Текст книги "Теория струн и скрытые измерения вселенной"
Автор книги: Стив Надис
Соавторы: Яу Шинтан
Жанр:
Технические науки
сообщить о нарушении
Текущая страница: 11 (всего у книги 29 страниц)
Вскоре мы с Ченгом представили и свою версию оценки третьего порядка на границе. Это произошло во время обеда, на который Ч. Ш. Черн пригласил нас, чтобы мы составили компанию ему с Ниренбергом. Ниренберг в то время уже был большой шишкой, тогда как мы только окончили университет, поэтому всю ночь перед предполагавшимся обедом мы посвятили проверке нашего доказательства и, к нашему ужасу, обнаружили в нем ошибки. На их исправление и переписывание доказательства нам потребовалась целая ночь. Следующим вечером мы показали наше доказательство Ниренбергу. Он остался им доволен, мы также остались им довольны, так что теперь можно было спокойно наслаждаться обедом. Но уже после обеда мы с Ченгом заново просмотрели доказательство и нашли в нем новые ошибки. Только через шесть месяцев после этого, в самом конце 1974 года, мы закончили работу над краевой задачей. Нам удалось решить ее путем исследования уравнения, близкого к тому, над которым работали Левнер и Ниренберг, только для более высоких размерностей. Метод, который мы использовали, позволял не принимать во внимание оценку третьего порядка, делая ее необязательной.
Закончив эту работу, я был готов приступить к комплексному варианту гипотезы Калаби – задаче, которая, в отличие от задачи Дирихле, сформулированной для комплексного евклидова пространства, относилась к случаю комплексного многообразия. Мое стремление как можно быстрее приступить к ее доказательству было столь сильным, что к публикации статьи, посвященной задаче Дирихле, мы смогли вернуться только через пять лет – в 1979 году.
Когда задача Дирихле осталась позади, большая часть оставшейся работы представляла собой обобщение или, иными словами, перевод оценок, сделанных для вещественных уравнений Монжа‑Ампера, в оценки для комплексных уравнений. Этот путь мне пришлось преодолевать уже в одиночку, поскольку дороги Ченга лежали немного в другом направлении.
Когда‑то, в 1974 году, Калаби и Ниренберг совместно с Дж. Дж. Коном из Принстона уже начинали работу над комплексной разновидностью задачи Дирихле в евклидовом пространстве. Они добились определенных успехов в исследовании оценок третьего порядка, так что мне оставалось применить их результаты к случаю искривленного пространства. В том же году у меня возникли некоторые идеи по поводу нахождения оценок второго порядка для гипотезы Калаби, при этом я опирался на собственную работу 1972 года, посвященную так называемой лемме Шварца. Эта лемма, или мини‑теорема, появилась еще в XIX столетии и не имела ничего общего с геометрией, до тех пор пока в первой половине XX столетия она не была переосмыслена профессором Гарвардского университета Ларсом Альфорсом. Теорема Альфорса относилась только к римановым поверхностям, имеющим по определению одно комплексное измерение, но мне удалось обобщить ее для случая любой комплексной размерности.
Приготовления к поиску оценки второго порядка для гипотезы Калаби я закончил летом 1975 года. Год спустя я узнал, что французский математик Тьерри Обен нашел подход к данной оценке независимо от меня. Сделав оценку второго порядка, я также показал ее зависимость от оценки нулевого порядка и продемонстрировал возможность перехода от нулевого порядка ко второму. После окончания работы над этой оценкой оставался только один нерешенный вопрос, от которого теперь зависела судьба всего доказательства, – нахождение оценки нулевого порядка. Из оценки нулевого порядка я уже мог получить оценку как второго, так и первого порядка – в качестве бесплатного приложения к уже найденным, поскольку из оценок нулевого и второго порядков оценка первого порядка следует автоматически. Это было чистой воды везение. Фигурально выражаясь, так легли карты и, в целом, легли они весьма неплохо. Оценка третьего порядка также оказалась зависящей от оценок нулевого и второго порядков – то есть все свелось к нахождению оценки нулевого порядка. Знание этой оценки должно было расставить все остальное на свои места, но без нее все прочее было бы бессмысленно.
Свою работу я заканчивал в Курантовском институте Нью‑Йорка, находясь на должности приглашенного сотрудника – эту должность мне помог занять Ниренберг. Вскоре моя невеста Ю‑Юн, работавшая до этого в Принстоне, получила предложение работы в Лос‑Анджелесе. Не желая разлучаться с ней, я занял другую приглашенную должность в Калифорнийском университете. В 1976 году мы вместе проехали всю страну с востока на запад, собираясь заключить брак сразу же по прибытии в Калифорнию. И действительно, прибыв в Калифорнию, мы тут же обвенчались. Эта поездка запомнилась нам надолго: мы были влюблены друг в друга, природа вокруг поражала своей красотой и большую часть пути мы строили планы на будущую совместную жизнь. Но все же я должен признаться, что даже тогда было нечто, что не давало мне покоя: в моей голове по‑прежнему крепко сидела гипотеза Калаби и, в частности, оценка нулевого порядка, которая никак мне не поддавалась. Целый год я бился над ее поисками. В сентябре 1976 года, сразу после нашей свадьбы, мои усилия, наконец, увенчались успехом, и остальные части доказательства тут же встали на свои места. Как оказалось, семейная жизнь была именно тем, чего мне недоставало.
Задача нахождения оценки нулевого порядка аналогична нахождению оценок других порядков: на некое уравнение или функцию необходимо наложить ограничения – как сверху, так и снизу. Иными словами, функцию нужно поместить в воображаемый ящик и показать, что функция «влезет» в него, даже если размеры ящика не будут бесконечно велики. Если это возможно сделать, то функцию можно считать ограниченной сверху. С другой стороны, нужно показать, что функция не настолько мала, чтобы каким‑либо образом «просочиться» за пределы ящика, таким образом ограничив ее снизу.
Один из возможных подходов к задаче такого типа состоит в том, чтобы взять абсолютное значение – модульфункции, которое говорит о ее величине в целом вне зависимости от того, положительное или отрицательное значение она принимает. Для того чтобы проверить функцию u, нужно показать, что ее абсолютное значение в любой точке пространства будет меньше постоянной величины c(или равно ей). Поскольку значение cточно определено, необходимо просто показать, что функция uне может произвольно принимать очень большие или очень малые значения. Иными словами, утверждение, которое мы хотим доказать, является простым неравенством, утверждающим, что модуль функции uдолжен быть меньше или равен c: |u|≤c. Ихотя оно выглядит не особо сложным, в том случае, когда uявляется комплексным объектом, доказательство требует достаточно много усилий.
Я не буду подробно останавливаться на деталях доказательства, отмечу только, что оно основывалось на оценке второго порядка для уравнения Монжа‑Ампера, которую я уже сделал ранее. Мне также пригодилось известное неравенство Пуанкаре, а также неравенство, полученное российским математиком Сергеем Соболевым. Оба они содержали возведенные в определенную степень интегралы и производные различных порядков от абсолютного значения u. Последнее, а именно нахождение различных степеней интегралов и производных от u, имело решающее значение для проведения оценок, поскольку, только показав, что интегралы и производные от uв степени pдаже при очень больших pвсе равно остаются ограниченными, можно считать работу выполненной. После этого функцию можно было считать стабильной. В конце концов, с помощью этих неравенств и различных теорем, а также ряда лемм, сформулированных мной по ходу доказательства, я смог это сделать. Когда, наконец, оценка нулевого порядка была получена, работу можно было считать завершенной.
Впрочем, говорят, что нельзя судить о пудинге до тех пор, пока его не попробуешь, – даже если что‑то имеет привлекательный вид, окончательный вывод можно сделать только после тщательной проверки. Я не мог слепо полагаться на удачу. Однажды я уже поставил себя в неловкое положение, публично заявив на стэнфордской конференции 1973 года, будто знаю, как опровергнуть гипотезу Калаби. Тогда мое предполагаемое опровержение провалилось, и если бы теперь точно так же провалилось и мое подтверждение гипотезы Калаби, моя репутация как математика оказалась бы под большим вопросом. Я точно знал, что на данном этапе своей карьеры – мне тогда еще не исполнилось тридцати – я не могу позволить себе ошибиться вновь, по крайней мере, в столь важном деле.
Поэтому я проверял и перепроверял свое доказательство, рассмотрев его четыре раза с четырех совершенно разных позиций. Я проверял его столько раз, что поклялся, что если я окажусь неправ, то брошу математику. Но все мои попытки найти огрехи в доказательстве оказались тщетными. Насколько я мог судить, в нем все было идеально. Поскольку в те времена еще не существовало Интернета, где я мог бы просто опубликовать черновик своей статьи и попросить прокомментировать его, я избрал старомодный путь – выслал копию моего доказательства Калаби и отправился в Филадельфию для дальнейшей дискуссии с ним самим и другими геометрами с математического факультета Пенсильванского университета, в том числе и с Джерри Кадзаном.
Калаби счел мое доказательство безупречным, но мы договорились встретиться с Ниренбергом и проработать его вместе шаг за шагом. Так как найти время, когда мы все трое были бы свободны, было весьма непросто, наша встреча пришлась на Рождество 1976 года – единственный день, в который никто из нас не имел неотложных дел. На этой встрече нам так и не удалось найти в доказательстве ни одной ошибки – впрочем, чтобы окончательно удостовериться в правильности доказательства, требовалось намного больше времени. «На первый взгляд оно выглядит весьма правдоподобно, – вспоминал Калаби. – Но чрезвычайная сложность этого доказательства требует еще порядка месяца для более детальной проверки».[53]
По окончании срока, отпущенного на рецензирование, Калаби и Ниренберг выразили свое полное согласие с моим доказательством. С этого момента гипотезу Калаби можно было объявить доказанной, и за прошедшие с того времени тридцать с лишним лет никто так и не смог поколебать это утверждение. На сегодняшний день доказательство гипотезы Калаби выдержало столько проверок, проведенных столь значительным числом ученых, что едва ли можно ожидать обнаружения в нем существенных ошибок в дальнейшем.
Итак, что же мне удалось сделать? Доказательством гипотезы Калаби я еще раз укрепил свое убеждение о том, что важнейшие математические проблемы могут быть разрешены путем объединения геометрии с дифференциальными уравнениями в частных производных. Более конкретно, я доказал существование риччи‑плоской метрики для компактных кэлеровых пространств, первый класс Черна для которых обращается в нуль, хотя я и не смог написать точную формулу, определяющую метрику саму по себе. Все, что я мог сказать, – это то, что подобная метрика существовала, но точный ее вид так и остался мне неизвестным.
Хотя это может прозвучать несколько неожиданно, метрика, существование которой я доказал, обладала почти сверхъестественными свойствами. В качестве постскриптума к своему доказательству я показал возможность существования множества фантастических многомерных пространств, известных сейчас как пространства Калаби‑Яу, которые удовлетворяли уравнениям Эйнштейна в случае отсутствия в них материи. Таким образом, я обнаружил не просто решение, а самый многочисленный из известных класс решений уравнений Эйнштейна.
Кроме того, мне удалось показать, что непрерывно изменяя топологию, можно получить бесконечный класс решений основного уравнения, входящего в гипотезу Калаби, в настоящее время известного как уравнение Калаби‑Яу и являющегося частным случаем уравнения Эйнштейна. Решения этого уравнения представляли собой топологические пространства, и сила доказательства состояла в его общности. Иными словами, я доказал существование не только одного примера подобных пространств или частного случая, а целого класса примеров. Более того, я показал, что для определенной топологии – например, для комплексных подмногообразий, находящихся внутри более крупных многообразий, – существует только одно возможное решение.
До появления моего доказательства единственными известными компактными пространствами, удовлетворяющими требованиям уравнений Эйнштейна, были так называемые локально однородные многообразия, в которых любые находящиеся рядом две точки казались неразличимыми. Но те пространства, которые мне удалось обнаружить, были как неоднородны, так и асимметричны, точнее, в них отсутствовала всеохватывающая глобальная симметрия, что, однако, не мешало им иметь менее заметную внутреннюю симметрию, о которой уже шла речь в предыдущей главе. Лично для меня это казалось преодолением огромного препятствия, поскольку выход за пределы глобальной симметрии открывал целый ряд новых возможностей, делая мир вокруг и интереснее и запутаннее.
В первое время я просто наслаждался красотой этих замысловатых пространств и кривизны самой по себе, не задумываясь об их возможных применениях. Но уже вскоре оказалось, что эти пространства имеют множество применений, как в рамках математики, так и за ее пределами. Однажды мы уже сочли гипотезу Калаби «слишком хорошей, чтобы быть истинной». На самом деле она оказалась даже лучше, чем мы думали.
Шестая главаДНК теории струн
При поиске алмазов, если вам повезет, вы также можете найти и другие драгоценные камни. Когда я заявил о своем доказательстве гипотезы Калаби в 1977 году в своей двухстраничной статье, за которой последовало само доказательство на семидесяти трех страницах в 1978‑м, я также объявил о доказательстве еще пяти теорем, относящихся к данной гипотезе. Такая плодотворность во многом стала следствием тех необычных обстоятельств, в которых завязывались мои отношения с гипотезой Калаби, – начав с попыток доказать ее ошибочность, я затем резко сдал назад и стал доказывать ее истинность. К счастью, оказалось, что мои усилия не были потрачены даром – все мои ошибочные шаги, все те безвыходные положения, в которые я попадал, впоследствии были мной использованы. Придуманные мной контрпримеры – следствия, логически вытекающие из гипотезы Калаби, которые, как я полагал, должны были оказаться ложными, – также оказались истинными. Эти неудавшиеся контрпримеры на самом деле были настоящими примерами и вскоре были представлены мной в виде нескольких небезынтересных математических теорем.
Важнейшая из этих теорем вела к доказательству гипотезы Севери (комплексного варианта гипотезы Пуанкаре), задачи, которая оставалась нерешенной на протяжении двух десятилетий. Но прежде чем дойти до этого, я доказал одно важное неравенство, напрямую связанное с вопросом классификации поверхностей на основе их топологии, которым я заинтересовался, отчасти благодаря моему разговору с гарвардским математиком Дэвидом Мамфордом, проезжавшим в то время через Калифорнию. Задача, о которой идет речь, впервые была выдвинута Антониусом ван де Веном из Лейденского университета и относилась к вопросу о неравенстве между классами Черна для кэлеровых многообразий. Ван де Вен доказал, что для любого многообразия второй класс Черна, умноженный на восемь, должен быть больше или равен квадрату первого класса Черна того же многообразия. Притом многие полагали, что этому неравенству можно придать более сильную форму, заменив восьмерку на тройку. Действительно, тройку можно было бы считать оптимальным значением. Вопрос, поставленный Мамфордом, состоял в возможности доказательства этого более сильногоутверждения. Смысл выражения «более сильное утверждение» заключается в том, что, согласно предположению Мамфорда, некая величина, а именно второй класс Черна, будет больше, чем некая другая, не только при умножении на восемь, но и при умножении на меньшее число – три.
Мамфорд поднял этот вопрос во время своей лекции в Калифорнийском университете в Ирвине в сентябре 1976 года; я также присутствовал на ней, как раз незадолго до этого закончив работу над доказательством гипотезы Калаби. Во время доклада Мамфорда мне стало понятно, что я уже сталкивался с этой задачей раньше. Поэтому в процессе дискуссии, возникшей по окончании лекции, я сказал Мамфорду, что смогу доказать этот более сложный случай. Придя домой, я проверил свои расчеты и обнаружил, что, как я и подозревал, этот тип неравенства я пытался использовать в 1973 году для опровержения гипотезы Калаби; теперь же я мог использовать теорему Калаби‑Яу для доказательства этого неравенства. Более того, доказав упомянутое выше утверждение, я теперь мог воспользоваться его частным случаем, а именно случаем равенства (второй класс Черна, умноженный на три, равенквадрату первого класса Черна) для доказательства гипотезы Севери.
Эти две теоремы, открывшие путь к доказательству гипотезы Севери и более общего неравенства, иногда называемого неравенством Богомолова‑Мияока‑Яу (я привожу полное название, чтобы выразить признательность двум другим математикам, внесшим вклад в решение этой задачи), стали первыми побочными результатами доказательства гипотезы Калаби, за которыми последовали многие другие. Гипотеза Калаби, по сути, оказалась намного обширнее, чем я считал до этого. Она применима не только к случаю нулевой кривизны Риччи, но и к случаям постоянной отрицательной и постоянной положительной кривизны. Никто до сих пор не исследовал случай положительной кривизны в наиболее общем виде, для которого гипотеза Калаби заведомо ложна. Я сформулировал новую гипотезу, определяющую условия, при которых метрика с положительной кривизной Риччи может существовать. На протяжении последних двух десятилетий многие математики, в том числе и Дональдсон, внесли значительный вклад в доказательство этой гипотезы, но окончательного доказательства до сих пор нет. При этом мне удалось исследовать случай отрицательной кривизны как часть общего доказательства гипотезы Калаби, независимо от меня этот же результат был получен французским математиком Тьерри Обеном. Решение, найденное для случая отрицательной кривизны, позволило показать существование широкого класса объектов, называемых многообразиями Кэлера‑Эйнштейна, создав тем самым новые области геометрии, оказавшиеся необычайно плодотворными.
Справедливости ради стоит сказать, что я плодотворно провел время, посвященное поиску непосредственных применений гипотезы Калаби, – я доказал порядка полудюжины теорем. Оказалось, что одно лишь знание того, что определенная метрика существует, уже приводит к огромному числу следствий. Это знание можно было использовать для дедуктивного рассуждения и получить топологию многообразия, даже не зная точного значения метрики. И напротив, зная свойства многообразия, можно предсказать некоторые его уникальные особенности – подобно тому как, не зная всех деталей, можно сделать определенные выводы и о колоде карт, например об общем числе карт и маркировке каждой из них, или даже о строении Галактики. Как мне кажется, подобные возможности, предоставляемые математикой, представляют собой нечто сверхъестественное и говорят даже больше о ее силе, чем в тех ситуациях, когда каждая из деталей нам известна.
Мне было весьма приятно пожинать плоды своих трудов и наблюдать, как другие вслед за мной прокладывают пути в те места, которые самому мне оказались недоступны. И все же, несмотря на все успехи, кое‑что по‑прежнему не давало мне покоя. В глубине души я был уверен, что эта работа должна иметь не только математические, но и физические приложения, хотя и не мог точно сказать, какие. В некоторой степени моя уверенность объяснялась тем, что дифференциальные уравнения, задействованные в гипотезе Калаби – в случае нулевой кривизны Риччи, – представляли собой уравнения Эйнштейна для пустого пространства, соответствующие Вселенной без дополнительной вакуумной энергии, космологическая постоянная для которой была бы равна нулю. В настоящее время космологическую постоянную принято считать положительной и связанной с темной энергией, заставляющей Вселенную расширяться. Кроме того, многообразия Калаби‑Яу представляли собой решения дифференциальных уравнений Эйнштейна, также как, например, единичная окружность представляет собой решение уравнения x 2 +y 2 =0.
Конечно, для описания пространств Калаби‑Яу необходимо намного больше уравнений, чем для описания окружности, и сложность этих уравнений гораздо выше, но основная идея остается той же. Многообразия Калаби‑Яу не только удовлетворяют уравнениям Эйнштейна, они удовлетворяют им чрезвычайно элегантным образом, что я, в частности, нахожу поразительным. Все это давало мне основание надеяться на их применимость в физике. Я только не знал, где именно.
Мне не оставалось ничего иного, кроме как пытаться объяснить моим друзьям и постдокам физикам те причины, по которым я считаю гипотезу Калаби и возникшую из нее так называемую теорему Яустоль важными для квантовой гравитации. Основная проблема состояла в том, что в то время мое понимание теории квантовой гравитации было явно недостаточным, чтобы я мог всецело положиться на собственную интуицию. Я время от времени возвращался к этой идее, но в основном сидел сложа руки и ждал, что из этого выйдет.
Шли годы, и в то время, пока я и другие математики продолжали работать над гипотезой Калаби, пытаясь воплотить в жизнь обширные планы по ее применению в области геометрического анализа, в мире физики также началось некое закулисное движение, о котором я не догадывался. Этот процесс начался в 1984 году, который оказался поворотным для теории струн, начавшей в тот год стремительное восхождение от умозрительной идеи к полновесной теории.
Прежде чем приступить к описанию этих захватывающих событий, следует рассказать подробнее о самой теории струн, которая дерзко попыталась преодолеть разрыв между общей теорией относительности и квантовой механикой. В ее основе лежит предположение, что мельчайшие частицы материи и энергии представляют собой не точечные частицы, а крошечные, колеблющиеся участки струн, либо замкнутые в петли, либо открытые. Подобно струнам гитары, способным воспроизводить различные ноты, эти фундаментальные струны также способны колебаться огромным количеством способов. Теория струн предполагает, что струны, колебания которых различны, соответствуют разным частицам и силам, встречающимся в природе. Если эта теория справедлива, то проблема объединения сил решается следующим образом: все силы и частицы связаны между собой, поскольку все они являются проявлениями возбуждений одной и той же основной струны. Можно сказать, что это именно то, из чего состоит Вселенная: спустившись на наиболее элементарный уровень мироздания, вы обнаружите, что все состоит из струн.
Теория струн заимствует у теории Калуцы‑Клейна общую идею, что осуществление великого синтеза физических сил требует наличия дополнительных измерений. Доказательство отчасти основано на тех же постулатах: всем четырем существующим в природе взаимодействиям – гравитационному, электромагнитному, слабому и сильному – в четырехмерной теории просто не хватает места. Если воспользоваться подходом Калуцы и Клейна и задаться вопросом, сколько измерений необходимо, чтобы соединить все четыре силы в рамках единой теории, то с учетом пяти измерений, необходимых для гравитации и электромагнетизма, пары измерений для слабого взаимодействия и еще нескольких для сильного, окажется, что минимальное число измерений равно одиннадцати. Впрочем, это не совсем так – что в числе прочего было показано физиком Эдвардом Виттеном.
К счастью, теория струн не основана на столь произвольном обращении с физическими понятиями, каким является выбор случайного числа измерений и пропорциональное ему расширение матрицы или метрического тензора Римана с последующей оценкой, сколько и каких сил поместится в этот тензор. Напротив, теория точно предсказывает число необходимых измерений, и это число равно десяти – четыре «обычных» пространственно‑временных измерения, исследуемых при помощи телескопов, плюс шесть дополнительных.
Причина, по которой теория струн требует наличия именно десяти измерений, весьма сложна и основана на необходимости сохранения симметрии – важнейшем условии построения любой фундаментальной теории, – а также на необходимости достижения совместимости с квантовой механикой, являющейся, несомненно, одним из ключевых ингредиентов любой современной теории. Но по сути объяснение сводится к следующему: чем больше число измерений системы, тем больше в ней число возможных колебаний. Чтобы воспроизвести весь диапазон возможностей для нашей Вселенной, число допустимых типов колебаний, согласно теории струн, должно быть не просто очень велико, а еще и четко определено – и это число можно получить только в десятимерном пространстве. Несколько позже мы обсудим еще один вариант, или «обобщение» теории струн, носящее название М‑теории и требующее одиннадцати измерений, но в настоящий момент мы не будем его касаться.
Струна, колебания которой ограничены одним измерением, может колебаться только в продольномнаправлении – путем сжатия и растяжения. В случае двух измерений колебания струны возникнут как в продольном, так и в перпендикулярном к нему поперечномнаправлении. Для трех и более измерений число независимых колебаний будет продолжать расти до тех пор, пока размерность не станет равной десяти (девять пространственных измерений и одно временное) – именно тот случай, в котором удовлетворяются математические требования теории струн. Вот почему теория струн требует как минимум десяти измерений. Строго говоря, причина, по которой теория струн требует ровно десять измерений, а не больше и не меньше, относится к понятию о сокращении аномалий, которое возвращает нас в 1984 год, к тому месту, на котором я прервал повествование.
Большинство струнных теорий, разработанных на тот момент, страдали наличием аномалий или несовместимостей, делающих все их предсказания бессмысленными. Эти теории, к примеру, приводили к возникновению неверного типа лево‑правой симметрии – несовместимой с квантовой теорией. Ключевой прорыв был сделан Майклом Грином, в то время работавшим в Колледже Королевы Марии в Лондоне, и Джоном Шварцем из Калифорнийского технологического института. Основная проблема, которую удалось преодолеть Грину и Шварцу, относилась к так называемому нарушению четности– идее о том, что фундаментальные законы природы несимметричны в отношении зеркального отражения. Грин и Шварц обнаружили способ формулирования теории струн в таком виде, который подразумевал, что нарушение четности в системе действительно имеет место. Квантовые эффекты, из‑за которых в теории струн возникали всевозможные несоответствия, в десятимерном пространстве удивительным образом взаимно уничтожились, породив тем самым надежды на то, что именно эта теория и является истинной. Успех Грина и Шварца обозначил начало того, что впоследствии было названо первой струнной революцией. То, что им удалось обойтись без аномалий, позволило говорить о способности данной теории привести к объяснению вполне реальных физических эффектов.
Отчасти задача исследователя состоит в том, чтобы убедиться в способности теории струн дать ответ на вопрос: почему Вселенная именно такова, какова она есть? Этот ответ должен объяснить и причину, по которой пространство‑время, в котором мы живем, выглядит четырехмерным, в то время как теория настаивает на его десятимерности. В теории струн это кажущееся несоответствие объясняется компактификацией. Это понятие не является совершенно новым, поскольку Калуца и Клейн (особенно Клейн) уже предполагали, что дополнительное измерение в их пятимерной теории на самом деле компактифицировано – сжато до столь малых размеров, что увидеть его было попросту невозможно. В аналогичной ситуации оказались и струнные теоретики – только они имели в своем распоряжении не одно, а шесть «лишних» измерений.
Слово «лишние» вводит в заблуждение, поскольку мы на самом деле не пытаемся избавиться от каких‑либо измерений. Задача состоит в том, чтобы неким замысловатым образом свернуть эти измерения – придать им строго определенную геометрическую форму, которая позволила бы произвести магический акт компактификации, составляющий одну из основных задач теории струн. При этом количество возможных геометрий, ведущих к различным способам компактификации, чрезвычайно велико.
Вся идея, по словам гарвардского физика Кумруна Вафы, может быть представлена в виде простого уравнения, понятного каждому: 4+6=10.[54] Этим можно ограничиться, хотя вы, возможно, захотите переформулировать его в виде: 10‑6=4, означающем, что, скрыв (или вычтя) шесть измерений, мы получим десятимерную Вселенную, кажущуюся нам четырехмерной. Компактификацию с тем же успехом можно рассматривать как своеобразную разновидность умножения, известную как декартово, или прямое, произведение – произведение, в котором количества измерений складываются, а не умножаются. Соответствующее уравнение, описывающее результирующее многообразие, в котором четыре измерения объединяются с шестью ( 4 Ч 6=10), предполагает, что наше десятимерное пространство‑время имеет подструктуру, являющуюся прямым произведением четырех‑ и шестимерного пространства‑времени, точно так же как плоскость представляет собой прямое произведение двух линий, а цилиндр – прямое произведение линии и окружности. Цилиндр, как уже говорилось, представляет собой наглядную и часто используемую иллюстрацию идеи Калуцы и Клейна. Если вы представите наше четырехмерное пространство‑время в виде линии, имеющей бесконечную протяженность в обоих направлениях, а затем мысленно разрежете ее и рассмотрите один из концов в микроскоп, то сможете увидеть, что на самом деле эта линия имеет некую толщину, и правильнее было бы говорить о ней не как о линии, а как о цилиндре, хотя и очень маленького радиуса. Именно внутри этой окружности крошечного радиуса и спрятано пятое измерение теории Калуцы‑Клейна. Теория струн продвигает эту идею на несколько шагов дальше, утверждая, что, посмотрев на сечение этого тонкого цилиндра при помощи еще более мощного микроскопа, можно обнаружить не одно, а целых шесть скрытых внутри него измерений. Независимо от того, где вы находитесь – в четырехмерном пространстве‑времени или на поверхности бесконечно длинного цилиндра, – к каждой точке прикреплено крошечное шестимерное пространство. И независимо от того, где вы находитесь в этом бесконечном пространстве, можете быть уверены, что компактное шестимерное пространство, спрятанное «по соседству», будет точно таким же.