Текст книги "Тени разума. В поисках науки о сознании"
Автор книги: Роджер Пенроуз
Жанр:
Философия
сообщить о нарушении
Текущая страница: 36 (всего у книги 49 страниц)
В заключение, думаю, следует упомянуть о том, что существует и множество иных подходов к квантовой механике, которые хоть и не противоречат предсказаниям традиционной теории в принципе, но все же дают «картины реальности», так или иначе отличные от той реальности, где вектор состояния | ψ〉 «принимают всерьез», полагая, что он эту реальность и представляет. Среди них – пилотно-волноваятеория Луи де Бройля [ 77] и Дэвида Бома [ 33], нелокальная теория, согласно которой существуют объекты, эквивалентные одновременно волновым функциям исистемам классических частиц, причем и те, и другиеполагаются в данной теории «реальными». (См. также [ 34].) Другие точки зрения (вдохновленные Ричардом Фейнманом и его подходом к квантовой теории [ 118]) оперируют целыми «историями» возможного поведения – согласно этим точкам зрения, истинная картина «физической реальности» несколько отличается от той, которую дает обыкновенный вектор состояния | ψ〉. Аналогичной общей позиции, которая, впрочем, учитывает еще и возможность, по сути, многократных частичных измерений (в соответствии с анализом, предпринятым в [ 4]), придерживаются авторы работ [ 174], [ 279] и [ 141]. Было бы неуместно, как мне кажется, углубляться здесь в обсуждение этих разнообразных альтернативных точек зрения (хотя следует все же упомянуть о том, что формализм матриц плотности, который вводится в следующем параграфе, играет в некоторых из этих теоретических построений не последнюю роль – как и в операторном подходе Хаага [ 179]). Скажу лишь, что, хотя многое в этих процедурах представляет значительный интерес и обладает некоторой вдохновляющей оригинальностью, я все же совершенно не убежден, что с их помощью можно действительно решить проблему измерения. Разумеется, я могу и ошибаться, но это покажет лишь время.
6.4. Матрица плотностиМногие физики, полагая себя людьми практичными, вопросами «реальности» вектора | ψ〉 не интересуются. От | ψ〉 им нужно лишь одно – возможность вычислять с его помощью вероятности того или иного дальнейшего физического поведения объекта. Часто бывает так, что состояние, выбранное изначально для представления физической ситуации, приобретает под действием эволюции чрезвычайную сложность, а его сцепленности с элементами окружения становятся настолько запутанными, что на практике совершенно невозможно проследить за эффектами квантовой интерференции, отличающими такое состояние от множества других ему подобных. Все уверения в том, что явившийся результатом данной конкретной эволюции вектор состояния сколько-нибудь более реален, нежели прочие, на практике от него неотличимые, наши «практичные» физики, без сомнения, сочтут абсолютно лишенными смысла. В самом деле, скажут они, любой отдельныйвектор состояния, пригодный для описания «реальности», всегда можно заменить подходящей вероятностной комбинациейвекторов состояния. Если применение процедуры Uк некоему вектору состояния, представляющему начальное состояние системы, дает результат, с практической точки зрения(FAPP-подход Белла) неотличимый от того, что был бы получен с помощью такой вот вероятностной комбинации векторов состояния, то вероятностная комбинация достаточно хороша для описания мира и отыскивать U-эволюционировавший вектор состояния нужды нет.
Часто утверждают, что с такими же мерками можно подходить и к процедуре R– по крайней мере, на практике (все тот же FAPP). Двумя параграфами ниже мы попытаемся найти ответ на вопрос, можно ли в самом деле разрешить кажущийся U/ R-парадокс одними лишь этими методами. Однако прежде я хотел бы рассказать подробнее о процедурах, принятых в стандартных FAPP-подходах к объяснению R-процесса (реального или кажущегося).
Ключевым в этих процедурах является математический объект, называемый матрицей плотности. Понятие матрицы плотности играет в квантовой теории весьма важную роль, и именно она, а не вектор состояния, лежит в основе большинства стандартных математических описаний процесса измерения. Центральную роль отводит матрице плотности и мой, менее традиционный, подход, особенно в том, что касается ее связи со стандартными FAPP-процедурами. По этой причине нам, к сожалению, придется углубиться в математический формализм квантовой теории несколько далее, нежели было необходимо прежде. Надеюсь, что читателя-неспециалиста такая перспектива не отпугнет. Даже при отсутствии полного понимания, мне думается, любому читателю будет полезно хотя бы бегло просматривать математические рассуждения по мере их появления – несомненно, со временем придет и осмысление. Это стало бы существенным подспорьем для понимания некоторых из дальнейших аргументов и тонкостей, сопровождающих поиски ответа на вопрос, почему нам действительно и насущно необходима усовершенствованная теория квантовой механики.
В отличие от отдельного единичного вектора состояния, матрицу плотности можно рассматривать как представление комбинации вероятностей нескольких возможных альтернативныхвекторов состояния. Говоря о «комбинации вероятностей», мы подразумеваем лишь, что существует некоторая неопределенность в отношении действительного состояния системы, при этом каждому из возможных альтернативных векторов состояния поставлена в соответствие некоторая вероятность – самая обычная классическая вероятность, выраженная самым обычным вещественным числом. Однако матрица плотности вносит в это описание некоторую путаницу (заложенную изначально), поскольку не отличает классическиевероятности, фигурирующие в вышеупомянутой взвешенной вероятностной комбинации, от вероятностей квантовомеханических, возникающих в результате процедуры R. Дело в том, что операционными методами различить эти вероятности невозможно, поэтому в операционном же смысле вполне уместным представляется математическое описание (матрица плотности), которое такого различия неделает.
Как выглядит это математическое описание? Я не стану углубляться в ненужные здесь подробности, лишь вкратце изложу основные концепции. Идея матрицы плотности, вообще говоря, весьма изящна [43]43
Эта идея была предложена в 1932 году выдающимся венгерско-американским математиком Джоном фон Нейманом. Ему же, главным образом, мы обязаны теорией, опиравшейся на первопроходческие труды Алана Тьюринга и положившей начало развитию электронных компьютеров. Кроме того, фон Нейман стоял у истоков теории игр (см. ссылку в примечании {46}) и, что ближе к теме нашего разговора, первым четко определил две квантовые процедуры, которые я обозначил здесь буквами « U» и « R».
[Закрыть]. Начать с того, что вместо каждого отдельного состояния | ψ〉 мы используем объект вида
| ψ〉〈 ψ|.
Что означает такая запись? Не прибегая к точному математическому определению, которое для нас сейчас несущественно, можно сказать, что это выражение представляет собой особого рода «произведение» (точнее, вид тензорного произведения, см. §5.15) вектора состояния | ψ〉 и «комплексно сопряженного» ему вектора 〈 ψ|. Вектор состояния | ψ〉 мы полагаем нормированным(т.е. 〈 ψ|ψ〉 = 1); тогда выражение | ψ〉〈 ψ|однозначно определяется физическим состоянием, представленным вектором | ψ〉 (поскольку не зависит от изменений фазового множителя | ψ〉 ↣ e iθ| ψ〉, см. §5.10). В системе обозначений Дирака исходный вектор | ψ〉 называется «кет»-вектором, а соответствующий ему 〈 ψ|– «бра»-вектором. Бра-вектор 〈 ψ|и кет-вектор | φ〉 могут образовывать и скалярное произведение («bra-ket» [44]44
Созвучно английскому bracket«скобка». – Прим. перев.
[Закрыть]):
〈 ψ|φ〉,
с таким обозначением мы уже встречались в §5.12. Значением скалярного произведения является самое обычное комплексное число, тогда как тензорное произведение | ψ〉〈 φ| в матрице плотности дает более сложный математический «объект» – элемент некоторого векторного пространства.
Перейти от непонятного «объекта» к обычному комплексному числу позволяет особая математическая операция, называемая вычислением следа(или суммы элементов главной диагонали) матрицы. Для простого выражения | ψ〉〈 φ| эта операция сводится к простой перестановке членов, дающей в результате скалярное произведение:
СЛЕД(| ψ〉〈 φ|) = 〈 φ| ψ〉.
В случае суммы членов «след» вычисляется линейно: например,
СЛЕД ( z| ψ〉〈 φ| + w| α〉〈 β|) = z〈 φ| ψ〉 + w〈 β| α〉.
Я не стану в подробностях выводить все математические свойства таких объектов, как 〈 ψ|и | ψ〉〈 φ|, однако кое о чем упомянуть стоит. Во-первых, произведение | ψ〉〈 φ| подчиняется тем же алгебраическим правилам, что перечислены в §5.15для произведения |ψ〉 |φ〉 (за исключением последнего, которое к данному случаю неприменимо):
( z|ψ〉)〈 φ| = z( |ψ〉〈 φ|) = |ψ〉( z〈 φ|),
( |ψ〉 + |χ〉)〈 φ| = |ψ〉〈 φ| + |χ〉〈 φ|,
|ψ〉(〈 φ| + 〈 χ|) = |ψ〉〈 φ| + |ψ〉〈 χ|.
Следует также отметить, что бра-вектор z'〈 ψ|является комплексным сопряженным кет-вектора z|ψ〉 (поскольку число z' есть комплексное сопряженное комплексного числа z, см. §5.8), а сумма 〈 ψ|+ 〈 χ|– комплексным сопряженным суммы |ψ〉 + |χ〉.
Допустим, нам нужно составить матрицу плотности, представляющую некоторую комбинацию вероятностей нормированных состояний, скажем, | α〉 и | β〉; вероятности, соответственно, равны aи b. Правильная матрица плотности в данном случае будет иметь вид
D = a| α〉〈 α|+ b| β〉〈 β|.
Для трех нормированных состояний | α〉, | β〉, | γ〉 с соответствующими вероятностями a, b, cимеем
D = a| α〉〈 α|+ b| β〉〈 β| + c| γ〉〈 γ|,
и так далее. Из того, что вероятности всех альтернативных вариантов должны в сумме давать единицу, можно вывести важное свойство, справедливое для любой матрицы плотности:
СЛЕД( D ) = 1.
Как же использовать матрицу плотности для вычисления вероятностей, результатов измерения? Рассмотрим сначала простой случай примитивного измерения. Спросим, находится ли система в физическом состоянии |ψ〉 ( ДА) или в ином состоянии, ортогональном |ψ〉 ( НЕТ). Само измерение представляет собой математический объект (так называемый проектор), очень похожий на матрицу плотности:
E = |ψ〉〈 ψ|.
Вероятность pполучения ответа ДАопределяется из выражения
p = СЛЕД( DE ),
где произведение DE само представляет собой объект, подобный матрице плотности. Оно вычисляется с помощью несложных алгебраических правил, необходимо лишь соблюдать порядок «умножений». Например, для вышеприведенной двучленной суммы D = a| α〉〈 α|+ b| β〉〈 β| имеем
DE = ( a| α〉〈 α|+ b| β〉〈 β|) |ψ〉〈 ψ|= a| α〉〈 α|ψ〉〈 ψ|+ b| β〉〈 β| ψ〉〈 ψ|= ( a〈 α|ψ〉)| α〉〈 ψ|+ ( b〈 β| ψ〉)| β〉〈 ψ|.
Члены 〈 α|ψ〉 и 〈 β| ψ〉 могут «коммутировать» с другими выражениями, так как они представляют собой просто числа, порядок же таких «объектов», как | α〉 и 〈 ψ|необходимо тщательно соблюдать. Далее получаем (учитывая, что zz' = | z 2|, см. §5.8)
СЛЕД( DE ) = ( a〈 α|ψ〉)〈 ψ|α〉 + ( b〈 β| ψ〉)〈 ψ|β〉 = a|〈 α|ψ〉| 2+ b|〈 β| ψ〉| 2.
Напомню (см. §5.13), что величины |〈 α|ψ〉| 2и |〈 β| ψ〉| 2представляют собой квантовыевероятности соответствующих конечных состояний |α〉 и |β〉, тогда как aи bсуть классическиевклады в полную вероятность. Таким образом, в окончательном выражении квантовые и классические вероятности оказываются смешаны.
В случае более общего измерения типа «да/нет» рассуждение в целом не изменяется, только вместо определенного выше проектора «£» используется проектор более общего вида
E = |ψ〉〈 ψ|+ |φ〉〈 φ|+ … + |χ〉〈 χ|,
где |ψ〉, |φ〉, …, |χ〉 – взаимно ортогональные нормированные состояния, заполняющие пространство ДА-состояний в гильбертовом пространстве. Как мы видим, проекторы обладают общим свойством
E 2= E .
Вероятность получения ответа ДАпри измерении, определяемом проектором E , системы с матрицей плотности D равна следу ( DE ) – в точности, как и в предыдущем примере.
Отметим важный факт: искомую вероятность можно вычислить, если нам всего-навсего известны матрица плотности и проектор, описывающий измерение. Нам не нужно знать, каким именно образом из индивидуальных состояний была составлена матрица плотности. Полная вероятность получается сама собой в виде соответствующей комбинации классических и квантовых вероятностей, а нам не приходится беспокоиться, какая ее часть откуда взялась.
Рассмотрим повнимательнее это любопытное переплетение классических и квантовых вероятностей в матрице плотности. Допустим, например, что у нас имеется частица со спином 1/2, и мы абсолютно не уверены, в каком спиновом состоянии (нормированном) она в данный момент пребывает – |↑〉 или |↓〉. Предположив, что соответствующие вероятности этих состояний равны 1/2 и 1/2, построим матрицу плотности
D = 1/2 |↑〉〈↑ |+ 1/2 |↓〉〈↓ |.
Простое вычисление показывает, что в точности такая же матрица плотности D получается в случае комбинации равных вероятностей (1/2 и 1/2) любых других ортогональных возможностей – скажем, состояний (нормированных) |→〉 и |←〉, где |→〉 = ( |↑〉 + |↓〉)/√2 = ( |↑〉 – |↓〉)/√2:
D = 1/2 |→〉〈→ |+ 1/2 |←〉〈← |.
Допустим, мы решили измерять спин частицы в направлении «вверх», т.е. соответствующий проектор имеет вид
E = |↑〉〈↓ |.
Тогда для вероятности получения ответа ДА, согласно первому описанию, находим
СЛЕД( DE ) = 1/2 |〈↑ |↑〉| 2+ 1/2 |〈↓|↑〉| 2= 1/2 × 1 2+ 1/2 × 0 2= 1/2,
где мы полагаем 〈↑ |↑〉 = 1 и 〈↓|↑〉 = 0 (поскольку состояния нормированы и ортогональны). Согласно второму описанию, находим
СЛЕД( DE ) = 1/2 |〈→ |↑〉| 2+ 1/2 |〈←|↑〉| 2= 1/2 × (1/√2) 2+ 1/2 × (1/√2) 2= 1/4 + 1/4 = 1/2;
правое |→〉 и левое |←〉 состояния здесь не являются ни ортогональными, ни параллельными измеряемому состоянию |↑〉, т.е. на деле |〈→ |↑〉| = |〈←|↑〉| = 1/√2.
Хотя полученные вероятности оказываются одинаковыми (как, собственно, и должно быть, поскольку одинаковы матрицы плотности), физические интерпретации этих двух описаний совершенно различны. Мы согласны с тем, что физическая «реальность» любой ситуации описывается некоторымвполне определенным вектором состояния, однако существует классическая неопределенность в отношении того, каким окажется этот вектор в действительности. В первом предложенном описании атом находится либо в состоянии |↑〉, либо в состоянии |↓〉, и мы не знаем, в каком из двух. Во втором описании – либо в состоянии |→〉, либо в состоянии |←〉, и мы снова не знаем, в каком именно. Когда мы в первом случае выполняем измерение с целью выяснить, не находится ли атом в состоянии |↑〉, мы имеем дело с самыми обычными классическими вероятностями: вероятность того, что атом находится в состоянии |↑〉, совершенно очевидно равна 1/2, и больше тут говорить не о чем. Когда мы задаем тот же вопрос во втором случае, измерению подвергается уже комбинация вероятностей состояний |→〉 и |←〉, и каждое из них вносит в полную вероятность свой классический вклад 1/2 помноженный на свои же квантовомеханический вклад 1/2, что дает в итоге 1/4 + 1/4 = 1/2. Как можно видеть, матрица плотности ухитряется сосчитать нам верную вероятность вне зависимости оттого, какие классические и квантовомеханические доли эту вероятность, по нашему предположению, составляют.
Приведенный выше пример является в некотором роде особым, поскольку так называемые «собственные значения» матрицы плотности в этом случае оказываются вырожденными (в силу того, что обе классические вероятности здесь – 1/2 и 1/2 – одинаковы); именно эта «особость» и позволяет нам составить более одного описания в комбинациях вероятностей ортогональных альтернатив. Впрочем, для наших рассуждений это ограничение несущественно. (А упомянул я о нем исключительно для того, чтобы избежать упреков в невежестве со стороны возможно читающих эти строки специалистов.) Всегда можно представить, что комбинация вероятностей охватывает гораздо большее число состояний, нежели просто набор взаимно ортогональных альтернатив. Например, в вышеописанной ситуации мы вполне могли бы составить очень сложные вероятностные комбинации множества возможных различных направлений оси спина. Иначе говоря, существует огромное количество совершенно различных способов представить одну и ту же матрицу плотности в виде комбинации вероятностей альтернативных состояний, и это верно для любыхматриц плотности, а не только для тех, собственные значения которых вырожденны.
6.5. Матрицы плотности для ЭПР-парПерейдем к ситуациям, описание которых в терминах матриц плотности представляется особенно уместным – и в то же время выявляет один почти парадоксальный аспект интерпретации такой матрицы. Речь идет об ЭПР-эффектах и квантовой сцепленности. Рассмотрим физическую ситуацию, описанную в §5.17: частица со спином 0 (в состоянии | Ω〉) расщепляется на две частицы (каждая со спином 1/2), которые разлетаются вправо и влево, удаляясь на значительное расстояние друг от друга, в результате чего выражение для их совокупного (сцепленного) состояния принимает вид:
| Ω〉 = | L↑〉| R↓〉 – | L↓〉| R↑〉.
Предположим, что некий наблюдатель [45]45
См. обращение к читателю в начале книги.
[Закрыть]имеет намерение измерить спин правой частицы с помощью некоего измерительного устройства, левая же частица успела уже удалиться на такое огромное расстояние, что добраться до нее наблюдатель не может. Как наш наблюдатель опишет состояние спина правой частицы?
Скорее всего, он весьма благоразумно воспользуется матрицей плотности
D = 1/2 | R↑〉〈 R↑ |+ 1/2 | R↓〉〈 R↓ |,
поскольку ничто не мешает ему вообразить, что некий другой наблюдатель – скажем, коллега, по случаю оказавшийся неподалеку от левой частицы, – решил измерить спин этой левой частицы в направлении «вверх/вниз». Узнать, какой именно результат получил упомянутый воображаемый коллега, нашему наблюдателю неоткуда. Однако он знает, что если коллега получил результат | L↑〉, то его собственная (правая) частица должна находиться в состоянии | R↓〉, если же коллега получил при измерении состояние | L↓〉, то правая частица должна находиться в состоянии | R↑〉. Нашему наблюдателю также известно (из стандартных правил квантовой теории, касающихся вероятностей, какие можно ожидать в данной ситуации), что воображаемый коллега может получить с равной вероятностью как результат | L↑〉, так и результат | L↓〉. Из всего этого наблюдатель заключает, что состояние его собственной частицы описывается комбинацией равных вероятностей (1/2 и 1/2 соответственно) двух альтернатив, | R↑〉 и | R↓〉, так что матрица плотности D с его стороны действительно должна быть такой, какую мы только что записали.
Он, впрочем, может предположить, что его коллега производил измерение левой частицы в направлении «влево/вправо». В этом случае совершенно аналогичное вышеизложенному рассуждение (на сей раз опирающееся на альтернативное описание | Ω〉 = | L←〉| R→〉 – | L→〉| R←〉, см. §5.17) приведет нашего наблюдателя к заключению, что спиновое состояние его собственной (правой) частицы описывается комбинацией равных вероятностей направлений оси спина «влево» и «вправо», а соответствующая матрица плотности имеет вид
D = 1/2 |→〉〈→ |+ 1/2 |←〉〈← |.
Как мы уже видели, эти матрицы плотности в точности одинаковы, однако их интерпретации– как комбинаций вероятностей альтернативных состояний – существенно различаются. Совершенно не важно, какую именно интерпретацию выберет наблюдатель. Из своей матрицы плотности он получит всю возможную информацию, требуемую для вычисления вероятностей результатов измерений спина правой (и только правой) частицы. Более того, поскольку коллега является воображаемым, нашего наблюдателя вообще не должно волновать, выполнялось ли хоть какое-то измерение спина левой частицы. Все та же матрица плотности D скажет ему все, что можно узнать о состоянии спина правой частицы до того, как он действительно выполнит измерение. В самом деле, уж наверное матрица плотности D определит «действительное состояние» правой частицы с гораздо большей точностью, нежели какой бы то ни было отдельный вектор состояния.
Руководствуясь подобными общими соображениями, люди порой приходят к выводу, что в определенных ситуациях матрицы плотности дают более адекватное описание квантовой «реальности», чем векторы состояния. Однако в ситуациях, подобных рассматриваемой, это не так. Ничто в принципе не мешает воображаемому коллеге превратиться в коллегу реального, а двум наблюдателям – передать друг другу результаты своих наблюдений. Корреляции между измерениями, выполненными одним наблюдателем, и измерениями, выполненными другим, невозможно объяснить отдельными матрицами плотности, описывающими каждая свою частицу. Для такого объяснения необходимо все сцепленное состояние целиком, в том виде, в каком оно представлено выше выражением для действительного вектора состояния | Ω〉.
Например, если оба наблюдателя решат измерять спины своих частиц в направлении «вверх/вниз», то они неизбежно должны получить диаметрально противоположные результаты. Индивидуальные матрицы плотности такой информации не содержат. Еще более серьезное возражение: как недвусмысленно показывает теорема Белла ( §5.4), моделировать сцепленное состояние связанной пары частиц какими бы то ни было локальными классическими методами (вроде «носков Бертлмана») до измерения невозможно. (Простая демонстрация этого факта приводится в НРК, примечание 14 после шестой главы, с. 301 – идея этой демонстрации, вообще говоря, принадлежит Стаппу [ 359], см. также [ 360]. Описан случай, когда один из наблюдателей измеряет спин своей частицы в вертикальном, «вверх/вниз», или горизонтальном, «вправо/влево», направлении, тогда как другой выбирает для измерения одно из направлений под углом в 45° к тем двум. Если заменить частицы со спином 1/2 частицами со спином 3/2, то такую демонстрацию можно сделать еще более убедительной, воспользовавшись магическими додекаэдрами из §5.3, так как при этом нам не понадобятся вероятности.)
Таким образом, в данной ситуации «матричное» описание может быть признано адекватным «реальности», только если имеется какая-либо причина, в принципене позволяющая выполнить (и сравнить) измерения на обоих концах системы. В обычных условиях таких причин, как правило, не существует. В условиях необычных – например, в ситуации, предложенной Стивеном Хокингом [ 191], где одна из частиц ЭПР-пары оказывается заключенной внутрь черной дыры, – могут появиться и более серьезные доводы в пользу матричного описания на фундаментальном уровне (что, собственно, и доказывает Хокинг). Однако такие доводы сами по себе предполагают некий серьезный пересмотр самих основ квантовой теории. Пока такого пересмотра не произошло, существенная роль матрицы плотности остается скорее практической (FAPP), нежели фундаментальной – что, впрочем, отнюдь не уменьшает ее важности.