355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Роджер Пенроуз » Тени разума. В поисках науки о сознании » Текст книги (страница 20)
Тени разума. В поисках науки о сознании
  • Текст добавлен: 20 сентября 2016, 17:17

Текст книги "Тени разума. В поисках науки о сознании"


Автор книги: Роджер Пенроуз


Жанр:

   

Философия


сообщить о нарушении

Текущая страница: 20 (всего у книги 49 страниц)

3.13. Механизмы математического поведения робота

Рассмотрим различные механизмы, лежащие в основе процедур, управляющих поведением робота в процессе получения им ☆-утверждений. Некоторые из этих процедур являются по отношению к роботу внутренними– нисходящие внутренние ограничители, встроенные в модель функционирования робота, а также те или иные заранее определенные восходящие процедуры, посредством которых робот улучшает качество своей работы (с тем, чтобы постепенно достичь ☆-уровня). Разумеется, мы полагаем, что все эти процедуры в принципе познаваемы человеком (хотя окончательный результат совокупного действия всех этих разнообразных факторов вполне может оказаться за пределами вычислительных способностей математика-человека). В самом деле, если мы допускаем, что человеческие существа в один прекрасный день сконструируют робота, наделенного подлинным математическим талантом, то следует непременно допустить и то, что человек способен понять внутренние принципы, в соответствии с которыми будет построен этот робот, иначе любое подобное начинание обречено на провал.

Безусловно, мы отдаем себе отчет в том, что создание такого робота вполне может оказаться многоступенчатым процессом: иначе говоря, возможно, что наш робот-математик будет целиком и полностью построен какими-либо роботами «низшего порядка» (которые сами не способны на подлинно математическую деятельность), а эти роботы, в свою очередь, построены другими роботами еще более низкого порядка. Однако запущена в производство вся эта иерархическая цепочка будет все равно человеком, и исходные правила ее построения (по всей видимости, некая комбинация нисходящих и восходящих процедур) будут в любом случае доступны человеческому пониманию.

Существенно важными для процесса развития робота являются и всевозможные внешниефакторы, привносимые окружением. Внешний мир и в самом деле может обеспечить нашего робота весьма значительным объемом вводимых данных, поступающих как от учителей-людей (или роботов), так и из наблюдений за естественным физическим окружением. Что до естественных внешних факторов, привносимых «безлюдным» окружением, то «непознаваемыми» их, как правило, не считают. Эти факторы могут быть очень сложными, часто они взаимодействуют между собой, и все же эффективное «виртуально-реальное» моделирование существенных аспектов нашего окружения уже вполне осуществимо (см. §1.20). По-видимому, ничто не мешает модифицировать эти модели таким образом, чтобы робот с их помощью получал все, что ему нужно для развития в смысле внешних естественных факторов, – не будем забывать, что вполне достаточно смоделировать типичноеокружение, воспроизводить какое-то реально существующее необходимости нет (см. §§1.7, 1.9).

Вмешательство в процесс людей (или роботов) – т.е. внешних, «искусственных» факторов – может происходить на различных этапах, однако это никоим образом не влияет на существенную познаваемость механизмов этого вмешательства, при условии, разумеется, что мы допускаем возможность каким-то познаваемым образом «механизировать» вмешательство человека. Справедливо ли такое допущение? Думаю, вполне естественно (по крайней мере, для сторонника точки зрения  Aили B) предположить, что любое человеческое вмешательство в процесс развития робота и в самом деле можно заменить какими-либо целиком и полностью вычислительными процедурами. Мы же не требуем, чтобы в этом вмешательстве непременно присутствовало что-либо непостижимо мистическое – скажем, некая неопределимая «сущность», какую учитель-человек должен передать своему ученику-роботу в процессе обучения. Мы полагаем, что при обучении роботу необходимо получать всего лишь те или иные фундаментальные сведения, а передачу ему этих сведений проще всего поручить именно человеку. Весьма вероятно, что, как и в случае с учениками-людьми, наиболее эффективной будет передача информации в интерактивной форме, когда поведение учителя зависит от реакции ученика. Однако и это обстоятельство, само по себе, отнюдь не исключает возможности эффективно вычислительного поведения учителя. В конце концов, все наши рассуждения в настоящей главе представляют собой одно сплошное reductio ad absurdum, в рамках которого мы допускаем, что в поведении человеческих существ вообще нет ничего существенно невычислимого. А тем, кто уже и так придерживается точек зрения  Cили  D(последние, несомненно, склонны скорее поверить в возможность существования упомянутой выше невычислимой «сущности», передаваемой роботу в силу одного лишь человеческого происхождения учителя), наши доказательства в любом случае совершенно не нужны.

Если рассматривать все эти механизмы (т.е. внутренние вычислительные процедуры и данные, поступающие от интерактивного внешнего окружения) в совокупности, то создается впечатление, что нет каких-либо разумных причин полагать их принципиально непознаваемыми, – даже если кто-то и настаивает на том, что на практике в точности просчитать результирующие проявления внешних из упомянутых механизмов не в силах человеческих (и даже не в силах любого из существующих или предвидимых в обозримом будущем компьютеров). К вопросу о познаваемости вычислительных механизмов мы еще вернемся, причем довольно скоро (в конце §3.15). А пока допустим, что все эти механизмы действительно познаваемы, и обозначим набор таких механизмов буквой M. Возможно ли, что некоторые из полученных с помощью этих механизмов утверждений ☆-уровня окажутся, тем не менее, непознаваемыми для человека? Обоснованно ли такое предположение? Вообще говоря, нет – при условии, что в данном контексте мы продолжаем интерпретировать понятие «познаваемости» в том же принципиальномсмысле, который мы применяли в отношении случаев  Iи  IIи который был исчерпывающе определен в начале §3.5. Тот факт, что нечто (например, формулировка некоего ☆-утверждения) может оказаться за пределами невооруженныхвычислительных способностей человеческого существа, к данному случаю отношения не имеет. Ничуть не возбраняется и «вооружить» человека теми или иными средствами содействия мыслительным процессам – например, карандашом и бумагой, карманным калькулятором либо универсальным компьютером в комплекте с программным обеспечением нисходящего типа. Даже если добавить к уже имеющимся вычислительным процедурам какие-либо восходящие компоненты, то мы не получим ничего такого, чего не могли бы в принципеполучить раньше – при условии, разумеется, что лежащие в основе этих восходящих процедур фундаментальные механизмыдоступны человеческому пониманию. С другой стороны, вопрос о «познаваемости» самих механизмов  Mследует рассматривать уже в «практическом» смысле – в полном соответствии с принятой в §3.5терминологией. Таким образом, на данный момент мы полагаем, что механизмы  Mявляются действительно познаваемыми практически.

Обладая знанием механизмов M, мы можем использовать их при создании фундамента для построения формальной системы Q( M), при этом теоремамитакой системы станут следующие положения: (I) ☆-утверждения, непосредственно следующие из применения упомянутых механизмов, и (II) любые положения, выводимые из этих ☆-утверждений с применением правил элементарной логики. Под «элементарной логикой» здесь могут пониматься, скажем, правила исчисления предикатов (описанные в §2.9) или какая-либо иная столь же прямая и четко определенная неопровержимая система аналогичных логических правил (вычислительных). Мы вполне способны построить формальную систему Q( M) в силу того простого факта, что процедура Q( M), посредством которой из набора механизмов  Mполучаются, одно за другим, необходимые ☆-утверждения, является процедурой вычислительной (пусть на практике и весьма громоздкой). Отметим, что определяемая таким образом процедура Q( M) будет генерировать утверждения группы (I), однако вовсе не обязательно все положения группы (II) (поскольку можно допустить, что нашему роботу, по всей вероятности, попросту надоест тупо выводить все логические следствия из вырабатываемых им ☆-теорем). Таким образом, процедура Q( M) не эквивалентна в точности формальной системе Q( M), однако различие между ними не существенно. К тому же ничто не мешает нам при желании получить из процедуры Q( M) другую процедуру – такую, например, которая будетэквивалентна Q( M).

Далее, для интерпретации формальной системы Q( M) необходимо каким-то образом устроить так, чтобы на всем протяжении развития робота статус ☆ всегда и непременно означал, что удостоенное его утверждение действительно следует полагать неопровержимо доказанным. В отсутствие поступающих от учителя-человека (неважно, в какой форме) внешних данных мы не можем быть уверенными в том, что робот не выработает самостоятельно некий отличный от нашего язык, в котором символ ☆ будет иметь совершенно иное значение (либо вовсе окажется бессмысленным). Для того чтобы определение формальной системы Q( M) на языке робота согласовывалось с нашим ее определением, необходимо в процессе обучения робота (например, учителем-человеком) проследить за тем, чтобы присваиваемое символу ☆ значение в точности соответствовало тому значению, какое в него вкладываем мы. Необходимо также проследить и за тем, чтобы система обозначений, которой робот фактически пользуется при формулировке своих, скажем, Π 1-высказываний, в точности совпадала с аналогичной системой, имеющей хождение у нас (или допускала какое-либо явное преобразование в нашу систему). Если допустить, что механизмы  Mпознаваемы человеком, то из вышесказанного следует, что аксиомы и правила действия формальной системы Q( M) также должны быть познаваемыми. Более того, всякую теорему, выводимую в рамках системы Q( M), следует, в принципе, полагать познаваемой человеком (в том смысле, что мы в состоянии понять ее описание, а не определить в обязательном порядке ее неопровержимую истинность), даже если вычислительные процедуры, необходимые для получения большей части таких теорем, окажутся далеко за пределами невооруженных вычислительных способностей человека.

3.14. Фундаментальное противоречие

Предшествующая дискуссия в сущности показывает, что «непознаваемый и неосознаваемый алгоритм F», который, согласно допущению III, лежит в основе восприятия математической истины, вполне возможно свести к алгоритму осознанно познаваемому – при условии, что нам, следуя заветам адептов ИИ, удастся запустить некую систему процедур, которые в конечном счете приведут к созданию робота, способного на математические рассуждения на человеческом (а то и выше) уровне. Непознаваемый алгоритм Fзаменяется при этом вполне познаваемой формальной системой Q( M).

Прежде чем мы приступим к подробному рассмотрению этого аргумента, необходимо обратить внимание на один существенный момент, который мы до сих пор незаслуженно игнорировали – речь идет о возможности привнесения на разных этапах процесса развития робота неких случайных элементоввзамен раз и навсегда фиксированных механизмов. В свое время нам еще предстоит обратиться к этому вопросу, пока же я буду полагать, что каждый такой случайный элемент следует рассматривать как результат выполнения какого-либо псевдослучайного (хаотического) вычисления. Как было показано ранее ( §§1.9, 3.11), таких псевдослучайных компонентов на практике оказывается вполне достаточно. К случайным элементам в «образовании» робота мы еще вернемся в §3.18, где более подробно поговорим о подлинной случайности в применении к нашему случаю, а пока, говоря о «наборе механизмов M», я буду предполагать, что все эти механизмы действительно являются целиком и полностью вычислительными и свободными от какой бы то ни было реальной неопределенности.

Суть противоречия заключается в том, что на месте алгоритма F, фигурировавшего в наших предыдущих рассуждениях (например, того алгоритма, о котором мы говорили в §3.2в связи с допущением I), с неизбежностью оказывается формальная система Q( M). Вследствие чего случай  IIIэффективно сводится к случаю  Iи тем самым не менее эффективно из рассмотрения исключается. Выступая в рамках данного доказательства в роли сторонников точек зрения  Aи B, мы предполагаем, что наш робот в принципеспособен (с помощью обучающих процедур той же природы, что установили для него мы) достичь в конечном счете любых математических результатов, каких в состоянии достичь человек. Мы должны также допустить, что робот  способендостичь и таких результатов, какие человеку в принципе не по силам. Так или иначе, нашему роботу предстоит обзавестись способностью к пониманию мощи аргументации Гёделя (или, по крайней мере, способностью сымитироватьтакое понимание – согласно  B) Иначе говоря, относительно любой заданной (достаточно обширной) формальной системы  Hробот должен оказаться в силах неопровержимо установить тот факт, что из обоснованности системы  Hследует истинность его гёделевского [24]24
  В ранних изданиях этой книги вместо обозначения G( F) в оставшейся части главы 3 использовалось обозначение Ω( F). Однако G( F), на мой взгляд, представляется в данном случае более уместным (см. также §2.8и комментарии к возражению Q10,  §2.10).


[Закрыть]
утверждения G( H), а также то, что утверждение G( H) не является теоремой системы H. В частности, робот сможет установить, что из обоснованности системы Q( M) неопровержимо следует истинность утверждения G( Q( M)); эта же обоснованность предполагает, что утверждение G( Q( M)) не является теоремой системы Q( M).

С помощью в точности тех же рассуждений, какими мы воспользовались в §3.2применительно к человеческому математическому пониманию, непосредственно из вышеизложенных соображений выводится, что робот никоим образом не способен твердо поверить в то, что совокупность его собственных – и, на его взгляд, неопровержимых – математических убеждений  действительноэквивалентна некоей формальной системе Q( M). И это несмотря на тот факт, что мы (выступая в роли соответствующих экспертов по проблемам ИИ) прекрасно осведомлены о том, что в основе системы математических убеждений робота лежит не что-нибудь, а именно набор механизмов M, что автоматически означает, что система неопровержимых убеждений робота являетсяполным эквивалентом системы Q( M). Если бы робот вдруг твердо поверил в то, что все его убеждения укладываются в рамки системы Q( M), то тогда ему пришлось бы поверить и в обоснованность этой самой системы Q( M). Соответственно, ему также пришлось бы одновременно поверить и в истинность утверждения G( Q( M)), и в то, что упомянутое утверждение в его систему убеждений не входит – неразрешимое противоречие! Иначе говоря, робот никак не может знать о том, что он сконструирован в соответствии с тем или иным набором механизмов M. А поскольку об этойособенности его конструкции знаем – или по крайней мере, в состоянии узнать – мы с вами, то получается, что нам доступны такие математические истины (например, утверждение G( Q( M))), которые роботу оказываются не по силам, хотя изначально предполагалось, что способности робота будут равны способностям человека (или даже превысят их).

3.15. Способы устранения фундаментального противоречия

Приведенное выше рассуждение можно рассматривать двояко – с точки зрения создавших робота людей либо с точки зрения самого робота. С человеческой точки зрения существует некоторая неопределенная вероятность того, что математику-человеку претензии робота на обладание неопровержимой истиной покажутся неубедительными, разве что упомянутый математик-человек примет во внимание какие-то отдельные конкретные аргументыиз тех, что использует робот. Возможно, не все теоремы системы Q( M) человек сочтет неопровержимо истинными, кроме того, как нам помнится, интеллектуальные способности робота могут существенно превышатьтаковые же способности человека. Таким образом, можно утверждать, что одно лишь знание о том, что робот сконструирован в соответствии с неким набором механизмов M, не следует рассматривать в качестве неопровержимо убедительной (для человека) математической демонстрации. Соответственно, мы должны пересмотреть все вышеприведенное рассуждение – на этот раз с точки зрения  робота. Какие огрехи в нашем обосновании в состоянии заметить (и использовать)робот?

По-видимому, наш робот располагает всего лишь четырьмя основными возможностями для нейтрализации фундаментального противоречия – при условии, конечно, что сам робот осведомлен о том, что он является в некотором роде вычислительной машиной.

(a) Возможно, что робот, принимая в целом утверждение о том, что в основе его конструкции лежит некий набор механизмов M, тем не менее, неизбежно остается неспособен  безоговорочноповерить в этот факт.

(b) Возможно, что робот, будучи безоговорочно убежден в истинности каждого отдельного ☆-утверждения в тот момент, когда он его формулирует, все же сомневается в достоверности полнойсистемы своих ☆-утверждений –  соответственно, робот может не верить в то, что формальная система Q( M) и в самом делележит в основе всей его системы убеждений в отношении Π 1-высказываний.

(c) Возможно, что подлинный набор механизмов  Mсущественно зависит от случайныхэлементов и не может быть адекватно описан через посредство неких известных результатов псевдослучайных вычислений, подаваемых на входное устройство робота.

(d) Возможно, что подлинный набор механизмов  Mв действительности непознаваем.

В последующих девяти разделах представлен ряд веских аргументов, убедительно демонстрирующих, что первые три лазейки ((a), (b) и (c)) оказываются для робота, задавшегося целью обойти фундаментальное противоречие, совершенно бесполезными. Соответственно, робот (а вместе с ним и мы – если мы, конечно, продолжаем настаивать на том, что математическое понимание можно свести к вычислению) начинает всерьез подумывать о не очень привлекательной возможности (d). Уверен, что непривлекательной возможность (d) нахожу не я один – думаю, в этом со мной согласятся и те читатели, которым не безразлична судьба идеи искусственного интеллекта. Ее, пожалуй, приемлемо рассматривать лишь в качестве возможной мировоззренческой позиции, укладывающейся, по сути своей, в рамки той самой комбинации точек зрения  Aи D, о которой мы говорили в конце §1.3и согласно которой для внедрения непознаваемого алгоритма в «мозг» каждого из наших роботов требуется, ни много ни мало, божественное вмешательство(от «первого в мире программиста»). В любом случае, вердикт «непознаваемо», вынесенный в отношении тех самых механизмов, которые, в конечном счете, ответственны за наличие у нас какого ни на есть разума, вряд ли обрадует тех, кто намерен, вообще говоря, построитьробота, наделенного подлинным искусственным интеллектом. Не особенно обрадует он и тех из нас, кто все еще надеется понять, принципиально и не выходя за рамки строго научного подхода, каким образом в действительности возникло у человека такое свойство, как интеллект, объяснить его происхождение посредством четко формулируемых научных законов – законов физики, химии, биологии, законов естественного отбора, в конце концов, – пусть даже и не имея в виду воспроизвести этот самый интеллект в каком бы то ни было робототехническом устройстве. Лично я полагаю, что подобный пессимистический вердикт не имеет под собой никаких оснований – по той хотя бы простой причине, что «научная постижимость» имеет весьма мало общего с «вычислимостью». Законы, лежащие в основе мыслительных процессов не являются непостижимыми, они всего лишь невычислимы. На эту тему мы еще поговорим во второй части книги.

3.16. Необходимо ли роботу верить в механизмы М?

Вообразим, что у нас имеется робот, снабженный некоторым возможным набором механизмов M, – каковой набор может оказаться тем самым, на основе которого и построен наш робот, но это не обязательно. Я попробую убедить читателя в том, что робот будет вынужден отвергнуть возможность того, что его математическое понимание опирается на набор механизмов M, – независимоот того, как обстоит дело в действительности. При этом мы на время допускаем, что робот по тем или иным причинам уже отбросил варианты (b), (c) и (d), и приходим к выводу (несколько даже неожиданному), что сам по себе вариант (a) избежать парадокса не позволяет.

Рассуждать мы будем следующим образом. Обозначим через  Mгипотезу

«В основе математического понимания робота лежит набор механизмов M»

и рассмотрим утверждение вида

«Такое-то Π 1-высказывание является следствием M».

Такое утверждение (в том случае, когда робот твердо верит в его истинность) я буду называть ☆ M -утверждением. Иначе говоря, под ☆ M -утверждениями не обязательно понимаются те Π 1-высказывания, в истинность которых как таковых неопровержимо верит робот, но те Π 1-высказывания, которые робот полагает неопровержимо выводимыми из гипотезы M. Изначально от робота не требуется обладание какими бы то ни было взглядами относительно возможности того, что в основе его конструкции действительнолежит набор механизмов M. Он может даже поначалу счесть такое предположение абсолютно невероятным, но, тем не менее, ничто не мешает ему рассмотреть (в подлинно научной традиции) возможные следствия из гипотезыо таком вот его происхождении.

Существуют ли Π 1-высказывания, которые робот должен полагать неопровержимыми следствиями из гипотезы  Mи которые при этом не являются самыми обыкновенными ☆-утверждениями, вовсе не требующими привлечения этой гипотезы? Разумеется, существуют. Как было отмечено в конце §3.14, истинность Π 1-высказывания G( Q( M)) следует из обоснованности формальной системы Q( M), отсюда же следует и тот факт, что утверждение G( Q( M)) не является теоремой системы Q( M). Более того, в этом робот будет совершенно безоговорочно убежден. Если допустить, что робот вполне согласен с тем, что все его неопровержимые убеждения укладывались бы в рамки системы Q( M), будьон действительно сконструирован в соответствии с набором механизмов M, – т.е. что возможность (b) [25]25
  Само собой разумеется, что вариант (d) мы в данном случае даже не рассматриваем, так как набор механизмов  Mбыл роботу в явном виде предъявлен, кроме того, мы на время допускаем, что механизмы  Mне включают в себя никаких случайных элементов, вследствие чего вариант (c) также отпадает.


[Закрыть]
он из рассмотрения исключает, – то получается, что наш робот и в самом деле должен твердо верить в то, что обоснованность системы Q( M) является следствием гипотезы M. Таким образом, робот оказывается безоговорочно убежден как в том, что Π 1-высказывание G( Q( M)) следует из гипотезы M, так и в том, что (согласно M) он не способен непосредственно постичь его неопровержимую истинность без привлечения  M (поскольку формальной системе Q( M) оно не принадлежит). Соответственно, утверждение G( Q( M)) является ☆ M -утверждением, но не ☆-утверждением.

Предположим, что формальная система Q M ( M) построена в точности так же, как и система Q( M), с той лишь разницей, что роль, которую при построении системы Q( M) исполняли ☆-утверждения, сейчас берут на себя ☆ M -утверждения. Иначе говоря, теоремами системы Q M ( M) являются либо (I) сами ☆ M -утверждения, либо (II) положения, выводимые из этих ☆ M -утверждений с применением правил элементарной логики (см. §3.13). Точно так же, как робот на основании гипотезы  Mсогласен с тем, что формальная система Q( M) охватывает все его неопровержимые убеждения относительно истинности III -высказываний, он будет согласен и с тем, что формальная система Q M ( M) охватывает все его неопровержимые убеждения относительно истинности Π 1-высказываний, обусловленных гипотезой M.

Далее предложим роботу рассмотреть гёделевское Π 1-высказывание G( Q M ( M)). Робот, несомненно, проникнется неопровержимым убеждением в том, что это Π 1-высказывание является следствием из обоснованности системы Q M ( M). Он также вполне безоговорочно поверит в то, что обоснованность системы Q M ( M) является следствием гипотезы M, поскольку он согласен с тем, что система Q M ( M) действительно содержит в себе все, в чем робот неопровержимо убежден в отношении своей способности выводить Π 1-высказывания, основываясь на гипотезе M. (Он будет рассуждать следующим образом: «Если я принимаю гипотезу M, то я тем самым принимаю и все Π 1-высказывания, которые порождают систему Q M ( M). Таким образом, я должен согласиться с тем, что система Q M ( M) является обоснованной на основании гипотезы M. Следовательно, на основании все той же гипотезы, я должен признать и то, что утверждение G( Q M ( M)) истинно».)

Однако, поверив (безоговорочно) в то, что гёделевское Π 1-высказывание G( Q M ( M)) является следствием гипотезы M, робот вынужден будет поверить и в то, что утверждение G( Q M ( M)) является теоремой формальной системы Q M ( M). А в это он сможет поверить только в том случае, если он полагает систему Q M ( M) необоснованной, – что решительно противоречит принятию им гипотезы M.

В некоторых из вышеприведенных рассуждений неявно допускалось, что неопровержимая убежденность робота является действительнообоснованной, – хотя необходимо лишь, чтобы сам робот просто верил в обоснованность своей системы убеждений. Впрочем, мы изначально предполагаем, что наш робот обладает математическим пониманием, по крайней мере, на человеческом уровне, а человеческое математическое понимание, как было показано в §3.4, принципиально является обоснованным.

Возможно, кто-то усмотрит в формулировке допущения M, равно как и в определении ☆ M -утверждения, некоторую неоднозначность. Смею вас уверить, что подобное утверждение, будучи Π 1-высказыванием, представляет собой в высшей степени определенное математическое утверждение. Можно предположить, что большинство ☆ M -утверждений робота окажутся в действительности самыми обыкновенными ☆-утверждениями, поскольку маловероятно, что робот при каких угодно обстоятельствах сочтет целесообразным прибегать в своих рассуждениях к самой гипотезе M. Исключением может стать утверждение G( Q( M)), о котором говорилось выше, так как в данном случае формальная система Q( M) выступает, с точки зрения робота, в роли гёделевской гипотетической «машины для доказательства теорем» (см. §§3.1и 3.3). Вооружившись гипотезой M, робот получает доступ к своей собственной «машине для доказательства теорем», и, хотя он не может быть (да и, скорее всего, не будет) безоговорочно убежден в обоснованности своей «машины», робот способен предположить, что она может оказаться обоснованной, и попытаться вывести следствия уже из этого предположения.

На этом этапе робот еще не добирается до парадокса – так же, как не добрался до него и Гёдель в своих рассуждениях о человеческом интеллекте (см. цитату в §3.1). Однако, поскольку роботу доступен для исследования набор гипотетических механизмов M, а не просто отдельная формальная система Q( M), он может повторить свое рассуждение и перейти от системы Q( M) к системе Q M ( M), обоснованность которой он по-прежнему полагает простым следствием из гипотезы M. Именно это и приводит его в конечном итоге к противоречию (чего мы, собственно, и добивались). (См. также §3.24, где мы продолжим рассмотрение системы Q M ( M) и ее кажущейся связи с «парадоксальными рассуждениями».)

Вывод: ни одно обладающее сознанием и имеющее понятие о математике существо – иначе говоря, ни одно существо со способностью к подлинному математическому пониманию – не может функционировать в соответствии с каким бы то ни было набором постижимых им механизмов, вне зависимости от того, знаетли оно в действительности о том, что именно эти механизмы, предположительно, направляют его на его пути к неопровержимой математической истине. (Вспомним и о том, что «неопровержимой математической истиной» это существо полагает всего лишь то, что оно способно установить математическими методами, – т.е. с помощью «математического доказательства», причем совсем необязательно «формального».)

Если конкретнее, то на основании предшествующих рассуждений мы склонны заключить, что не существует такого постижимого роботом и не содержащего подлинно случайных компонентов набора вычислительных механизмов, какой робот мог бы принять (даже в качестве возможности) как основу своей системы математических убеждений, – при условии, что робот готов согласиться с тем, что специфическая процедура, предложенная мною для построения формальной системы Q( M) на основе механизмов M, и в самом делеохватывает всю совокупность Π 1-высказываний, в истинность которых он неопровержимо верит, а также, соответственно, с тем, что формальная система Q M ( M) охватывает всю совокупность Π 1-высказываний, которые, как он неопровержимо верит, следуют из гипотезы M. Кроме того, если мы хотим, чтобы робот смог построить собственную потенциально непротиворечивую систему математических убеждений, следует ввести в набор механизмов  Mкакие-либо подлинно случайные составляющие.

Эти последние оговорки мы рассмотрим в последующих разделах ( §§3.17-3.22). Вопрос о введении в набор механизмов  Mвозможных случайных элементов (вариант (c)) представляется удобным обсудить в рамках общего рассмотрения варианта (b). А для того чтобы рассмотреть вариант (b) с должной тщательностью, нам следует прежде в полной мере прояснить для себя вопрос об «убежденности» робота, который мы уже мимоходом затрагивали в конце §3.12.


    Ваша оценка произведения:

Популярные книги за неделю