355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Роджер Пенроуз » Тени разума. В поисках науки о сознании » Текст книги (страница 27)
Тени разума. В поисках науки о сознании
  • Текст добавлен: 20 сентября 2016, 17:17

Текст книги "Тени разума. В поисках науки о сознании"


Автор книги: Роджер Пенроуз


Жанр:

   

Философия


сообщить о нарушении

Текущая страница: 27 (всего у книги 49 страниц)

Рис. 4.2. Пространство Минковского: пространство-время в специальной теории относительности. Все световые конусы размещены равномерно и сориентированы в одном направлении.

Рис. 4.3. Наклонныесветовые конусы в обшей теории относительности Эйнштейна.

Наклон световых конусов можно представлять себе как  изменениескорости света (или, точнее, абсолютной скорости) в зависимости от места в пространстве; эта скорость может также зависеть и от направления движения. При таком подходе «абсолютную скорость» можно рассматривать как некий аналог «действительной скорости света» в преломляющих средах, о которой мы говорили выше. Соответственно, можно предположить, что гравитационное поле является этакой всепроницающей и повсеместной преломляющей средой, которая оказывает воздействие не только на поведение реального света, но и на поведение всехматериальных частиц и сигналов [30]30
  Забавно, что сам Ньютон тоже высказывал подобную идею. (См. «Вопросы» 18-22 в третьей книге «Оптики» (1730).)


[Закрыть]
. В самом деле, попытки описать феномен и эффекты гравитации именно таким образом предпринимаются нередко, и до некоторой степени это описание работает. Однако в общем и целом это описание оказывается неудовлетворительным, а в некоторых существенных отношениях и вовсе дает серьезно искаженную картину общей относительности.

Прежде всего следует отметить, что хотя такую «гравитационную преломляющую среду» и можно счесть причиной  уменьшенияабсолютной скорости (как обстоит дело с обычной преломляющей средой), некоторые существенные обстоятельства (например, большая протяженность гравитационного поля изолированной массы) не позволяют ограничиться одним лишь  замедляющимвоздействием – кое-где наша гипотетическая среда должна проявить способности и к воздействию ускоряющему, т.е. где-то абсолютная скорость должна возрастать(см. [ 290] и рис. 4.4). В рамках специальной теории относительности  такоепросто невозможно. Согласно этой теории, никакая преломляющая среда, сколь бы причудливой она ни была, не может разгонять сигналы до скорости, превышающей скорость света в вакууме (т.е. в отсутствие какой бы то ни было среды), не нарушая при этом фундаментальных для теории принципов причинности – ведь такое увеличение скорости позволило бы сигналам распространяться снаружи минковскианских световых конусов (вакуумных), а это теоретически запрещено. К тому же, как мы выяснили выше, гравитационные эффекты «наклона световых конусов» нельзя объяснить никаким остаточным воздействием прочих, негравитационных, полей.

Рис. 4.4. Распространение света согласно общей теории относительности Эйнштейна не может являться эффектом «преломляющей среды» (в пространстве Минковского), поскольку это противоречит фундаментальному принципу специальной теории относительности – невозможности распространения сигналов со скоростью, превышающей скорость света в пространстве Минковского.

Известны и гораздо более «экстремальные» ситуации, в которых описать таким образом наклон световых конусов и вовсе невозможно, даже если допустить «превышение» абсолютное скорости в некоторых направлениях. Одну такую ситуацию иллюстрирует рис. 4.5: световые конусы наклонены под самым невероятным углом, чуть ли не перевернуты. Вообще говоря, такой чрезвычайный наклон возникает лишь в явно спорных ситуациях, где имеет место так называемое «нарушение причинности» – т.е. наблюдатель получает теоретическую возможность посылать сигналы в свое собственное прошлое (см. рис. 7.15, глава 7). Отметим еще, что соображения такого рода, как это ни удивительно, имеют самое что ни на есть непосредственное отношение к одной из тем нашего дальнейшего обсуждения (см. §7.10).

Рис. 4.5. В принципе наклон светового конуса может стать настолько большим, что сигналы смогут распространяться в минковскианское прошлое.

Следует упомянуть и еще об одном неявном обстоятельстве: «угол наклона» единичного светового конуса не является величиной, измеримой физически, а потому не имеет в сущности никакого физического смысла и не может послужить мерой  действительногоуменьшения или увеличения абсолютной скорости. Лучшим способом проиллюстрировать это обстоятельство будет следующий: вообразим, что изображение, представленное на рис. 4.3, нанесено на тонкий лист резины, что позволит поворачивать и деформировать каждый отдельный световой конус вокруг окрестности его вершины (см. рис. 4.6) до тех пор, пока он не расположится «вертикально», – т.е. так, как располагаются световые конусы в пространстве специальной относительности Минковского (рис. 4.2). При этом нет никакой возможности обнаружить (посредством локальных экспериментов), является ли «наклонным» световой конус того или иного конкретного события. Если же мы намерены настаивать на том, что «эффект наклона» обязан своим возникновением некоей «гравитационной среде», то нам придется объяснить и «странности» поведения этой самой среды – объяснить, почему эта среда ни при каком единичном пространственно-временном событии не поддается наблюдению. В частности, даже очевидно чрезвычайные случаи (представленные на рис. 4.5), для описания которых идея гравитационной среды ну совершенно не годится, оказываются неотличимы физически (если рассматривать один-единственный световой конус) от случая, когда наклон отсутствует (как в пространстве Минковского).

Рис. 4.6. Вообразим пространство-время в виде резинового листа с нанесенными на нем световыми конусами. Каждый отдельный световой конус можно поворачивать (растягивая резину) до тех пор, пока все они не выстроятся в стандартную минковскианскую картину.

Впрочем, если говорить вообще, то поворачивать тот или иной конкретный световой конус до его минковскианской ориентации мы можем лишь за счет деформации – и удаленияот минковскианской ориентации – некоторых из соседних световых конусов. Возникает, в общем случае, «математическое препятствие», в силу которого невозможно деформировать лист резины таким образом, чтобы все световые конусы выстроились в стандартный минковскианский порядок, показанный на рис. 4.2. В четырехмерном пространстве-времени это препятствие описывается посредством математического объекта, называемого  конформным тензором Вейля– в НРК мы ввели для этого тензора обозначение WEYL(см. НРК, с. 210). (Тензор WEYLдает ровно половину – «конформную» половину – информации, содержащейся в полном тензоре пространственно-временной кривизны Римана; впрочем, полагаю, что в данной ситуации беспокоиться о точном смысле этих терминов особой необходимости нет.) Развернуть всесветовые конусы в минковскианский порядок нам удастся лишь в том случае, если WEYLбудет равен нулю. Тензор WEYLесть мера гравитационного поля – в смысле гравитационной приливной деформации, – т.е. именно гравитационное полеи является тем самым препятствием, которое не дает нам «выпрямить» все световые конусы сразу.

Эту тензорную величину, конечно же, можно измерить физически. WEYL-тензорное гравитационное поле, например, Луны воздействует на Землю и вызывает ее приливную деформацию – внося тем самым основной вклад в возникновение приливов (см. НРК, с. 204, рис. 5.25). Этот эффект, впрочем, не связан непосредственно с наклоном световых конусов, а представляет собой лишь самое обычное проявление ньютоновского гравитационного воздействия. Более подходящим к случаю выглядит другой наблюдаемый эффект, так называемый эффект гравитационной линзы, предсказанный в теории Эйнштейна. Впервые гравитационную линзу наблюдал Артур Эддингтон во время экспедиции на остров Принсипи в 1919 году; при этом вызванное гравитационным полем Солнца искажение картины звездного неба было самым тщательным образом зарегистрировано. Звездное небо вблизи Солнца словно растягивается – при этом, скажем, небольшой круг из звезд представляется наблюдателю в виде эллипса (см. рис. 4.7). В данном случае воздействие WEYL-тензорного гравитационного поля на структуру световых конусов пространства-времени наблюдалось почти непосредственно. В последние годы эффект гравитационной линзы находит широкое применение в качестве инструмента наблюдательной астрономии и космологии. Свет от отдаленного квазара порой доходит до нас в искаженном виде, поскольку на его пути оказывается какая-либо крупная масса (например, галактика; см. рис. 4.8). Из наблюдаемых при этом искажений «внешности» квазара (вкупе с эффектами временной задержки) можно извлечь весьма ценные сведения о соответствующих расстояниях, массах и т.д. Все это можно полагать достаточно недвусмысленным свидетельством в пользу того, что феномен наклона световых конусов действительно существует, а также того, что WEYL-эффекты непосредственно измеримы.

Рис. 4.7. Непосредственно наблюдаемый эффект наклона световых конусов. Пространственно-временное WEYL-искривление проявляется в виде искажения картины звездного неба в результате отклонения световых лучей под воздействием гравитационного поля Солнца. Круг из звезд представляется наблюдателю эллипсом.

Рис. 4.8. Эффект эйнштейновского отклонения света широко используется сегодня в наблюдательной астрономии. По тому, насколько искажено изображение отдаленного квазара, можно оценить массу галактики, находящейся между квазаром и наблюдателем.

Предыдущие замечания наглядно иллюстрируют тот факт, что «наклон» световых конусов, т.е. гравитационное искажение причинности, представляет собой не нечто эфемерное, но вполне реальныйфеномен, который нельзя исчерпывающе объяснить каким бы то ни было остаточным (либо «эмергентным») свойством, возникающим у достигшего достаточной величины скопления материи. Гравитация имеет собственную уникальную природу, отличную от природы прочих физических процессов; на уровне тех сил, что существенны для фундаментальных частиц, гравитация непосредственно не наблюдается – тем не менее, она присутствует и здесь, и присутствует постоянно. Наклон световых конусов – прерогатива гравитации, никакие другиеиз известных современной физике сил и взаимодействий на это не способны. Таким образом, в этом фундаментальном отношении гравитация представляет собой нечто особенное, нечто принципиально отличноеот всех известных нам сил и физических воздействий. В самом деле, согласно классической общей теории относительности, наклон светового конуса вызывает присутствие любого материального тела, будь оно даже мельчайшей из песчинок (хотя в этом случае наклон будет, конечно же, крайне незначителен). В принципе, для наклона светового конуса достаточно и отдельного электрона – просто величина производимого подобными объектами наклона слишком мала, чтобы можно было говорить о каком бы то ни было непосредственно наблюдаемом его эффекте.

Гравитационные взаимодействия наблюдались на примере объектов, значительно больших, нежели песчинки, но все же гораздо меньших, чем, например, Луна. В 1798 году Генри Кавендишу удалось измерить силу гравитационного притяжения шара массой всего около 10 5граммов. (Этот знаменитый опыт Кавендиша основан на идее, выдвинутой ранее Джоном Мичеллом.) Возможности современной техники позволяют обнаружить гравитационное притяжение объектов значительно менее массивных (см., например, [ 60]). Впрочем, обнаружить в какой-либо из этих ситуаций эффект наклона световых конусов никакая современная техника пока не в состоянии. Наблюдать этот эффект непосредственно можно только в присутствии действительно огромных масс; а то, что наклон световых конусов создают и малые массы (величиной с песчинку), является очевидным следствием из теории относительности Эйнштейна.

Гравитационные эффекты невозможно сколько-нибудь точно смоделировать посредством какой бы то ни было комбинации других физических полей или сил. Гравитация совершенно уникальна по своей природе, и ни в коем случае нельзя ее рассматривать как эмергентный или вторичный феномен, остаточный по отношению к каким-то иным, более «солидным» физическим процессам. Гравитация описывается самой структурой пространства-времени, которое считалось прежде просто неподвижным фоном, этакой ареной для проявления всевозможной физической активности. В ньютоновской вселенной гравитация не являлась чем-то особенным – хотя и послужила парадигмой для построения всех более поздних физических теорий. Во вселенной же, описываемой Эйнштейном, гравитация рассматривается (и надо сказать, что эта точка зрения, разделяемая большинством нынешних физиков, получила великолепное экспериментальное подтверждение) как совершенно особое взаимодействие – не эмергентный феномен, но нечто само по себе уникальное.

Впрочем, несмотря на все отличия, между гравитацией и прочими физическими силами существует фундаментальная и гармоничная связь. Теория Эйнштейна отнюдь не является чужеродным элементом в системе физических законов, она лишь представляет их в несколько ином свете. (В особенности это относится к законам сохранения энергии, импульса и момента импульса.) Связь эйнштейновской гравитации со всей остальной физикой может до некоторой степени объяснить сложившуюся парадоксальную ситуацию, когда всякое физическое описание основывается на парадигменьютоновской гравитации, в то время как сама гравитация (как позднее показал Эйнштейн) по своей природе отличнаот прочих физических взаимодействий. Тот же Эйнштейн, кстати, призывал более всего избегать излишней самоуверенности – то, что мы в процессе познания мира взобрались на очередную ступеньку, вовсе не обязательно должно означать, что теперь мы располагаем единственно верной физической теорией этого самого мира.

Можно ли ожидать, что и в отношении феномена сознания нам предстоит обнаружить некое «взаимодействие», аналогичное гравитации? Если да, то характеристикой, которая по достижении определенного значения обусловливает проявление упомянутого феномена, окажется, скорее всего, не масса– во всяком случае, не одна лишьмасса, – но некая разновидность тонкой физической организации. Согласно представленным в первой части доводам, такая организация в процессе своего становления должна была так или иначе научиться использовать некий не известный нам пока ингредиент, непременно присутствующий в поведении обычной материи. То, что мы не наблюдаем его проявлений, означает лишь, что мы не туда смотрим, – аналогичным образом, нам никогда не удалось бы обнаружить феномен наклона световых конусов, ограничь мы область наблюдений одними лишь крохотными частицами.

Какое же отношение имеет наклон световых конусов к невычислимости? К этому вопросу (точнее, к одному весьма интригующему его аспекту) мы еще вернемся в §7.10; на данном же этапе наших рассуждений ответ прост: абсолютно никакого, разве чтодает некую надежду – как выясняется, вполне возможно обнаружить в физике фундаментально важное новое свойство, полностью отличное от всех уже известных и остававшееся прежде незамеченным в поведении обычной материи. Эйнштейна к его революционным идеям привел целый ряд весьма мощных соображений – математически сложных и физически неочевидных, – причем самое важное из них, широко известное еще со времен Галилея, так и оставалось до конца не понятым (речь идет о принципе эквивалентности: все тела в поле тяготения падают с одинаковой скоростью). Более того, необходимое условие успеха идей Эйнштейна заключалось именно в том, что эти самые идеи оказались полностью «совместимыми» со всем тем, что было известно о физических феноменах в его время.

Аналогичным образом вполне можно предположить, что где-то в поведении всем известных объектов сокрыта невычислительная активность того или иного рода. Для того, чтобы подобные спекуляции имели бы хоть какую-то надежду на успех, они также должны быть основаны на каких-то мощных соображениях – предположительно, иматематически сложных, ифизически неочевидных – и как-то согласовываться с тем, что мы знаем о всех известных нам феноменах. Посмотрим, насколько далеко нам удастся зайти по пути к такой теории.

Однако прежде чем мы начнем, думаю, стоит составить для себя некоторое представление о том, насколько велико влияние идеи о вычислимости всего и вся на современную физику. Примечательно, что одним из наиболее впечатляющих в этом отношении примеров является не что иное, как общая теория относительности.

4.5. Вычисления и физика

На расстоянии около 30 000 световых лет от Земли, в созвездии Орла, есть две невероятно плотные мертвые звезды, вращающиеся одна вокруг другой. Вещество в этих звездах сжато до такой степени, что если сделать из него теннисный мячик, то масса его окажется сопоставима с массой Деймоса, одного из спутников Марса. Время полного оборота этих звезд (называемых обычно нейтроннымизвездами) друг вокруг друга составляет 7 часов 45 минут и 6,9816132 секунды, а их массы больше массы Солнца, соответственно, в 1,4411 и 1,3874 раз (с возможной погрешностью в 7 десятитысячных). Каждые 59 миллисекунд первая из этих звезд испускает в нашем направлении импульс электромагнитного излучения (пучок радиоволн), из чего можно заключить, что она вращается вокруг своей оси со скоростью приблизительно 17 оборотов в секунду. Такие звезды называются пульсарами, а описываемая пара звезд представляет собой знаменитый двойной пульсар PSR 1913+16.

Впервые эти замечательные объекты были обнаружены в 1967 году астрономами кембриджской радиообсерватории Джослином Беллом и Энтони Хьюишем. Нейтронные звезды, как правило, являются результатом гравитационного коллапса ядра красного гиганта, каковой коллапс может сопровождаться чрезвычайно яркой вспышкой сверхновой. Нейтронные звезды немыслимо плотны, поскольку состоят из ядерных частиц (в основном, из нейтронов), уложенных настолько близко друг к другу, что общая плотность звезды оказывается сопоставима с плотностью собственно нейтрона. В процессе коллапса нейтронная звезда захватывает своим веществом линии индукции магнитного поля и, вследствие чудовищного сжатия, которым сопровождается коллапс, концентрация этого поля достигает чрезвычайно больших величин. Линии поля выходят из северного магнитного полюса звезды, удаляясь в пространстве на весьма значительное расстояние, и входят в южный магнитный полюс (см. рис. 4.9).

Рис. 4.9. Двойной пульсар PSR 1913+16. Две нейтронные звезды вращаются одна вокруг другой. Одна из звезд является пульсаром; ее магнитное поле чрезвычайно велико и способно захватывать заряженные частицы.

Результатом коллапса звезды является также огромное увеличение скорости ее вращения (как следствие сохранения кинетического момента). В случае нашего пульсара (диаметр около 20 км) скорость вращения, как мы уже говорили, составляет приблизительно 17 оборотов в секунду! В итоге магнитное поле пульсара также вращается со скоростью 17 оборотов в секунду, так как линии индукции внутри звезды остаются жестко связанными с телом звезды. Линии поля вне звезды увлекают за собой заряженные частицы, однако на определенном расстоянии от звезды скорость, с которой этим частицам приходится перемещаться, приближается (причем вплотную) к скорости света. Оказавшись в такой ситуации, заряженные частицы принимаются интенсивно излучать в радиодиапазоне, и это чрезвычайно мощное излучение, подобно свету гигантского маяка, распространяется на огромное расстояние. Поскольку «маяк» вращается, Земли достигает лишь часть излучаемых им импульсов; астрономы наблюдают их в виде характерной для данного пульсара последовательности «радиощелчков» (рис. 4.10).

Рис. 4.10. Захваченные магнитным полем заряженные частицы вращаются вместе с пульсаром и испускают электромагнитный сигнал, который «накрывает» Землю 17 раз в секунду. Этот сигнал мы принимаем в виде последовательности коротких радиоимпульсов.

Скорости вращения пульсаров чрезвычайно стабильны – пульсары можно использовать как часы, причем точность этих часов будет сопоставима с точностью наиболее совершенных из существующих в данный момент на Земле часов (атомных) – а то и превзойдет ее. (Хорошие «пульсарные часы» спешат – или отстают – всего лишь на 10 -12с в год.) Если пульсар является частью системы двойной звезды (как, например, в случае с PSR 1913+16), то его орбитальное движение вокруг своего спутника можно точно регистрировать за счет эффекта Допплера– частота принимаемых на Земле щелчков несколько увеличивается, когда пульсар к нам приближается, и уменьшается, когда он удаляется.

В случае PSR 1913+16 астрономам удалось получить чрезвычайно подробную картину действительных взаимных орбит обеих звезд и убедиться в справедливости ряда различных предсказаний общей теории относительности Эйнштейна. Среди последних можно упомянуть эффект, называемый «смещением перигелия», – в конце XIX века астрономы обратили внимание на аномалии в орбитальном движении Меркурия вокруг Солнца, каковые аномалии Эйнштейн в 1916 году объяснил в рамках своей теории, что стало первым ее испытанием на прочность, – а также разного рода общерелятивистские «качания» и «вихляния», воздействующие на поведение осей вращения и тому подобных объектов. Поведение системы, состоящей из двух малых тел, движущихся друг вокруг друга по общей орбите, описывается в теории Эйнштейна очень четкой (детерминистской и вычислимой) моделью – движение тел в этом случае можно вычислить с высокой степенью точности, используя как сложные и тонкие методы аппроксимации, так и различные стандартные вычислительные методы. Некоторые необходимые для такого вычисления параметры нам точно не известны – например, массы и начальные скорости движения звезд, – впрочем, данных, извлеченных из сигналов пульсара, вполне достаточно для того, чтобы предсказать значения этих параметров с высокой точностью. Картина, получаемая в результате вычислений, замечательно согласуется, как в общем, так и в частностях, с информацией, содержащейся в принимаемых нами сигналах пульсара, что можно считать еще одним существенным подтверждением общей теории относительности.

Общая теория относительности предполагает существование еще одного эффекта, о котором я до сих пор не упоминал; между тем, он играет важную роль в динамике двойных пульсаров. Речь идет о гравитационном излучении. В предыдущем параграфе я отмечал, что гравитация существенным образом отличается от всех прочих физических взаимодействий. Тем не менее, в некоторых отношениях гравитация и электромагнетизм очень похожи. Среди прочего, электромагнитные поля обладают одним важным свойством: они способны существовать в волновой форме, распространяясь в пространстве в виде световых или радиоволн. Согласно классической теории Максвелла, источником таких волн становится любая система движущихся друг относительно друга заряженных частиц, взаимодействующих через посредство электромагнитных сил. Аналогичным образом, согласно классической общей теории относительности, источником гравитационных волн является любая система движущихся друг относительно друга гравитирующих тел – вследствие возникающих между ними гравитационных взаимодействий. При обычных обстоятельствах эти волны чрезвычайно слабы. Самым мощным источником гравитационного излучения в Солнечной системе является движение Юпитера вокруг Солнца, но при этом количества гравитационной энергии, испускаемой системой Солнце—Юпитер, едва хватит на то, чтобы зажечь сорокаваттную лампочку!

Однако при иных условиях – например, в системе двойного пульсара PSR 1913+16 – ситуация коренным образом меняется, и гравитационное излучение системы начинает играть весьма существенную роль. Теория Эйнштейна дает уверенный и детальный прогноз относительно природы гравитационного излучения подобных систем – в частности, предполагается, что система должна терять в процессе определенное количество энергии. В результате потери энергии должно происходить медленное сближение нейтронных звезд по спирали; соответственно, должен уменьшаться и период их обращения друг вокруг друга. Первыми двойной пульсар PSR 1913+16 наблюдали Джозеф Тейлор и Расселл Хале в 1974 году, с помощью гигантского радиотелескопа «Аресибо», расположенного в Пуэрто-Рико. Впоследствии Тейлор и его коллеги регулярно измеряли период обращения звезд этого пульсара и установили, что он уменьшается в точном соответствии с предсказанием общей теории относительности (см. рис. 4.11). За эту работу Тейлор и Хале получили в 1993 году Нобелевскую премию по физике. Наблюдение за системой PSR 1913+16 продолжается до сих пор, и чем больше данных мы накапливаем, тем больше подтверждений эйнштейновской теории получаем. В самом деле, если взять систему в целом и сравнить наблюдаемое ее поведение с поведением, рассчитанным по теории Эйнштейна (также взятой в целом), – начиная с ньютоновских расположений орбит, далее внося в эти орбиты поправки на стандартные эффекты общей теории относительности и завершая всю процедуру учетом эффекта потери энергии при гравитационном излучении, – то мы обнаружим, что теория полностью подтверждается, при этом погрешность составляет не более 10 -14. Таким образом, можно смело утверждать, что эйнштейновская общая теория относительности является, в данном конкретном смысле, наиболее тщательно проверенной теорией из всех известных науке!

Рис. 4.11. Этот график (любезно предоставленный Дж. Тейлором) демонстрируетточное согласие наблюдаемого (на протяжении 20 лет) уменьшения периода взаимного обращения составляющих пульсар нейтронных звезд с расчетной потерей энергии системой при гравитационном излучении в соответствии с теорией Эйнштейна.

В описанном примере мы рассматриваем систему в высшей степени «чистую» – при ее расчете необходимо учитывать только эффекты общей теории относительности. Не нужно беспокоиться ни о сложностях, связанных с учетом внутреннего строения входящих в систему тел, ни о замедлении их движения под воздействием промежуточной среды или магнитных полей – все это не оказывает на динамику системы сколько-нибудь заметного влияния. Более того, мы имеем здесь дело лишь с двумя телами и их совокупным гравитационным полем, поэтому выполнить полное и точное вычисление их ожидаемого поведения – в рамках теории, исчерпывающе описывающей все существенные аспекты этого самого поведения – нам вполне по силам. Возможно, на сегодняшний день, это один из наиболее выдающихся примеров совершенного согласия между расчетной теоретической моделью и экспериментально наблюдаемым поведением (для систем, состоящих из малого количества тел).

Даже если тел в физической системе значительно больше, модель поведения системы все равно можно рассчитать с той же точностью, воспользовавшись возможностями, предоставляемыми современными компьютерными технологиями. В частности, имеется очень подробная и полная модель движения всех планет Солнечной системы вместе с их наиболее значительными спутниками, построенная Ирвином Шапиро и его коллегами. Эту модель можно рассматривать как еще одно существенное подтверждение общей теории относительности. Здесь теория Эйнштейна также согласуется со всеми результатами наблюдений и прекрасно объясняет всевозможные малые отклонения от наблюдаемого движения, возникающие в моделях, использующих исключительно ньютоновский подход.

С помощью современных компьютеров можно выполнить расчеты и для систем, содержащих еще большее количество тел – порой порядка миллиона, – хотя такие расчеты, как правило (но не всегда), вынуждены целиком и полностью опираться на теорию Ньютона. Приходится прибегать к некоторым упрощающим допущениям – например, не рассчитывать воздействие буквально каждой частицы на все остальные, а как-то аппроксимировать воздействие всей совокупности частиц с помощью того или иного усреднения. Подобные методы вычислений широко распространены в астрофизике, где тщательно исследуются процессы формирования звезд и галактик, а также «догалактического» сгущения материи.

Впрочем, между предполагаемыми целями тех и других вычислений имеется существенная разница. В данном случае нас, конечно-же, интересует отнюдь не действительнаяэволюция некоторой системы, но ее типичнаяэволюция. Как и в рассмотренном нами ранее случае хаотических систем, такой подход будет здесь, пожалуй, наиболее оправданным. С его помощью можно исследовать различные научные гипотезы о составе и первоначальном распределении материи во Вселенной, чтобы убедиться, насколько хорошо, в общем и целом, результаты описываемой в этих гипотезах эволюции согласуются с тем, что мы наблюдаем на деле. При таких обстоятельствах никто и не ожидает получить соответствие в мельчайших деталях, но сравнить общую картину и различные статистические параметры модели и наблюдаемого феномена вполне возможно.

Крайний случай такого рода возникает, когда количество частиц настолько велико, что нет никакой надежды проследить эволюцию каждой из них в отдельности, – частицы в таких системах исследуются исключительно статистическими методами. Так, общепринятое математическое описание газа оперирует статистическими ансамблямиразличных возможных движений частиц, не размениваясь на частные движения каждой отдельной частицы. Температура, давление, энтропия и прочие подобные физические величины являются характеристиками как раз таких ансамблей, но эти же характеристики можно считать и частью вычислительной системы, в которой эволюционные свойства ансамблей рассматриваются со статистической точки зрения.

Помимо соответствующих динамических уравнений (Ньютона, Максвелла, Эйнштейна или кого угодно еще), исследователь таких систем должен взять на вооружение еще один физический принцип – второй закон термодинамики {61} . Нужен он, в сущности, для того, чтобы исключить из рассмотрения те начальные состояния движения отдельных частиц, что ведут к совершенно невероятным, хотя и возможным динамически, эволюциям. Применение второго закона позволяет гарантировать, что данная эволюция моделируемой системы действительно является «типичной», что мы не получим в результате наших усилий атипичнуюмодель, не имеющую к решаемой задаче никакого практического отношения. С помощью второго закона можно довольно точно рассчитывать дальнейшую эволюцию систем, содержащих огромное количество частиц, отследить движение каждой из которых мы физически не в состоянии.

Зададим себе интересный – и весьма непростой – вопрос: почему, несмотря на то, что динамические уравнения Ньютона, Максвелла и Эйнштейна абсолютно симметричны во времени, упомянутые эволюции невозможно достоверно распространить в прошлое? Почему в реальном мире второй закон термодинамики в обратном направлении не работает? Причина имеет, очевидно, самое непосредственное отношение к весьма особым условиям, существовавшим в начале времени, – иначе говоря, к возникновению Вселенной в результате Большого Взрыва. (Подробное обсуждение гипотезы Большого Взрыва см. в НРК, глава 7.) Более того, эти начальные условия оказываются особыми ровно настолько, что благодаря им мы получаем еще один пример чрезвычайно высокой точности моделирования наблюдаемого физического поведения посредством четко сформулированных математических гипотез.


    Ваша оценка произведения:

Популярные книги за неделю