Текст книги "Тени разума. В поисках науки о сознании"
Автор книги: Роджер Пенроуз
Жанр:
Философия
сообщить о нарушении
Текущая страница: 41 (всего у книги 49 страниц)
В самом деле, если простейшими вычислительными блоками мы теперь будем считать димеры тубулина, то придется предположить, что потенциальная вычислительная мощность мозга просто неимоверно превосходит все то, что предполагали самые смелые теоретики от ИИ. Основываясь на «цельнонейронной» модели, Ханс Моравек в своей книге «Дети разума» [ 267] предположил, что человеческий мозг может в принципе достичь производительности порядка 10 14операций в секунду, но не более того; это при том, что в мозге имеется около 10 11 функционирующих нейронов, каждый из которых способен посылать примерно по 10 3сигналов в секунду (см. §1.2). Если же в качестве элементарного вычислительного блока взять димер тубулина, то следует учесть, что на каждый нейрон приходится около 10 7димеров; соответственно, элементарные операции теперь выполняются где-то в 10 6раз быстрее, в результате чего получаем 10 27операций в секунду. Возможно, производительность современных компьютеров и вправду уже начинает приближаться к первой цифре, 10 14операций в секунду (как весьма убежденно доказывают Моравек и его единомышленники), однако несмотря на все эти успехи, достичь в обозримом будущем производительности 10 27операций в секунду не представляется возможным.
Разумеется, можно смело утверждать, что мозг работает далеко не со стопроцентной «микротрубочковой» эффективностью, какую приведенные выше цифры предполагают. Тем не менее, ясно, что возможность «микротрубочкового вычисления» (см. [ 183]) позволяет совсем по-иному взглянуть на некоторые из аргументов в пользу неминуемого наступления эпохи искусственного интеллекта человеческого уровня. Можем ли мы теперь поверить хотя бы в то, что уже сегодня возможно {92} численно воспроизвести умственную деятельность червя нематоды, только потому, что мы вроде бы «закартографировали» и численно смоделировали его нервную систему? Как было отмечено в §1.15, умственные способности обычного муравья намного превосходят все то, что на настоящий момент реализовано посредством стандартных ИИ-процедур. Впору поинтересоваться, сколько же муравей выигрывает в производительности благодаря гигантскому массиву своих «микротрубочковых информационных нанопроцессоров», если сравнивать с тем, чего он смог бы добиться, располагай он лишь «переключателями цельнонейронного типа». Что до парамеции, то тут, как вы понимаете, оснований для предъявления иска нет.
Однако аргументы, представленные в первой части, предполагают гораздо более сильное заявление. Я утверждаю, что способность человека к пониманию выходит за рамки какой угодно вычислительной схемы. Если мозгом человека управляют микротрубочки, то в микротрубочковых процессах должно быть что-то принципиально отличное от простого вычисления. Я утверждал, что такая невычислимая активность должна быть следствием достаточно макроскопической квантовой когерентности, объединенной неким тонким образом с макроскопическим поведением – с тем, чтобы обеспечить возможность протекания в системе тех новых физических процессов, что придут на смену бытующей в современной физике паллиативной R-процедуре. В качестве первого шага мы должны выяснить, какова же подлинная роль квантовой когерентностив цитоскелетной активности.
7.5. Квантовая когерентность внутри микротрубочекЕсть ли у нас основания предполагать, что внутри микротрубочек существует квантовая когерентность? Вернемся ненадолго к обсуждавшимся в §7.1идеям Фрёлиха [ 131] о возможности феноменов квантовой когерентности в биологических системах. Он утверждал, что если энергия метаболической активности достаточно велика, а диэлектрические свойства задействованных в процессе материалов достаточно экстремальны, то существует возможность возникновения макроскопической квантовой когерентности, аналогичной той, что возникает в феноменах сверхпроводимости и сверхтекучести – иногда объединяемых общим термином конденсация Бозе—Эйнштейна– даже при относительно высоких температурах, какие, собственно, и характерны для биологических систем. Как выяснилось, не только метаболическая энергия достаточно велика, а диэлектрические свойства просто необыкновенно экстремальны (именно этот полученный в 1930-е годы поразительный экспериментальный результат и навел Фрёлиха на соответствующие размышления), но и имеется с некоторых пор даже прямое подтверждение предсказанных Фрёлихом внутриклеточных колебаний с частотой 10 11Гц [ 177].
В конденсате Бозе—Эйнштейна (который возникает еще и при работе лазера) большое количество частиц совместно образуют одно квантовое состояние. Это состояние описывается волновой функцией того же вида, что и в случае единичной частицы, – только здесь эта функция относится сразу ко всей совокупности образующих состояние частиц. Вспомним о непостижимой с классической точки зрения природе квантового состояния одной-единственной квантовой частицы ( §§5.6, 5.11). В конденсате Бозе—Эйнштейна вся состоящая из множества частиц система ведет себя как одно целое, и ее квантовое состояние ничем не отличается от квантового состояния единичной частицы, меняется только масштаб. В этом увеличенном масштабе и возникает когерентность, при которой многие удивительные свойств квантовых волновых функций проявляются на макроскопическом уровне.
Первоначально Фрёлих полагал, что такие макроскопические квантовые состояния должны, скорее всего, возникать в клеточных мембранах [55]55
Убежденным сторонником идеи, согласно которой конденсация Бозе—Эйнштейна способна привести к формированию того «отдельного самоощущения», которое можно счесть характерной особенностью сознания, является Иэн Маршалл [ 258], см. также [ 397], [ 398] и [ 243]. Ранее идею глобальных (существенно квантовых) макроскопических когерентных «голографических» процессов в мозге активно поддерживал Карл Прибрам [ 317, 318, 319].
[Закрыть], однако теперь перед нами открывается другая (и, судя по всему, более правдоподобная) возможность: микротрубочки. Причем эта возможность, похоже, подтверждается экспериментально {93} . Еще в 1974 году Хамерофф предположил [ 182], что микротрубочки могут действовать как «диэлектрические волноводы». Хочется верить, что Природа снабдила цитоскелетные структуры пустыми трубками отнюдь не просто так. Возможно, сами трубки обеспечивают эффективную изоляцию, позволяющую квантовому состоянию внутри трубки избегать сцепления с окружением в течение достаточно продолжительного времени. В этой связи интересно отметить, что Эмилио дель Джудиче и его коллеги из Миланского университета утверждали [ 79], что в результате квантового эффекта самофокусировки электромагнитных волн в цитоплазме клетки сигналы сосредотачиваются внутри области, диаметр которой не превышает внутреннего диаметра микротрубочки. Это может послужить еще одним подтверждением волноводной теории, однако возможно также, что этот эффект участвует в собственно образовании микротрубочек.
Тут имеется еще один интересный момент, и связан он с природой воды. Сами трубки, похоже, всегда остаются пустыми – факт сам по себе интересный и, возможно, значимый, особенно если учесть, что мы предполагаем найти внутри этих трубок управляемые условия, благоприятные для некоторого рода коллективных квантовых колебаний. «Пустые» в данном случае означает, что трубки по большей части заполнены просто водой (даже без растворенных в ней ионов). Можно было бы отметить, что «вода» (с характерным для жидкости беспорядочным движением молекул) вряд ли является образцом организованной структуры – во всяком случае достаточно организованной для возникновения в ней квантовокогерентных колебаний. Однако вода, содержащаяся в клетках, совсем не похожа на ту воду, которой заполнены океаны – неупорядоченное скопище несвязных, случайным образом движущихся молекул. Некоторая часть воды в клетках – какая именно часть, вопрос спорный – находится в упорядоченномсостоянии (такую воду иногда называют «вицинальной», см. [ 183], с. 172). Такое упорядоченное состояние воды наблюдается на расстоянии до 3 нм от внешних поверхностей цитоскелета, иногда дальше. Представляется вполне разумным предположить, что вода остается упорядоченной и внутри микротрубочек, а это весьма благоприятствует возможности возникновения в этих трубках квантовокогерентных колебаний. (См., в частности, [ 213]).
Каким бы ни оказался окончательный статус этих захватывающих идей, одно мне совершенно ясно: вероятность того, что полностью классическое описание цитоскелета способно адекватно объяснить его поведение, ничтожно мала. С нейронами дело обстоит иначе, там описания в исключительно классическом духе и в самом деле представляются, по большому счету, вполне допустимыми. В самом деле, при ознакомлении с современными исследованиями цитоскелетных процессов бросается в глаза тот факт, что авторы то и дело прибегают к «помощи» квантовомеханических концепций, и я почти не сомневаюсь, что в будущем эта тенденция только усилится.
Впрочем, ясно также и другое: многие пока еще далеко не убеждены в том, что какие бы то ни было квантовые эффекты могут иметь столь непосредственное отношение к функционированию цитоскелета или мозга вообще. Даже если допустить, что работа микротрубочек и сознательная деятельность мозга суть прямой результат неких существенных эффектов квантовой природы, продемонстрировать эти самые эффекты посредством какого-нибудь убедительного эксперимента отнюдь не просто. Возможно, нам повезет, и удастся приспособить к микротрубочкам некоторые из стандартных процедур, которые применяются сегодня для демонстрации присутствия конденсатов Бозе—Эйнштейна в физических системах – например, при высокотемпературной сверхпроводимости. С другой стороны, может и не повезти – и тогда придется искать какие-то принципиально новые подходы. Возможно, нам удастся показать, что возбуждение микротрубочек предполагает ту же нелокальность, какую мы наблюдаем в ЭПР-феноменах (неравенства Белла и т.д., см. §§5.3, 5.4, 5.17), поскольку классического (локального) объяснения подобных эффектов не существует. Можно, например, выполнить измерения в двух точках одной микротрубочки (или же разных микротрубочек) и получить результат, необъяснимый с точки зрения классической независимости событий в этих двух точках.
Каким бы ни было наше отношение к подобным предположениям, очевидно, что исследования микротрубочек еще даже не вышли из пеленок. И я нисколько не сомневаюсь, что они преподнесут нам в недалеком будущем множество потрясающих сюрпризов.
7.6. Микротрубочки и сознаниеЕсть ли прямые свидетельства того, что феномен сознанияв той или иной мере обусловлен деятельностью цитоскелета и, в частности, его микротрубочек? Как ни странно, есть. Причем получено оно путем обращения к проблеме сознания с неожиданной стороны – с попытки выяснить, что может послужить причиной его отсутствия.
В поисках ответов на вопросы, касающиеся физических основ сознания, важную роль играет исследование причин и способов, весьма избирательно это самое сознание «отключающих». На такое способны, например, препараты для общего наркоза, причем это отключение абсолютно обратимо, главное – не превысить допустимую концентрацию. Замечательно то, что к общему наркозу приводит применение множества самых разных веществ, никак, казалось бы, не связанных друг с другом химически. К таким веществам относятся закись азота (N 2O), эфир (CH 3CH 2OCH 2CH 3), хлороформ (CHCl 3), галотан (CF 3CHClBr), изофлуран (CHF 2OCHClCF 3) и даже химически инертный (!) газ ксенон.
Если за общий наркоз «ответственна» не «химия», то что же тогда? Помимо химических взаимодействий, на молекулы действуют и другие силы, гораздо более слабые – например, так называемые ван-дер-ваальсовысилы. Силы Ван-дер-Ваальса – это слабое притяжение между молекулами, обладающими электрическим дипольным моментом(«электрическим» эквивалентом магнитного дипольного момента, определяющего силу обычного магнита). Вспомним, что димеры тубулина могут находиться в двух различных конформациях. Конформации эти, по всей видимости, обусловлены тем, что в центре димера (в его «безводной» области) имеется электрон, который может занимать одно из двух возможных положений. От положения электрона зависит как общая форма диполя, так и его электрический момент. На способность молекул димера «переключаться» из одной конформации в другую влияют ван-дер-ваальсовы силы притяжения соседних молекул. Было высказано предположение [ 185], что действие анестезирующих веществ основано на ван-дер-ваальсовых взаимодействиях (в «гидрофобных» – водоотталкивающих – областях, см. [ 123]), которые препятствуют нормальным переключениям тубулина. Таким образом, как только анестезирующий газ просачивается в нервную клетку, его электрические дипольные свойства (которые вовсе не обязательно должны находиться в прямой зависимости от его химических свойств) останавливают работу микротрубочек. В общем и целом получается весьма правдоподобная картина действия общего наркоза. Ввиду очевидного отсутствия детального общепринятого описания действия анестетиков, достаточно логичной представляется точка зрения, согласно которой причиной потери сознания является ван-дер-ваальсово воздействие анестезирующих веществ на конформационную динамику белков мозга. Высока вероятность того, что такими белками являются именно димеры тубулина в микротрубочках нейронов – и что к потере сознания приводит именно обусловленное упомянутым воздействием прекращение функционирования микротрубочек.
В поддержку предположения, что общие анестетики воздействуют непосредственно на цитоскелет, отметим, что эти вещества «отключают» не только «высших животных», таких как млекопитающие и птицы. Точно так же (и примерно в тех же концентрациях) действует наркоз на парамеций, амеб и даже на зеленых слизевиков (что наблюдал Клод Бернар еще в 1875 году [ 27]). Подвергаются ли воздействию реснички парамеции или ее центриоль, в любом случае «поражается» какая-либо часть цитоскелета. Если мы допускаем, что поведением такого одноклеточного животного действительно управляет цитоскелет, то, во избежание противоречий, следует допустить и то, что анестезирующие вещества действуют именно на цитоскелет.
Я, разумеется, не утверждаю, что таких одноклеточных животных следует рассматривать как обладающих сознанием. Сознание – это совершенно иное дело. Вполне возможно, что для возникновения сознания, помимодолжным образом функционирующих цитоскелетов, необходима еще куча самых разных вещей. Я сейчас говорю лишь о том, что, согласно вышеприведенным рассуждениям, без работающего цитоскелета ни о каком сознании речь не может идти вообще. При прекращении функционирования системы цитоскелетов сознание мгновенно выключается – столь же мгновенно возвращаясь, как только функции цитоскелета восстанавливаются, при условии, что за прошедшее время не возникло каких-либо повреждений иного рода. Разумеется, нам по-прежнему не дает покоя вопрос, может ли в самом деле обладать некоей зачаточной формой сознания парамеция – или, коли уж на то пошло, отдельно взятая клетка человеческой печени – однако представленных соображений для ответа явно не достаточно. В любом случае, формасознания должна самым фундаментальным образом определяться тонкой нейронной организацией мозга. Более того, если бы от этой организации ничего не зависело, то в нашей печени обитало бы ничуть не худшее сознание, чем в нашем мозге. Тем не менее, как недвусмысленно показывают представленные аргументы, важна не тольконейронная организация мозга. Для наличия сознания жизненно необходима и цитоскелетная «начинка» этих самых нейронов.
Можно предположить, что для возникновения сознания в общем случае важен не сам цитоскелет как таковой, но некая существенная физическая активность, которую хитроумные биологи умудрились разглядеть в микротрубочковых процессах. Что же это за существенная физическая активность? Вся аргументация первой части книги подводила нас, в сущности, к простому выводу: если мы намерены подвести под процесс сознания физический фундамент, то нам понадобится нечто большее, чем численное моделирование. В предыдущих главах второй части мы успели договориться до того, что искать это большее следует на границе между квантовым и классическим уровнями, как раз там, где современная физики предлагает (за неимением лучшего) воспользоваться процедурой R, а я настаиваю на разработке новойфизической теории – теории процедуры OR. В настоящей главе мы попытались отыскать в мозге такое место, где квантовые процессы могли бы определять классическое поведение, и, похоже, пришли к выводу, что этот квантово-классический интерфейс осуществляет фундаментальное воздействие на поведение мозга посредством цитоскелетного управления интенсивностью синоптических связей. Попробуем рассмотреть эту картину более основательно.
7.7. Модель разумаКак уже отмечалось в §7.1, мы вполне можем согласиться с тем, что сами по себе нервные сигналы можно рассматривать как исключительно классические феномены, – особенно если предположить, что такие сигналы настолько возмущают окружение, что квантовая когерентность на этом этапе не может сохраняться сколько-нибудь долго. Допустим далее, что синаптические связи и их интенсивность всегда остаются неизменными; в этом случае воздействие любого возбужденного нейрона на следующий нейрон также поддается классическому описанию – за исключением, впрочем, случайной составляющей, которая появляется на этом этапе. Активность мозга в таких условиях целиком и полностью вычислима, т.е. в принципевозможно построить его численную модель. Это не значит, что такая модель будет в точности имитировать деятельность того конкретного мозга, схема синаптических связей которого совпадает со схемой модели (вследствие наличия упомянутых случайных составляющих), однако модель сможет воспроизвести типичную активность такого мозга и, как следствие, предсказать типичное поведение того или иного индивидуума, этим мозгом управляемого (см. §1.7). Более того, утверждение это носит по большей части чисто принципиальныйхарактер. Ничто не указывает на то, что при современном уровне развития технологий такую численную модель действительно можно построить. Я также предполагаю, что случайные составляющие подлиннослучайны. Возможность привлечения дуалистического внешнего «разума» с целью воздействия на упомянутые случайности здесь не рассматривается вовсе (см. §1.7).
Таким образом, получаем (по крайней мере, предварительно), что при условии постоянствасинаптических связей мозг действительно работает как своего рода компьютер– пусть и со встроенными случайными составляющими. Как мы показали в первой части, в высшей степени невероятно, чтобы такая схема могла когда-либо послужить основой для построения модели человеческого сознательного понимания. С другой стороны, если специфические синаптические связи, определяющие данный конкретный нейронный компьютер, постоянно меняются, а управление этими изменениями возложено на некий невычислимыйпроцесс, то вполне возможно, что такая расширенная модель действительно окажется способна воспроизвести поведение осознающего себя мозга.
Что же это может быть за невычислимый процесс? Здесь следует вспомнить о глобальнойприроде сознания. Если, скажем, взять 10 11независимых цитоскелетов, каждый из которых внесет в общее дело свою невычислимую долю, то пользы от этого нам будет немного. Согласно аргументам первой части, невычислимое поведение и в самом деле неразрывно связано с процессом сознания – по крайней мере, настолько, чтобы можно было определенно утверждать, что некоторыепроявления сознания, прежде всего способность понимать, невычислимы в принципе. Однако это не имеет никакого отношения ни к отдельным цитоскелетам, ни к отдельным микротрубочкам внутри цитоскелета. Никто в здравом уме не станет предполагать, что вот этот цитоскелет или вот та микротрубочка в состоянии хоть что-нибудь «понять» в рассуждениях Гёделя! Понимание работает в гораздо более глобальном масштабе, и если в процессе каким-то образом участвуют цитоскелеты, то этот феномен должен носить коллективный характер, задействуя огромное количество цитоскелетов одновременно.
Согласно Фрёлиху, биологические макроскопические коллективные квантовые феномены – может быть, той же природы, что и конденсат Бозе—Эйнштейна, – определенно возможны, даже внутри «горячего» мозга (см. также [ 258]). Здесь же мы предполагаем, что в относительно «крупных» квантовокогерентных состояниях должны участвовать не только молекулы внутри отдельных микротрубочек – такое состояние должно распространяться от одной микротрубочки к другой. Квантовая когерентность должна не просто «охватить» одну-единственную микротрубочку (пусть и, как мы помним, весьма протяженную), но перейти дальше, в результате чего большое количество различных микротрубочек в цитоскелете нейрона – если не все – должны образовать единое квантовокогерентное состояние. Мало того, квантовая когерентность должна преодолеть «синаптический барьер» между «своим» нейроном и следующим. Не много проку в глобальности, которая разбросана по изолированным друг от друга клеткам! Самостоятельная единица сознания может возникнуть, в нашем описании, лишь тогда, когда квантовая когерентность в том или ином виде получает возможность распространяться на некую существенную (по меньшей мере) часть всего мозга.
И вот такое вот поразительное – я бы даже сказал, почти невероятное – устройство Природе пришлось создавать с помощью одних лишь биологических средств. Я, впрочем, убежден (и не без оснований), что у нее таки все получилось, и главным свидетельством тому может служить факт наличия у нас разума. Нам еше многое предстоит понять в биологических системах и в том, как они творят свои чудеса – многое в биологии далеко превосходит возможности современных физических технологий. (Взять, к примеру, крохотного, в миллиметр величиной, паучка, искусно плетущего замысловатую паутину.) Вспомним и об экспериментах Аспекта (см. §5.4), в которых наблюдались (с помощью вполне физическихустройств) кое-какие квантовокогерентные эффекты (ЭПР-сцепленность пар фотонов), действующие на расстоянии нескольких метров. Несмотря на технические трудности, связанные с проведением экспериментов, позволяющих обнаружить такие «дальнодействующие» квантовые эффекты, не следует исключать возможность, что Природа смогла отыскать биологические способы как для этого, так и для чего-нибудь еще. Присущую жизни «изобретательность» нельзя недооценивать.
Как бы то ни было, представляемые мною аргументы предполагают не только макроскопическую квантовую когерентность. Они предполагают, что биологическая система, называемая человеческим мозгом, каким-то образом ухитрилась воспользоваться в своих интересах физическими феноменами, человеческой же физике неизвестными! Эти феномены когда-нибудь опишет несуществующая пока теория OR, которая свяжет вместе классический и квантовый уровни и, я убежден, заменит временную R-процедуру иной, чрезвычайно тонкой и невычислимой (но все же, несомненно, математической) физической схемой.
То, что физики-люди, по большей части, пока еще ничего не знают о вышеупомянутой несуществующей теории, разумеется, не может заставить Природу отказаться от ее применения в своих биологических построениях. Она пользовалась принципами ньютоновской динамики задолго до Ньютона, электромагнитными феноменами задолго до Максвелла и квантовой механикой задолго до Планка, Эйнштейна, Бора, Гейзенберга, Шрёдингера и Дирака – в течение нескольких миллиардов лет! Лишь по причине свойственной нашему веку нелепой самонадеянности столь многие сегодня пребывают в уверенности, что нам известны все фундаментальные принципы, лежащие в основе каких угодно тонких биологических процессов. Когда какой-нибудь живой организм по счастливой случайности натыкается на такой тонкий процесс, он начинает его активно применять и, возможно, получает в результате некие преимущества перед своими менее удачливыми соседями. Тогда Природа благословляет этот организм вместе со всеми его потомками и позволяет новому тонкому физическому процессу сохраниться в последующих поколениях – посредством, например, такого мощного инструмента, как естественный отбор.
Когда появились первые эукариотические клетки-животные, они, должно быть, обнаружили, что наличие у них примитивных микротрубочек дает им огромные преимущества. В результате возникло (посредством тех самых процессов, о которых мы здесь говорим) некое организующее воздействие, которое, возможно, привело к развитию зачатков способности к своего рода целенаправленному поведению, что помогло им выжить и вытеснить лишенных микротрубочек конкурентов. Называть такое воздействие «разумом», конечно же, еще рано; и все же оно возникло, как я полагаю, благодаря некоему тонкому пограничному взаимодействию между квантовыми и классическими процессами. Тонкостью же своей это взаимодействие обязано хитроумному физическому процессу OR– по-прежнему в подробностях нам неизвестному, – который в условиях не столь тонкой организации принимает вид того грубого квантовомеханического R-процесса, которым мы пока за неимением лучшего пользуемся. Далекие потомки тех клеток-животных – нынешние парамеции и амебы, а также муравьи, лягушки, цветы, деревья и люди – сохранили преимущества, которыми этот хитроумный процесс одарил древних эукариотов, и добавили новые, отвечающие новым многочисленным и самым разнообразным целям. Только будучи наложен на высокоразвитую нервную систему, этот процесс оказался, наконец, в состоянии реализовать свой гигантский потенциал – дав начало тому, что мы, теперь уже с полным правом, называем «разумом».
Итак, мы допускаем, что в глобальной квантовой когерентности может участвовать вся совокупность микротрубочек в цитоскелетах большого семейства нейронов мозга – или, по крайней мере, что между состояниями различных микротрубочек в мозге наличествует достаточная квантовая сцепленность, – т.е. полностью классическоеописание коллективного поведения этих микротрубочек невозможно. Можно представить, что в микротрубочках возникают сложные «квантовые колебания» – там, где изоляции, обеспечиваемой самими трубками, достаточно для того, чтобы квантовая когерентность сохранялась хотя бы частично. Велик соблазн предположить, что «клеточноавтоматные» вычисления, которые, по мнению Хамероффа и его коллег, должны выполняться на поверхноститрубок, могут оказаться связанными с предполагаемыми квантовыми колебаниями внутритрубок (например, теми, что описаны в [ 79] или в [ 213]).
Заметим в этой связи, что частота, предсказанная Фрёлихом для коллективных квантовых колебаний (и подтвержденная наблюдениями Грундлера и Кайльмана [ 177]) – порядка 5 × 10 10Гц (т.е. 5 × 10 10колебаний в секунду), – практически совпадает с частотой, с которой, по Хамероффу, димеры тубулина в мнкротрубочковых клеточных автоматах «переключаются» из одного состояния в другое. Таким образом, если внутри микротрубочек и в самом деле работает фрёлихов механизм, то следует признать, что какая-то связь между этими двумя типами активности действительно имеется [56]56
Гораздо менее понятно, впрочем, существует ли сколько-нибудь прямая связь между упомянутыми сравнительно высокочастотными процессами и более привычной «волновой» активностью мозга (например, альфа-ритмом с частотой 8-12 ГЦ). Предполагается лишь, что такие низкие частоты могут возникать как «частоты биений», однако никакой связи пока не установлено. Особо примечательными в этой связи представляются не так давно обнаруженные колебания с частотой 35-75 Гц, ассоциирующиеся, по-видимому, с областями мозга, ответственными за сознательное внимание. Колебания эти, похоже, обладают какими-то загадочными нелокальными свойствами. (См. [ 107], [ 167], [ 64], [ 65] и [ 63]).
[Закрыть].
Впрочем, если бы такая связь была слишком сильной, то квантовый характер внутренних колебаний неизбежно означал бы, что и вычисления на поверхности самих трубок необходимо рассматривать квантовомеханически. Иначе говоря, на поверхности микротрубочек происходили бы самые настоящие квантовые вычисления(см. §7.3)! Следует ли воспринимать такую возможность всерьез?
Трудность заключается в том, что для таких вычислений, по-видимому, необходимо, чтобы изменения конформаций димеров не возмущали сколько-нибудь заметным образом молекулы окружения. Здесь уместно вспомнить о том, что окружающая микротрубочку область заполнена водой в упорядоченномсостоянии, прочие же вещества в эту область не допускаются (см. [ 183], с. 172), что в совокупности может обеспечить некоторое квантовое экранирование. С другой стороны, микротрубочки соединены друг с другом «мостиками» MAP (см. §7.4) – причем по некоторым из них производится транспорт разных «посторонних» молекул, – и передача сигналов вдоль трубок (см. [ 183], с. 122) не может на эти мостики не воздействовать. Из этого последнего факта вполне недвусмысленно следует, что «вычисления», которыми занята трубка, могут и в самом деле возмутить окружение до такой степени, что их поневоле придется рассматривать классически. Интенсивность возмущения невелика ввиду малости перемещаемых масс (по OR-критерию, предложенному в §6.12), однако для того, чтобы вся система продолжала оставаться на квантовом уровне, необходимо, чтобы эти возмущения не проникали внутрь клетки и не распространялись далее, за ее пределы. На мой взгляд, неопределенности здесь (как в отношении реальной физической ситуации, так и в отношении применимости к ней критерия ORиз §6.12) остается вполне достаточно для того, чтобы помешать нам решить, уместен на данном этапе чисто классический подход или нет.
Как бы то ни было, предположим, в рамках настоящего рассуждения, что микротрубочковые вычисления следует рассматривать как существенно классические – в том смысле, что мы не ожидаем, что квантовые суперпозиции различных вычислений играют здесь сколько-нибудь значимую роль. С другой стороны, допустим, что внутритрубок имеют место подлинно квантовые колебания некоего рода, причем между внутренними квантовыми и внешними классическими свойствами каждой трубки существует некая тонкая связь. Согласно такой картине, именно в этом тонком взаимодействии существенно проявляются неизвестные пока правила искомой новой теории OR. Внутренние квантовые «колебания» должны определенным образом воздействовать на внешние вычисления на трубках, однако в этом нет ничего нелогичного – учитывая те механизмы, которые, как мы предполагаем, ответственны за клеточноавтоматное поведение микротрубочек (слабые взаимодействия ван-дер-ваальсова типа между соседними димерами тубулина).
В результате мы получаем картину некоего глобального квантового состояния, которое когерентно объединяет процессы внутри трубок и в котором участвует вся совокупность микротрубочек в той или иной обширной области мозга. Это состояние (которое вовсе не обязательно является просто «квантовым состоянием» в том традиционном смысле, который вкладывает в это понятие стандартный квантовый формализм) также некоторым образом воздействует на вычисления, выполняемые на микротрубочках, – для точного описания такого воздействия понадобится гипотетическая невычислимая OR-физика, которой у нас пока нет, но которая, я убежден, нам крайне необходима. «Вычислительная» активность конформационных изменений молекул тубулина управляет транспортом молекул вдоль наружной поверхности микротрубочек (см. рис. 7.13) и в конечном итоге воздействует на интенсивность синапса в его пре– и постсинаптических окончаниях. Таким образом, через посредство внешнихвычислений, когерентная квантовая организация внутри микротрубочек способна влиять на изменения в синаптических связях нейронного компьютера в текущий момент.