355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Роджер Пенроуз » Тени разума. В поисках науки о сознании » Текст книги (страница 46)
Тени разума. В поисках науки о сознании
  • Текст добавлен: 20 сентября 2016, 17:17

Текст книги "Тени разума. В поисках науки о сознании"


Автор книги: Роджер Пенроуз


Жанр:

   

Философия


сообщить о нарушении

Текущая страница: 46 (всего у книги 49 страниц)

8.6. Физический феномен сознания

Во второй части книги мы, не выходя за пределы научно объяснимого, попытались отыскать, если можно так выразиться, место в физике, пригодное для размещения субъективного опыта. Как выяснилось, для успеха такого поиска сегодняшние границы научного понимания придется расширить. Я почти не сомневаюсь в том, что то фундаментальное изменение, которому неминуемо должна подвергнуться наша традиционная картина физической реальности, придет откуда-то со стороны феномена редукции квантового состояния. Прежде чем физика сможет смириться с чем-то, настолько чуждым всем современным физическим представлениям, как феномен сознания, следует ожидать полного пересмотра самих основ всех существующих философских воззрений на природу реальности. По этому поводу у меня есть кое-какие краткие замечания, которые я приведу очень скоро – в следующем, последнем, параграфе. А пока давайте попробуем ответить на несколько более простой вопрос: где в известном физическом мире, учитывая предложенные на этих страницах доказательства, можно надеяться отыскать сознание?

Необходимо с самого начала внести полную ясность: выводы из упомянутых доказательств и прочих моих рассуждений носят, по большей части, «отрицательный» характер. Мы убедились, например, что современные компьютеры сознанием не обладают, но мы по-прежнему слабо представляем себе, что именно в объекте приводит к возникновению у него сознания. Основываясь на собственном опыте, мы полагаем (по крайней мере, пока), что феномен этот обычно присущ биологическим структурам. На одном конце шкалы у нас люди, и тут, конечно же, сомнений почти нет – что бы ни представляло собой в действительности сознание, оно, в нормальном своем состоянии, так или иначе связано с бодрствующим (а возможно, и со спящим) человеческим мозгом.

Что же мы видим на другом конце шкалы? Я убежден, что фокус нашего внимания следует переместить с нейронов на микротрубочки цитоскелета: именно там, вероятнее всего, возникают коллективные (когерентные) квантовые эффекты – а без такой квантовой когерентности не будет и новой OR-физики, которая, как мне представляется, должна стать необходимым невычислительным условием для объяснения феномена сознания в научных терминах. Однако цитоскелеты есть у всех эукариотических клеток – клеток, из которых состоят растения и животные; эукариотами являются и одноклеточные организмы, такие как парамеции и амебы, но не бактерии. Следует ли из этого, что парамеция также обладает некоторым зачаточным сознанием? Возможно ли, чтобы парамеция «знала» (в любом смысле этого слова), что делает? А что же отдельные клетки человеческого тела – клетки мозга, например, или клетки печени? Может быть, когда мы поймем физическую природу процесса осознания настолько хорошо, что будем в состоянии ответить на эти вопросы, нам придется признать, что ничего такого уж нелепого в этих предположениях нет. Я не знаю. Знаюя лишь то, что проблема эта является целиком и полностью научной, а это значит, что когда-нибудь решение неизбежно будет найдено, вне зависимости от того, насколько далеки мы от этого решения сейчас.

Иногда утверждают – исходя из общих философских принципов, – что узнать, обладает ли способностью к осознанию какое бы то ни было существо, отличное от тебя самого, принципиально невозможно, не говоря уже о том, чтобы выяснить, нет ли каких-нибудь зачатков сознания у парамеции. Думаю, такая позиция чересчур узка и пессимистична. В конце концов, когда речь идет об установлении факта наличия у некоего объекта того или иного физического свойства, никто же не настаивает на абсолютной уверенности. Настанет время, и на вопросы, касающиеся способности к осознанию, мы будем отвечать с той же степенью уверенности, с какой сегодняшние астрономы высказываются о небесных телах, удаленных от нас на многие световые годы. Еще совсем недавно ученые утверждали, что нам никогда не узнать, из чего состоят Солнце и звезды и что находится на обратной стороне Луны. Сегодня у нас есть подробные карты обратной стороны Луны (фотосъемка из космоса), а состав Солнца изучен до мельчайших подробностей (наблюдение линий солнечного спектра, а также тщательное и подробное моделирование физических процессов, происходящих внутри Солнца). Известен нам и подробный состав далеких звезд, причем с очень хорошей точностью. Мы можем даже сказать (и в некоторых отношениях – сказать точно), из чего состояла вся Вселенная на начальных этапах ее развития (см. конец §4.5).

Однако в отсутствие необходимых теоретических идей суждения относительно обладания сознанием не выходят (по большей части) из разряда предположений. Мое собственное предположение по этому поводу таково: с некоторых пор я совершенно уверен, что на планете Земля сознание не является  исключительнойпрерогативой человека. В одной из наиболее захватывающих телевизионных программ Дэвида Аттенборо {101} был эпизод, после просмотра которого зрителям было трудно не поверить не только в то, что слоны, например, способны на сильные чувства, но и в то, что чувства эти не так уж далеки от тех, из каких в человеческих обществах возникают религии. Вожак стада – самка, потерявшая около пяти лет назад сестру, – ведет стадо на место ее гибели, значительно отклоняясь от обычного маршрута; прибыв на место и обнаружив останки, вожак очень осторожно поднимает с земли череп, а затем слоны начинают передавать его друг другу, поглаживая хоботами. То, что слоны способны и на понимание, убедительно, хотя и жутковато, показано в другой телевизионной программе {102} . Фильм, отснятый с вертолета, участвующего в операции, деликатно называемой «отбраковкой», очень хорошо передает ужас, охватывающий слонов, когда они до конца осознают, что происходит, и понимают, что никто из стада живым отсюда не уйдет.

Множество свидетельств имеется и в пользу наличия сознания (и самосознания) у человекообразных обезьян, и я почти не сомневаюсь, что феномен сознания присущ и животным формам, значительно менее «высокоорганизованным». Например, в еще одной телевизионной программе {103} – рассказывающей о чрезвычайной ловкости, решительности и изобретательности белок (некоторых) – меня особенно поразил фрагмент, в котором белка сообразила, что перекусив проволоку, она сможет освободить контейнер с орехами, подвешенный на некотором расстоянии от нее. Вряд ли этот акт понимания был инстинктивным или вытекал из какого-то прошлого опыта белки. Для того, чтобы оценить, насколько положительным окажется результат ее действия, белка должна была понять хотя бы на элементарном уровне  топологиювсей конструкции (см. также §1.19). Мне представляется, что в данном случае мы наблюдали проявление подлинного  воображения– а для этого, разумеется, необходимо сознание!

Почти не остается сомнений и в том, что сознание может «присутствовать» в разной степени – между «в полном сознании» и «без сознания» возможны и другие состояния. О себе, например, я могу сказать совершенно определенно: иногда я чувствую себя более «в сознании», иногда – менее (скажем, во время сна сознание присутствует в гораздо меньшей степени, чем когда я бодрствую).

Насколько же далеко мы должны зайти в наших поисках? На этот счет существуют самые различные мнения. Что касается меня, то я с трудом представляю себе, что сознанием (в какой бы то ни было степени) могут обладать насекомые – особенно после того, как я увидел документальный фильм о жизни насекомых, где было показано, как некий жук с жадностью пожирает другого жука, совершенно, по всей видимости, не обращая внимания на то, что его самого в это время ест третий. Тем не менее, как упоминалось в §1.15, поведение простого муравья отличается чрезвычайной сложностью и точностью. Надо ли полагать, что замечательно эффективные управляющие системы муравья работают вовсе без участия того принципа (каким бы он ни был), благодаря которому мы сами получаем способность понимать? Управляющие нейроны муравья также не лишены цитоскелетов, и если в этих цитоскелетах имеются микротрубочки, способные поддерживать квантовокогерентные состояния, которые, согласно моему предположению, играют ключевую роль в процессе осознания, то не следует ли из этого, что муравей является счастливым обладателем того же самого неуловимого сознания, что и мы с вами? Если же микротрубочки в человеческом мозге и в самом деле обладают той неимоверной сложностью, что необходима для поддержания коллективных квантовокогерентных процессов, то не совсем понятно, почему естественный отбор развил такую способность только в нас и в наших ближайших многоклеточных родственниках (в некоторых из них, по крайней мере). Такие квантовокогерентные состояния могли оказаться весьма полезными и для первых эукариотических одноклеточных, хотя в чем эта полезность могла бы состоять, мы можем только предполагать.

Одной лишь макроскопической квантовой когерентности для возникновения сознания, разумеется, недостаточно– иначе сознанием обладали бы и сверхпроводники! Однако вполне вероятно, что такая когерентность является частьютого, что для сознания необходимо. Мозг обладает чрезвычайно сложной организацией, и поскольку сознание, по-видимому, представляет собой результат глобальнойкоординации всевозможных мыслительных процессов, следует искать когерентность в масштабах, гораздо более крупных, нежели отдельные микротрубочки или даже целые цитоскелеты. Должна существовать существенная квантовая сцепленность между состояниями, поддерживаемыми внутри отдельных цитоскелетов во многих нейронах, – т.е. нечто вроде коллективного квантового состояния, охватывающего обширные области мозга. Однако и этого недостаточно. Для того, чтобы в системе могли происходить какие бы то ни было полезные невычислимые процессы – что я считаю существенной частью сознания, – необходимо, чтобы система была способна специфическим образом задействовать подлинно неслучайные (невычислимые) аспекты OR-процедуры. Предположение, которое я сделал в §6.12, дает нам (по крайней мере) некоторое представление о соответствующих масштабах, начиная с которых можно говорить о каком-то существенном действии точной и математически невычислимой OR-процедуры.

Таким образом, предложенные мною в настоящей книге соображения дают в некотором роде основу для высказывания правдоподобных догадок(пока, во всяком случае) относительно уровня, на котором можно ожидать возникновения способности к осознанию. Процессы, которые могут быть адекватно описаны в рамках вычислимой (или случайной) физики, не могут, согласно моей точке зрения, иметь отношения к сознанию. С другой стороны, даже существенное участие точной невычислимой OR-процедуры само по себе вовсе не обязательно подразумеваетналичие сознания – хотя и является, на мой взгляд,  необходимымдля этого условием. Разумеется, критерию не достает определенности, однако ничего лучшего на данный момент у меня нет. Посмотрим, далеко ли он нас заведет.

Будем исходить из сделанных в §6.12предположений относительно того, где должна проходить граница между классическим и квантовым уровнями, а также из изложенных в §§7.5-7.7биологических умопостроений, согласно которым эту границу, возможно, следует искать где-то в области сопряжения внутренних и внешних процессов в системах микротрубочек клетки или совокупности клеток. В качестве существенного дополнения заметим, что если редукция вектора состояния происходит просто потому, что рассматриваемая система оказывается сцеплена с слишком большим объемом окружения, то процедуру ORможно считать эффективно случайнымпроцессом, для описания которого вполне пригодна стандартная FAPP-аргументация (представленная в общих чертах в §6.6); процедура ORв данном случае полностью идентична процедуре R. Необходимо, чтобы эта редукция происходила в точности тогда, когда начинают действовать невычислительные (и пока неизвестные) правила нашей гипотетической OR-теории. Хотя об этих правилах мы ничего не знаем, мы можем (по крайней мере, в принципе) составить некоторое представление о том уровне, на котором теория начинает соответствовать реальности. Таким образом, для того, чтобы упомянутые невычислимые аспекты процедуры ORсмогли сыграть свою роль, необходимо, чтобы та или иная квантовая когерентность поддерживалась до тех пор, пока перемещение вещества (вследствие взаимодействия между внутренними и внешними микротрубочковыми процессами) не достигнет определенного предела, как раздостаточного для того, чтобы OR-процедура произошла прежде, чем успеет вмешаться случайное окружение.

Что касается микротрубочек, то я предлагаю следующую картину: внутритрубок происходят «квантовокогерентные колебания», слабо связанные с вычислительной «клеточноавтоматной» активностью, обусловленной конформационными переходами димеров тубулина на внешнейповерхности трубок. Пока квантовые колебания остаются изолированными, уровень для ORслишком низок. Однако, поскольку процессы внутри и снаружи связаны, квантовое состояние вскоре захватывает тубулины, и на некотором этапе происходит редукция ( OR). Необходимо, чтобы ORпроисходила прежде, чем с квантовым состоянием окажется сцеплено микротрубочковое окружение, потому что как только возникает такая сцепленность, невычислимые аспекты OR-процедуры теряются, и она превращается в «обычную» R-процедуру.

Итак, остается лишь выяснить, достаточна ли конформационная активность тубулина в отдельной клетке (в парамеции, например, или в клетке человеческой печени) для того, чтобы обусловленное ею перемещение масс удовлетворило бы критерию из §6.12и процедура ORпроизошла бы именно тогда, когда нужно, или же этой активности недостаточно, и ORзадержится до тех пор, пока окружение и в самом деле не возмутится, – и игра (призом в которой невычислимость) будет проиграна. Судя по первому впечатлению, так оно и есть – конформационная активность тубулина перемещает слишком малое количество вещества, и на требуемом уровне никакой OR-процедуры не происходит. Если же клеток много, ситуация выглядит гораздо более многообещающей.

Возможно, глядя на такую картину (в ее теперешнем виде) действительно не остается ничего другого, как предположить, что невычислительные условия для появления сознания могут возникнуть только в больших совокупностях клеток, что мы и имеем в случае достаточно большого мозга {104} . Однако я порекомендовал бы соблюдать (по крайней мере, на данном этапе) известную осторожность. Как физические, так и биологические аспекты предлагаемой картины сформулированы слишком приблизительно, чтобы можно было прямо сейчас делать какие-то однозначные выводы в отношении следствий из той точки зрения, которую я здесь представляю. Очевидно, что даже с учетом рассмотренных выше конкретных предложений потребуется еще немало исследований, как физических, так и биологических, прежде чем мы сможем сделать сколько-нибудь обоснованное предположение относительно места сознания в материальном мире.

Следует обратить внимание и на некоторые другие вопросы. Например, какая часть мозга действительно задействована в поддержании состояния сознания? Вероятнее всего, весьмозг для этого не требуется. Похоже на то, что многие функции мозга с сознанием никак не связаны. Взять хотя бы мозжечок (см. §1.14), который, как это ни поразительно, работает абсолютно  бессознательно. Именно мозжечок отвечает за координацию и точность наших действий в тех случаях, когда эти самые действия выполняются без участия сознания (см., например, НРК, с. 379-381). Из-за полной бессознательности его функций мозжечок часто называют «просто компьютером». Было бы, несомненно, весьма поучительно выяснить, есть ли какие-нибудь различия (и если есть, то какие именно) между клеточной или цитоскелетной организациями мозжечка и головного мозга, поскольку именно с последним, по всей видимости, гораздо более тесно связано сознание. Интересно, что если судить лишь по количеству нейронов, то разница между мозгом и мозжечком невелика – в мозге нейронов всего лишь в два раза больше, чем в мозжечке, причем отдельные клетки в мозжечке образуют, в общем случае, значительно больше синаптических связей, чем клетки мозга (см. §1.14и рис. 1.6). Очевидно, простым подсчетом нейронов тут не обойтись, следует искать глубже [59]59
  Поскольку в нейроанатомии я человек вполне посторонний, меня не мог не поразить факт наличия в организации мозга одной особенности (похоже, так и не нашедшей до сих пор объяснения), которой мозжечок не обладает. Большая часть сенсорных и двигательных нервов «идут наперекрест», т.е. левая сторона мозга отвечает в основном за правую сторону тела, и наоборот. И не только это – та область мозга, что обрабатывает зрительные образы, находится сзади, а та, что заведует ногами, находится вверху; так же обстоит дело и с ушами: сигналы из правого уха обрабатываются слева, а из левого – справа. Нельзя сказать, что эта особенность мозга носит абсолютно универсальный характер, но я не могу отделаться от ощущения, что это не случайно. Потому что мозжечок устроен иначе. Может ли быть так, что сознание каким-то образом выигрывает от того, что нервным сигналам приходится идти «длинной дорогой»?


[Закрыть]
.

Возможно, что-либо поучительное удастся извлечь и из изучения процесса «научения», посредством которого движения, первоначально осознаваемые мозгом, переходят под бессознательный мозжечковый контроль. Не исключено, что «обучающие процедуры» мозжечка окажутся очень похожими на те, с помощью которых приверженцы коннекционистской философии обучают искусственные нейронные сети. Впрочем, даже если так оно и есть и даже если верно такжето, что в терминах таких процедур можно объяснить (хотя бы частично) работу  мозжечка– что подразумевается, например, в коннекционистском подходе к исследованию зрительной коры {105} – нет никаких оснований полагать, что то же непременно окажется верно и в случае тех аспектов деятельности головного мозга, которые связаны с сознанием. В самом деле, как свидетельствуют представленные в первой части книги доказательства, для объяснения высших когнитивных функций, непосредственно связанных с сознанием, необходимо нечто, в корне отличное от коннекционизма.

8.7. Три мира и три загадки

Попробуем свести все вышесказанное вместе. На протяжении всей книги мы пытаемся найти ответ на главный вопрос: как можно соотнести феномен сознания с нашим научным мировоззрением? Надо признать, я мало что могу сказать о сознании вообще. Поэтому я сосредоточился (в первой части) на одном частном ментальном качестве: способности к сознательному пониманию, в частности, к математическому пониманию. Только на примере этого ментального качества я смог достаточно убедительно показать, что возникновение способности к пониманию в результате какой бы то ни было чисто вычислительной активности решительно невозможно, вычислением нельзя даже адекватно моделировать такую способность – особо следует отметить, что ничто в моих рассуждениях не указывает и на то, что математическоепонимание в чем бы то ни было принципиально отличается от прочих видов понимания. Отсюда вывод: какая бы активность мозга ни отвечала за сознание (по крайней мере, в этом конкретном его проявлении), она должна основываться на физических процессах, описать которые численное моделирование неспособно. Во второй части мы попытались найти область в науке для соответствующего физического процесса, действительно способного вывести нас за пределы чистой вычислительности. Для того чтобы охватить встающие перед нами при этом фундаментальные проблемы, я воспользуюсь в дальнейшем метафорой трех различных миров и трех «великих загадок», связывающих эти миры вместе. Миры в чем-то похожи на те, что описывал Поппер (см. [ 309]), однако акценты я расставляю совершенно иначе.

Наиболее близок нам мир наших сознательных восприятий– знание об этом мире мы получаем самым непосредственным образом и о нем же мы знаем меньше всего в смысле точного научного описания. В этом мире есть счастье, боль и цвет. В нем хранятся наши самые ранние детские воспоминания и ждет своего часа страх смерти. В нем – любовь, понимание, знание различных фактов, а также невежество и мстительность. Этот мир содержит образы столов и стульев, здесь запахи, звуки и всевозможные ощущения смешиваются с нашими мыслями и решимостью действовать.

Известны нам и два других мира – не так непосредственно, как мир восприятий, но зато об этих мирах мы знаем довольно много всего. Один из них мы называем физическим миром. В нем находятся настоящие столы и стулья, телевизоры и автомобили, люди, человеческие мозги и импульсы нейронов. В этом мире есть Солнце, Луна и звезды. В нем же – облака, ураганы, скалы, цветы и бабочки, а на более глубоком уровне – молекулы и атомы, электроны и фотоны, время и пространство. Еще там есть цитоскелеты, димеры тубулина и сверхпроводники. Не совсем ясно, почему мир восприятий должен иметь что-то общее с физическим миром, однако, судя по всему, так оно и есть.

Что касается второго мира из упомянутых двух, то само его существование многими ставится под сомнение. Речь идет о платоновском мире математических форм. Здесь обитают натуральные числа 0, 1, 2, 3, … и алгебра комплексных чисел. Здесь мы найдем теорему Лагранжа о том, что любое натуральное число есть сумма четырех квадратов, и самую знаменитую из теорем евклидовой геометрии – теорему Пифагора (о квадратах сторон прямоугольного треугольника). Где-то здесь находится правило  a×  bb×  aдля любых натуральных чисел и тот факт, что означенное правило не работает в случае «чисел» некоторых других типов (например, тех, что участвуют в грассмановом произведении, упомянутом в §5.15). Этот же платоновский мир содержит геометрии, отличные от евклидовой, геометрии, в которых теорема Пифагора неверна. Здесь есть бесконечность и невычислимость, рекурсивные и нерекурсивные ординалы. Здесь – незавершаемое действие машины Тьюринга и машина с оракулом, а также многие классы математических задач, неразрешимые вычислительными методами, такие как задача о замощении плоскости плитками полиомино. В этом мире мы встретим электромагнитные уравнения Максвелла и гравитационные – Эйнштейна, равно как и бесчисленные удовлетворяющие им теоретические пространства-времена, как реалистичные физически, так и совершенно невероятные. Именно здесь пребывают математические модели столов и стульев, которыми можно воспользоваться в «виртуальной реальности», а также модели черных дыр и ураганов.

Имеем ли мы право утверждать, что платоновский мир действительно является «миром» – миром, который «существует» в том же смысле, в каком существуют прочие два мира? Читателю, возможно, покажется, что это вовсе не мир, а просто какой-то пыльный склад для абстрактных концепций, которые понапридумывали математики. Однако существование мира математических идей опирается на фундаментальный, вневременной и универсальный характер этих самых идей и на тот факт, что описываемые ими законы никоим образом не зависят от тех, кто их открыл. Этот «склад» (если это и впрямь склад) построен не нами. Натуральные числа были в этом мире задолго до того, как на Земле появились первые человеческие существа – да и все остальные существа, если уж на то пошло, – и останутся после того, как вся жизнь во Вселенной исчезнет. То, что любое натуральное число есть сумма четырех квадратов, было истиной всегда, а вовсе не стало ею вдруг после того, как Лагранж призвал из небытия соответствующую теорему. Натуральные числа, настолько большие, что оказываются не по зубам любому компьютеру, какой вы можете вообразить, все равно являются суммами четырех квадратов, пусть даже мы никогда и не узнаем, квадратов каких именно чисел. Всегда будет истинным утверждение, что общей вычислительной процедуры для установления факта незавершаемости действия машины Тьюринга не существует, и оно всегда было истинным, задолго до того, как Тьюрингу пришло в голову его определение вычислимости.

Тем не менее, многие возражают, утверждая, что абсолютный характер математической истины никоим образом не является аргументом в пользу реальности «существования» математических концепций и математических истин. (Время от времени я слышу, что математический платонизм якобы устарел. Разумеется, мне известно, что сам Платон умер что-то около 2340 лет назад, однако едва ли это можно считать достаточной причиной! Более серьезную причину могут составить трудности, с которыми порой сталкиваются философы, пытаясь обосновать целиком и полностью абстрактный мир, способный оказывать реальное воздействие на мир физический. Эта фундаментальная проблема, собственно, является частью одной из тех загадок, к которым мы очень скоро перейдем.) На деле же идея реальности математических концепций вполне естественна для математиков, чего нельзя сказать о тех, кто никогда не испытывал радости исследования чудес и тайн того мира. Впрочем, на данном этапе от читателя не требуется соглашаться с тем, что математические концепции действительно образуют «мир», реальность которого сравнима с реальностью физического и ментального миров. Различия во взглядах на природу математических концепций для нас пока существенной роли не играют. Можете, если хотите, рассматривать «платоновский мир математических форм» как риторическую фигуру, введенную для удобства последующих рассуждений. Когда мы доберемся до трех загадок, связывающих эти три «мира», причина именно такого выбора слов, возможно, станет несколько яснее.

Что же это за загадки? Для начала взгляните на рис. 8.1. Первая загадка: почему столь точные и фундаментальные математические законы играют такую важную роль в поведении физического мира? Кажется, что сам мир физической реальности каким-то таинственным образом возникает из платоновского мира математики. Этот процесс проиллюстрирован направленной вниз стрелкой на рисунке справа – от платоновского мира к физическому. Вторая загадка: как физический мир порождает восприятие объектов в сознании? Каким таким таинственным образом сложно организованные материальные объекты производят из самих себя объекты ментальные? Этот процесс представлен на рис. 8.1стрелкой внизу, направленной от физического к ментальному миру. И наконец, последняя загадка: как мысль «творит» из той или иной ментальной модели математическую концепцию? Эти по виду нечеткие, ненадежные и часто вовсе неподходящие ментальные инструменты, доставшиеся нам, похоже, в комплекте с ментальным миром, каким-то таинственным образом оказываются, тем не менее, способны (по крайней мере, когда они «в ударе») производить из пустоты абстрактные математические формы, открывая нам тем самым доступ, через посредство понимания, в платоновское царство чистой математики. Этот процесс символизирует стрелка слева на рисунке, направленная вверх, от ментального миру к платоновскому.

Рис. 8.1. Кажется, что каждый из трех миров – платоновский математический, физический и ментальный – неким таинственным образом «произрастает» из какой-то малой части своего предшественника (или, по крайней мере, очень тесно с этим предшественником связан).

Сам Платон большое внимание уделял первой из этих стрелок (а также, на свой лад, третьей), и неустанно подчеркивал различие между совершенной математической формой и ее несовершенной «тенью» в физическом мире. Так, сумма углов математического треугольника (евклидова треугольника, обязательно уточним мы сегодня) составляет ровно два прямых угла, тогда как углы физического треугольника, сделанного, скажем, из дерева со всей точностью, на которую мы способны, образуют в сумме угол, величина которого очень близка к требуемой, но все же не равна ей. Эти свои соображения Платон изложил в виде притчи. Он вообразил нескольких граждан, заточенных в пещере и прикованных таким образом, чтобы они не могли видеть находившихся за их спинами совершенных форм, отбрасывающих в свете костра тени на стену пещеры, доступную взорам прикованных граждан. Таким образом, люди непосредственно видели лишь несовершенные тени тех форм, к тому же искаженные неровным светом костра. Совершенные формы символизировали собой математические идеи, а тени на стене – мир «физической реальности».

Со времен Платона основополагающая роль математики в объяснении воспринимаемой структуры и действительного поведения физического мира возросла чрезвычайно. В 1960 году видный физик Юджин Вигнер прочел знаменитую лекцию под названием «Непостижимая эффективность математики в физических науках». В ней он отметил поразительную точность и хитроумную применимость замысловатых математических конструкций, которые физики регулярно и во все больших количествах обнаруживают в своих описаниях реальности.

Для меня наиболее впечатляющим примером эффективности математики является общая теория относительности Эйнштейна. Нередко можно услышать, что физики всего лишь подмечают время от времени, где именно на этот раз математические концепции оказались хорошо применимыми к физическому поведению. Утверждают, соответственно, что физики, как правило, направляют свои интересы в сторону тех областей, где имеющиеся математические описания работают; таким образом, нет ничего удивительного в том, что математические и физические описания так хорошо друг с другом уживаются. Мне, впрочем, представляется, что авторы подобных заявлений, что называется, попадают пальцем в небо. Они просто никак не объясняют то фундаментальное единство, которое, как показывает, в частности, теория Эйнштейна, существует между математикой и устройством мироздания. Когда Эйнштейн разрабатывал свою теорию, никакой действительной необходимости в ней, с экспериментальной точки зрения, не было. Ньютоновская теория тяготения держалась уже почти 250 лет и достигла за это время потрясающей точности (погрешность порядка одной десятимиллионной – одно это является достаточно убедительным доказательством глубинной математической основы физической реальности). Да, в движении планеты Меркурий была замечена аномалия, однако это, разумеется, не послужило поводом для отказа от схемы Ньютона. И все же Эйнштейн счел, что можно добиться лучшего результата, если изменить саму основу теории тяготения. В первые годы после того, как Эйнштейн обнародовал теорию относительности, в поддержку ее можно было привести лишь несколько наблюдаемых эффектов, а преимущество над теорией Ньютона в точности было крайне незначительным. Теперь же, по прошествии 80 лет, общая точность теории относительности возросла в миллионы раз. Эйнштейн не просто «подметил» повторяющиеся особенности поведения физических объектов. Он обнаружил фундаментальную математическую субструктуру, реально существующую и до тех пор скрытую в глубинах мироздания. Более того, он искал вовсе не какие-то физические феномены, которые могли бы подойти под красивую теорию. Он искал и нашел точное математическое соотношение, заложенное в самой структуре пространства и времени, – наиболее фундаментальное из всех физических понятий.

В основе всех других успешных теорий элементарных физических процессов всегда лежит некая математическая структура, которая оказывается не только чрезвычайно точной, но и весьма хитроумной математически. (А чтобы читатель не подумал, что «ниспровержение» прежних физических представлений – например, теории Ньютона – каким-то образом эти представления обесценивает и лишает смысла, спешу уверить, что это ни в коем случае не так. Если прежние идеи были достаточно обоснованны – что можно сказать, например, о теориях Галилея или того же Ньютона, – то они и дальше остаются в добром здравии и находят в новой схеме свое место.) Кроме того, и сама математика, в своем стремлении как можно точнее описать поведение природных объектов, находит для себя немало полезного, порой неочевидного и неожиданного. И квантовая теория (тесные взаимоотношения которой с математикой – через посредство комплексных чисел – очевидны, надеюсь, даже из того краткого обзора предмета, что попал на эти страницы), и общая теория относительности, и электромагнитные уравнения Максвелла – все они дали весьма ощутимый толчок развитию математики. Причем это верно не только для относительно новых теорий, что я перечислил. Не менее верно это и для теорий, куда более отдаленных от нас во времени, – например, для ньютоновской механики (давшей нам математический анализ) или древнегреческого анализа структуры пространства (которому мы обязаны самим понятием геометрии). Необычайная точность математики в описании физического поведения (например, точность квантовой электродинамики, достигающая одиннадцатого или даже двенадцатого знака после запятой) не раз удивляла ученых. Однако на этом загадки не заканчиваются. Концепции, скрывающиеся в физических процессах, обладают чрезвычайной глубиной, тонкостью и математической плодотворностью. Об этом люди зачастую и не подозревают – если, конечно, они не математики, вплотную занимающиеся соответствующей проблемой.


    Ваша оценка произведения:

Популярные книги за неделю