355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Роджер Пенроуз » Тени разума. В поисках науки о сознании » Текст книги (страница 24)
Тени разума. В поисках науки о сознании
  • Текст добавлен: 20 сентября 2016, 17:17

Текст книги "Тени разума. В поисках науки о сознании"


Автор книги: Роджер Пенроуз


Жанр:

   

Философия


сообщить о нарушении

Текущая страница: 24 (всего у книги 49 страниц)

3.25. Сложность в математических доказательствах

Существует, однако, еще одно немаловажное соображение, о котором необходимо упомянуть. Суть его заключается в том, что, хотя количество Π 1-высказываний, которые необходимо принимать в рассмотрение в рамках приведенного в §3.20рассуждения, является конечным, нет никакого явного ограничения на объем доказательств, необходимых роботам для реализации ☆-демонстрации истинности всех этих Π 1-высказываний. Даже если ограничить степень сложности принимаемых в рассмотрение Π 1-высказываний самым скромным пределом c, то все равно придется учитывать и некоторые весьма громоздкие и сложные случаи. Например, гипотезу Гольдбаха(см. §2.3), согласно которой каждое четное число, большее 2, является суммой двух простых чисел, можно сформулировать в виде Π 1-высказывания очень небольшой степени сложности, и в то же время она представляет собой настолько сложный случай, что все попытки математиков-людей однозначно установить ее истинность до сих пор не увенчались успехом. Учитывая подобные обстоятельства, можно предположить, что если кому-то в конце концов удастся отыскать доказательство действительной истинности Гольдбахова Π 1-высказывания, то это доказательство неизбежно окажется весьма и весьма сложным и изощренным. Если такое доказательство выдвинет в качестве кандидата на ☆-утверждение один из наших роботов, то прежде, чем его таковым признают, оно непременно будет подвергнуто чрезвычайно тщательному исследованию (возможно, даже силами всего роботского общества, ответственного за присвоение ☆-статуса). В случае гипотезы Гольдбаха нам неизвестно, является ли это Π 1-высказывание действительно истинным, – а если является, то возможно ли его доказательство в рамках известных и общепринятых методов математического доказательства. Иначе говоря, это Π 1-высказывание может входить в формальную систему Q*, а может и не входить.

Еще одним «неудобным» Π 1-высказыванием может оказаться утверждение, устанавливающее истинность теоремы о четырех красках, – теоремы, согласно которой плоскую (или сферическую)карту «мира» можно, используя всего четыре краски, раскрасить так, чтобы любая «страна» получила собственный, отличный от соседей цвет. Теорема о четырех красках была-таки доказана в 1976 году (после 124 лет неудачных попыток) Кеннетом Аппелем и Вольфгангом Хакеном, причем доказательство потребовало использования 1200 часов компьютерного времени. Принимая во внимание то обстоятельство, что существенную часть доказательства составил впечатляющий объем компьютерных вычислений, можно предположить, что полная запись его на бумаге потребовала бы невероятного ее количества. Если же сформулировать эту теорему в виде Π 1-высказывания, то степень сложности такого высказывания будет очень небольшой, хотя, наверное, все же большей, нежели степень сложности Π 1-высказывания, необходимого для выражения гипотезы Гольдбаха. Если бы доказательство Аппеля—Хакена было выдвинуто одним из наших роботов в качестве кандидата на получение ☆-статуса, то его пришлось бы проверять очень и очень тщательно. Для утверждения обоснованности каждого его отдельного фрагмента потребовалось бы участие всего сообщества элитных роботов. И все же, несмотря на сложность доказательства в целом, один лишь объем его чисто вычислительной части вряд ли смог бы явиться сколько-нибудь серьезным затруднением для наших роботов. В конце концов, выполнение точных вычислений – это их работа.

Упомянутые Π 1-высказывания вполне укладываются в пределы степени сложности, устанавливаемые любым достаточно большим значением c, – например, тем, что может быть обусловлено каким-либо правдоподобным набором механизмов M, лежащим в основе поведения наших роботов. Несомненно, найдется множество других Π 1-высказываний, которые будут значительно сложнее приведенных здесь, хотя степень их сложности и не превысит величины c. Некоторые из таких Π 1-высказываний окажутся, скорее всего, особенно неудоборешаемыми, а доказать некоторые из последних, в свою очередь, будет наверняка еще сложнее, чем теорему о четырех красках или даже гипотезу Гольдбаха. Любое из этих Π 1-высказываний, истинность которого может быть однозначно установлена роботами (посредством демонстрации, достаточно убедительной для присвоения высказыванию ☆-статуса и успешного преодоления им всех заграждений, установленных с целью обеспечения безошибочности получаемых роботами результатов), автоматически становится теоремой формальной системы Q*.

Кроме того, возможны и пограничные случаи, приемлемость или неприемлемость (причем грань между этими состояниями весьма тонка) которых определяется строгостью стандартов, необходимых для получения ☆-статуса, или тем, насколько точный характер имеют меры предосторожности, установленные с целью обеспечения безошибочности утверждений, принимаемых в качестве «кирпичей» для построения формальной системы Q*. Точная формулировка системы Q* будет различной в зависимости от того, полагаем мы такое Π 1-высказывание  Pбезошибочным ☆-утверждением либо нет. В обычных обстоятельствах эта разница не имеет большого значения, поскольку различные варианты системы Q*, обусловленные принятием или отклонением высказывания P, являются логически эквивалентными. Такая ситуация может возникнуть в случае Π 1-высказываний, доказательства истинности которых роботы могут счесть сомнительными просто из-за их чрезмерной сложности. Если доказательство высказывания  Pокажется на деле логическим следствием из других ☆-утверждений, которые уже приняты как безошибочные, то возникнет эквивалентная система Q*, причем вне зависимости от того, принимается высказывание  Pв качестве ее теоремы или нет. С другой стороны, возможны такие Π 1-высказывания, которые потребуют для своего доказательства каких-то хитроумных логических процедур, выходящих за рамки любых логических следствий из тех ☆-утверждений, которые были приняты как безошибочные ранее, при построении системы Q*. Обозначим получаемую таким образом формальную систему (до включения в нее высказывания P) через Q* 0, а систему, образующуюся после присоединения к системе Q* 0высказывания P, через Q* 1. Система Q* 1окажется неэквивалентна системе Q* 0в том, например, случае, если высказыванием  Pбудет гёделевское предположение G( Q* 0). Однако если роботы, в соответствии с нашим допущением, способны достичь человеческого уровня математического понимания (а то и превзойти его), то они безусловно должны быть способны понять аргументацию Гёделя, так что им ничего не остается, как признать истинность гёделевского предположения для какой угодно системы Q* 0 (присвоив ему гарантирующий безошибочность ☆-статус), коль скоро обоснованность этой системы Q* 0ими же ☆-подтверждена. Таким образом, если они принимают систему Q* 0, то они должны принять и систему Q* 1(при условии, что степень сложности высказывания G( Q* 0) не превышает  c– а так оно и будет, если значение  cвыбрано таким, каким мы выбрали его выше).

Необходимо отметить, что наличие либо отсутствие Π 1-высказывания  Pв формальной системе Q* никоим образом не влияет на представленные в §§3.19и 3.20рассуждения. Само Π 1-высказывание G( Q*) принимается за истинное в любом случае, независимо от того, входит высказывание  Pв систему Q* или нет.

Могут найтись и другие способы, с помощью которых роботам удастся «перескочить» через ограничения, налагаемые некоторыми ранее принятыми критериями присвоения ☆-статуса Π 1-высказываниям. В этом нет ничего «парадоксального» – до тех пор, пока роботы не попытаются применить подобное рассуждение к тем самым механизмам M, которые обусловливают их поведение, т.е. к собственно системе Q*. Возникающее в этом случае противоречие не является, строго говоря, «парадоксом», однако дает возможность посредством reductio ad absurdumпоказать, что такие механизмы существовать не могут или, по крайней мере, не могут быть познаваемыми для роботов, а следовательно, и для нас.

Отсюда мы и делаем вывод о том, что такие «роботообучающие» механизмы – восходящие, нисходящие, смешанного типа, причем в каких угодно пропорциях, и даже с добавлением случайных элементов – не могут составить познаваемую основу для построения математического робота человеческого уровня.

3.26. Разрыв вычислительных петель

Попробую осветить полученный вывод под несколько иным углом зрения. Предположим, что, пытаясь обойти налагаемые теоремой Гёделя ограничения, некто решил построить такого робота, который будет способен каким-либо образом «выскакивать из системы» всякий раз, когда управляющий им алгоритм попадет в вычислительную петлю. В конце концов именно постоянное приложение теоремы Гёделя не позволяет нам спокойно принять предположение о том, что математическое понимание можно объяснить посредством вычислительных процедур, поэтому, как мне кажется, стоит рассмотреть с этой точки зрения трудности, с которыми сталкивается любая вычислительная модель математического понимания при встрече с теоремой Гёделя.

Мне рассказывали, что где-то живут ящерицы, тупость которых настолько велика, что они, подобно «обычным компьютерам и некоторым насекомым», способны «зацикливаться». Если несколько таких ящериц поместить на край круглого блюда, то они в вечной «гонке за лидером» будут бегать по кругу до тех пор, пока не умрут от истощения. Смысл этой истории в том, что подлинно интеллектуальная система должна располагать какими-то средствами для разрыва таких петель, тогда как ни один из существующих компьютеров подобными качествами, вообще говоря, не обладает. (Проблему «разрыва петель» рассматривал Хофштадтер в [ 201].)

Вычислительная петля простейшего типа возникает, когда система на некотором этапе своей работы возвращается назад, в точности в то же состояние, в каком она пребывала на некотором предыдущем этапе. В отсутствие ввода каких-то дополнительных данных она будет просто повторять одно и то же вычисление бесконечно. Не составляет большой трудности построить систему, которая, в принципе, будет гарантированно (пусть и не слишком эффективно) выбираться из петель подобного рода по мере их возникновения (скажем, посредством ведения списка всех состояний, в которых оказывается система, и проверки на каждом этапе на предмет выяснения, не встречалось ли такое состояние когда-либо раньше). Существует, однако, множество других возможных типов петель, причем гораздо более сложных. Проблеме образования петель посвящена большая часть рассуждений главы 2(в особенности, §§2.1-2.6), так как вычисление, застрявшее в петле, есть не что иное, как вычисление, которое не завершается. Собственно говоря, под Π 1-высказыванием мы как раз и понимаем утверждение о том, что некоторое вычисление образует петлю (см. §2.10, комментарий к возражению Q10). А еще в §2.5мы имели возможность убедиться в том, что факт незавершаемости вычисления (т.е. образования петли) однозначно установить с помощью одних лишь алгоритмических методов невозможно. Более того, как можно заключить из вышеприведенных рассуждений, процедуры, посредством которых математики-люди устанавливают, что данное конкретное вычисление действительно образует петлю (т.е. устанавливают истинность соответствующего Π 1-высказывания), вообще не являются алгоритмическими.

Таким образом, получается, что, если мы хотим встроить в систему все доступные человеку методы, позволяющие  однозначноустановить, что те или иные вычисления действительно образуют петли, необходимо снабдить ее «невычислительным интеллектом». Можно, конечно, предположить, что петель можно избежать с помощью некоего механизма, который будет оценивать, как долго уже выполняется текущее вычисление, и «выскакивать из системы», если ему покажется, что оно выполняется слишком долго. Однако такой способ не сработает, если механизм, принимающий подобные решения, является по своей природе вычислительным, поскольку в этом случае неизбежны ситуации, когда упомянутый механизм со своей задачей не справляется, либо приходя к ошибочному заключению, что вычисление зациклилось, либо вообще не приходя ни к какому заключению (по той причине, что теперь зациклился уже сам механизм). Целиком и полностью вычислительной системе нечего противопоставить проблеме образования петель, и нет никаких гарантий, что вся система в целом, пусть даже избежав ошибочных выводов, в конце концов не зациклится.

А что если ввести в процесс принятия решения о необходимости «выскакивать из системы» (в случае предположительно зациклившегося вычисления) и о том, когда именно это нужно делать, некоторые случайныеэлементы? Как мы отмечали выше (в частности, в §3.18), от чисто случайных элементов – в противоположность вычислительным псевдослучайным – нам в этой ситуации никакой реальной пользы не будет. Кроме того, если мы действительно хотим знать точно, образует ли петлю то или иное вычисление (т.е. истинно ли соответствующее Π 1-высказывание), то следует учесть еще один момент. Сами по себе случайные процедуры не годятся для решения таких задач, поскольку, исходя из самой природы феномена, называемого нами случайностью, о выводах, действительно обусловленных случайными элементами, определенно можно сказать лишь одно – какая бы то ни было определенность в них напрочь отсутствует. Известны, однако, вычислительные процедуры со случайными (или псевдослучайными) элементами, позволяющие получить математический результат с очень высокой степенью достоверности. Существуют, например, весьма эффективные методы со случайным входящим потоком, позволяющие определить, является ли данное большое число простым, причем практически в любом конкретном случае результат оказывается правильным. Математически строгие методы проверки гораздо менее эффективны – поневоле задумаешься, что же предпочтительнее: сложное, но математически точное построение, которое, не исключено, содержит не одну ошибку, или относительно простое, но вероятностное рассуждение, вероятность ошибки в котором на практике может оказаться значительно меньше, нежели в первом случае. Подобные размышления порождают множество неловких вопросов, ломать копья из-за которых я не испытываю ни малейшего желания. Достаточно будет сказать, что для «принципиальных» рассуждений, которым посвящена большая часть этой главы, вероятностное доказательство, с помощью которого можно устанавливать истинность Π 1-высказываний, неизбежно оказывается, скажем так, не совсем адекватным.

Если мы намерены научиться однозначно устанавливать истинность любого Π 1-высказывания в принципе, то, вместо того, чтобы бездумно полагаться на случайные или непознаваемые процедуры, нам необходимо достичь подлинного понимания смыслафеноменов, с этими высказываниями действительно связанных. Возможно, процедуры, полученные методом проб и ошибок, и дадут нам некоторые указания относительно того, где искать необходимые сведения, однако сами по себе такие процедуры окончательными критериями истинности являться не могут.

В качестве примера вернемся к вычислению, приведенному в комментарии к возражению Q8( §2.6): «распечатать последовательность из 2 2 65536единиц, после чего остановиться». Если просто выполнять это вычисление в точном соответствии с данными инструкциями, то его никоим образом невозможно будет завершить, даже если каждый отдельный его шаг будет занимать наименьший возможный с точки зрения теоретической физики промежуток времени (около 10 -43с) – на его выполнение потребуется срок, невообразимо больший нынешнего возраста Вселенной (или достижимого ею в любом обозримом будущем). И все же это вычисление весьма просто описать (особенно если припомнить, что 65536 = 2 16), причем абсолютно очевидно, что в конечном итоге оно все равно завершится. Если же мы вознамеримся счесть, что вычисление зациклилось на том только основании, что оно якобы «выполняется слишком долго», каким безнадежно далеким от истины окажется такое предположение!

Несколько более интересным примером может послужить вычисление, которое, как нам недавно стало известно, все-таки завершается, хотя долгое время казалось, что конца ему не предвидится. Это вычисление происходит из допущения, сделанного великим швейцарским математиком Леонардом Эйлером, и состоит в отыскании решения в положительных целых числах (т.е. натуральных числах, кроме нуля) следующего уравнения:

p 4+ q 4+ r 4= s 4.

В 1769 году Эйлер предположил, что это вычисление является незавершаемым. В середине 1960-х Л.Лэндером и Т. Паркином была предпринята попытка отыскать решение с помощью специально разработанной компьютерной программы (см. [ 234]), однако проект через некоторое время оставили ввиду отсутствия перспективы получить искомое решение в сколько-нибудь обозримом будущем – получаемые в процессе числа оказались слишком велики для имеющегося в распоряжении математиков компьютера, и они просто-напросто сдались. По всему выходило, что это вычисление и впрямь не завершается. Однако в 1987 году математику (человеку, кстати) Ноаму Элькису не только удалось показать, что решение таки существует, но и представить его в численном виде:  p= 2682440, q= 15365639,  r= 18796760 и s= 20615673. Он также показал, что существует бесконечно много других решений, существенно отличных от полученного им. Воодушевленный этим результатом Роджер Фрай решил возобновить компьютерный поиск, внеся в программу несколько предложенных Элькисом упрощающих поправок и, в конечном счете, затратив приблизительно 100 часов компьютерного времени, получил несколько, правда, меньшее (вообще говоря, наименьшеевозможное), но вполне подходящее решение:  p= 95800, q= 217519,  r= 414560 и s= 422481.

Лавры за решение этой задачи следует разделить поровну между математическими интуитивными прозрениями и прямыми вычислительными подходами. Решая задачу математически, Элькис прибегал и к помощи компьютерных вычислений, пусть и относительно несущественных, хотя по большей своей части его аргументация таких подпорок не требует. И наоборот, как мы видели выше, для того чтобы сделать вычисление вообще возможным, Фраю потребовалось весьма существенная помощь со стороны человеческой интуиции.

Думаю, следует поместить нашу задачу в несколько более подробный контекст – первоначальное предположение Эйлера, сделанное в 1769 году, представляло собой нечто вроде обобщения знаменитой «последней теоремы Ферма», согласно которой, как читатель, возможно, припоминает, верно следующее: уравнение

p n +  q nr n

не имеет решения в положительных целых числах p, q, r, если  nбольше 2 (см., напр., [ 89] [28]28
  Многие читатели, должно быть, уже слышали, что «последняя теорема Ферма» после 350 лет неудачных попыток наконец-то доказана; доказательство представил 23 июня 1993 года в Кембридже Эндрю Уайлз. Как раз когда я писал эти строки, мне сообщили, что в доказательстве все еще имеются несколько досадных неувязок, так что радоваться пока рано, однако вполне возможно, что в ближайшее время Уайлз предоставит достаточные для устранения этих неувязок аргументы.


[Закрыть]
). Мы можем перефразировать предположение Эйлера и записать его в следующем виде: не имеет решения в положительных целых числах уравнение

p n+ q n+ … + t n= u n

где p, q, …, tсуть положительные целые числа общим количеством  n – 1, а  nравно 4 или больше. Утверждение Ферма относится к случаю  n= 3 (частный случай предположения Эйлера, причем то, что соответствующее уравнение решений не имеет, сам Ферма и доказал – вот только доказательства нам не оставил). Прошло почти 200 лет, прежде чем был найден первый пример, опровергающий предположение Эйлера (в случае  n= 5), – для отыскания решения был использован компьютерный перебор (подробнее об этом можно прочесть в той статье Лэндера и Паркина, на которую я уже ссылался выше и в которой сообщается о неудаче со случаем  n= 4):

27 5+ 84 5+ 110 5+ 133 5= 144 5.

Вспомним еще об одном знаменитом примере вычисления, о котором известно лишь то, что оно в конце концов завершается; когда именно оно завершается, неизвестно до сих пор. Это вычисление связано с задачей об отыскании точки, в которой одна хорошо известная приближенная формула для определения количества простых чисел, меньших некоторого положительного целого п (интегральный логарифм Гаусса), оказывается не в состоянии это количество оценить. В 1914 году Дж. Э. Литлвуд показал, что в некоторой точке эта задача имеет решение. (Приблизительно то же можно выразить и иначе: например, доподлинно известно, что две кривые в некоторой точке пересекаются.) В 1935 году ученик Литлвуда по фамилии Скьюс показал, что упомянутая точка приходится на число, меньшее 10 10 10 34, однако точное число так и остается неизвестным, хотя оно, конечно же, значительно меньше предела, поставленного Скьюсом. (Это число называли в свое время «наибольшим числом, когда-либо естественным образом возникавшим в математике», однако тот временный рекорд оказался на настоящий момент побит с огромным отрывом в примере, приведенном в работе Грэма и Ротшильда [ 165], с. 290.)


    Ваша оценка произведения:

Популярные книги за неделю