значение, а только те значения, которые соответствуют дискретным потокам. В результате набор возможных форм многообразия Калаби‑Яу оказывается дискретным.

В предыдущей главе мы уделили много времени гетеротической версии теории струн, но оказывается, что ввести потоки в гетеротические модели довольно сложно. К счастью, в теории струн типа II (категории, включающей оба типа – IIA и IIB), которая иногда является дуальной по отношению к гетеротической теории, это сделать гораздо проще.

Я немного остановлюсь на анализе 2003 года, выполненном в теории струн типа IIB, который заметно выделяется из других типов.

Мы только что обсудили стабилизацию модуля формы для многообразия с потоками. Впервые последовательный способ стабилизации всех модулей Калаби‑Яу, как модулей формы, так и модулей размера, был представлен в статье Шамита Качру, Ренаты Каллош, Андрея Линде (все из Стэнфорда) и Сандипа Триведи из Института фундаментальных исследований в Индии; предлагаемый подход авторы статьи назвали KKLT – по первым буквам своих фамилий. Стабилизация размера является решающим фактором для любого типа теории струн, основанной на многообразиях Калаби‑Яу, потому что в противном случае нет ничего, способного удержать шесть скрытых измерений от развертывания до бесконечно большого размера, то есть до того размера, который мы предполагаем для основных четырех измерений. Если маленькие, невидимые измерения неожиданно распрямятся и расширятся, то мы с вами будем жить в пространстве‑времени из десяти больших измерений, с десятью независимыми направлениями для движения или для поиска наших потерянных ключей, а мы знаем, что наш мир не похож на десятимерный (что дает нам слабую надежду найти потерянные ключи). Что‑то удерживает эти измерения от развертывания и что‑то, согласно авторам подхода KKLT, является D‑бранами.[182]

Стабилизацию шестимерного Калаби‑Яу бранами можно сравнить с ограничением размера автомобильной камеры путем надевания на нее армированной стальным кордом шины. Подобно тому как шина удерживает камеру, когда вы закачиваете в нее воздух, так и браны удерживают многообразия от расширения.

«Говорят, что форма и размер объекта стабилизированы, если вы пытаетесь изменить его, но что‑то противодействует вашим попыткам, – объясняет физик Раман Сандрам из Университета Джона Хопкинса. – Наша задача заключалась в создании компактного, стабильного пространства‑времени, и подход KKLT показал нам, как это сделать, причем не одним, а множеством разных способов».[183]

Стабильные объем и размер крайне важны для объяснения такого явления, как космическая инфляция, суть которой состоит в том, что все свойства наблюдаемой нами сегодня Вселенной являются результатом краткого, но ускоренного, экспоненциального расширения ее в начальный период Большого взрыва. Это ускоренное расширение в соответствии с теорией черпало энергию из так называемого инфляционного поля, которое снабжало Вселенную положительной энергией, приводившей в действие процессы расширения. «В теории струн мы предполагаем, что положительная энергия должна возникать из определенного вида десятимерных источников, обладающих тем свойством, что по мере того как компактное [Калаби‑Яу] пространство становится больше, связанная с ним энергия становится меньше», – говорит Лиам Макаллистер из Корнеллского университета. Если предоставить природу самой себе, то все поля будут пытаться раздуться и стать разреженными. «По сути это означает, что система “счастливее”, когда внутреннее пространство больше, а энергия – меньше, – говорит он. – Система может уменьшить свою энергию путем расширения и свести ее к нулю, расширившись до бесконечности».[184] Если ничто не сдерживает внутреннее пространство от расширения, то так и будет.


    Ваша оценка произведения:

Популярные книги за неделю