Текст книги "Тени разума. В поисках науки о сознании"
Автор книги: Роджер Пенроуз
Жанр:
Философия
сообщить о нарушении
Текущая страница: 32 (всего у книги 49 страниц)
Еще более наглядным примером такого рода является квантовомеханическая концепция положениячастицы в пространстве. Выше мы говорили о том, что состояние частицы может включать в себя суперпозицию двух или более различных ее положений. (Вспомним также и о примерах из §5.7, где после прохождения полупрозрачного зеркала фотон оказывается в состоянии, предполагающем его нахождение в двух различных лучах одновременно.) Такие суперпозиции возможны и в случае любых других типов частиц (как простых, так и составных) – электронов, протонов, атомов или молекул. Более того, в части Uформализма квантовой теории нет ничего, что запрещало бы оказаться в двусмысленном состоянии суперпозиции положений макроскопическим объектам вроде бильярдных шаров. Однако никто ни разу не видел бильярдный шар в состоянии суперпозиции нескольких положений одновременно, равно как никто не видел и бильярдный шар, вращающийся одновременно вокруг нескольких осей. Почему получается так, что некоторые физические объекты оказываются слишком большими, или слишком массивными, или слишком какими-то еще для того, чтобы «протиснуться» на квантовый уровень, вследствие чего не могут в реальном мире находиться в какой бы то ни было суперпозиции состояний? В стандартной квантовой теории переход от квантовых суперпозиций возможных альтернатив к единственному действительному классическому результату осуществляется исключительно благодаря действию процедуры R. Действие же одной лишь процедуры Uпрактически неизбежно приводит к таким классическим суперпозициям, которые выглядят, мягко говоря, «неестественно». (К этому вопросу я еще вернусь в §6.1.)
На квантовом же уровне те состояния частицы, в которых она не имеет четко определенного положения, могут играть, ни много ни мало, фундаментальную роль: если частица обладает определенным количеством движения(т.е. движется по некоторой определенной траектории в определенном направлении, а не в суперпозиции нескольких разных направлений одновременно), то в состоянии этой частицы непременно должна присутствовать суперпозиция всех ее различных положенийодновременно. (Это одно из свойств уравнения Шрёдингера, и для должного объяснения этого свойства потребовалось бы слишком далеко углубиться в технические детали, что нам сейчас совсем не нужно; см., например, НРК, с. 243-250, а также [ 94] и [ 70]. Оно, кроме того, тесно связано с принципом неопределенностиГейзенберга, устанавливающим предел точности для одновременного измерения положения частицы и ее количества движения.) Более того, в состояниях с определенным количеством движения частицы демонстрируют колебательное (в направлении движения) пространственное поведение, чего при обсуждении состояний фотонов в §5.7мы не учитывали. Строго говоря, термин «колебательное» здесь не совсем подходит. Как выясняется, упомянутые «колебания» отнюдь не похожи на колебания, скажем, струны – комплексные весовые коэффициенты не «мечутся» взад и вперед сквозь начало координат на комплексной плоскости, но, будучи чистыми фазами (см. рис. 5.18), движутся вокруг начала координат с постоянной скоростью, причем эта самая скорость задает частоту v, пропорциональную энергии Eчастицы в соответствии со знаменитой формулой Планка E= hv. (Графическое представление состояний количества движения в виде этакого «штопора» можно найти в НРК, рис. 6.11.) Все эти вещи, хоть они и важны для квантовой теории, в наших дальнейших рассуждениях особой роли не играют, поэтому читатель вполне может обойтись и без детального их изучения.
В общем случае комплексные весовые коэффициенты вовсе не обязательно должны иметь именно такой «колебательный» вид, они могут изменяться от точки к точке произвольным образом. Весовые коэффициенты задают комплексную функцию положения, которая называется волновой функцией частицы.
5.12. Гильбертово пространствоЧтобы более внятно (и более точно) рассказать о том, как работает процедура Rв стандартных квантовомеханических описаниях, необходимо перейти на несколько (совсем немного) более высокий уровень математической абстракции. Семейство всех возможных состояний квантовой системы образует так называемое гильбертово пространство. Нужды объяснять значение этого термина во всех математических тонкостях у нас в данный момент нет, однако некоторое представление о нем все же получить стоит – это поможет нам прояснить существующую картину квантового мира.
Первая и наиболее важная особенность, на которую следует обратить внимание: гильбертово пространство является комплексным векторным пространством. Это, в сущности, означает, что здесь мы вправе выполнять действия с комплексно-взвешенными комбинациями, посредством которых описываются квантовые состояния. Для обозначения элементов гильбертова пространства я продолжу использовать диракову скобку «кет», т.е. если состояния | ψ〉 и | φ〉 являются элементами гильбертова пространства, то таким же его элементом является и состояние w| ψ〉 + z| φ〉, где wи z– любая пара комплексных чисел. Допускается даже комбинация w= z= 0, она дает элемент 0гильбертова пространства – единственный элемент, не соответствующий никакому возможному физическому состоянию. Как и в любом другом векторном пространстве здесь действуют самые обыкновенные алгебраические правила:
| ψ〉 + | φ〉 = | φ〉 + | ψ〉,
| ψ〉 + (| φ〉 + | χ〉) = (| ψ〉 + | φ〉) + | χ〉,
w( z| ψ〉) = ( wz)| ψ〉,
( w+ z)| ψ〉 = w| ψ〉 + z| ψ〉,
z(| ψ〉 + | φ〉) = z| ψ〉 + z| φ〉,
0| ψ〉 = 0,
z 0= 0,
а это более или менее означает, что мы можем использовать алгебраическую систему обозначений привычным нам образом.
Иногда гильбертово пространство имеет конечную размерность – как, например, при описании спиновых состояний частицы. В случае спина 1/2 гильбертово пространство двумерно, а его элементы представляют собой комплексные линейные комбинации двух состояний, |↑〉 и |↓〉. Для спина 1/2 nгильбертово пространство ( n+ 1)-мерно. Однако размерность гильбертова пространства может быть и бесконечной– такое пространство необходимо, например, для описания состояний положения частицы. В этом случае каждое альтернативное положение, которое может занимать частица, рассматривается как отдельное измерение гильбертова пространства. Общее же состояние, определяющее квантовое местоположение частицы, записывается как комплексная суперпозиция всехэтих различных отдельных положений (волновая функция для данной конкретной частицы). Надо сказать, что с рассмотрением такого бесконечномерного гильбертова пространства связаны определенные математические осложнения, которые лишь запутают нас без всякой на то необходимости, поэтому ниже я сосредоточусь (в основном) на конечномерном случае.
Попытавшись представить гильбертово пространство визуально, мы сталкиваемся с двумя трудностями. Во-первых, размерность такого пространства, как правило, слишком велика для того, чтобы наше воображение сколько-нибудь адекватно справилось с задачей. Во-вторых, пространство это является не вещественным, но комплексным. Впрочем, часто бывает полезно не задумываться о подобных трудностях с самого начала – это помогает выработать некоторое интуитивное понимание математических аспектов концепции. Поэтому давайте на некоторое время сделаем вид, будто для представления гильбертова пространства вполне достаточно той привычной двух– или трехмерной картины, которая у нас уже есть. На рис. 5.22 проиллюстрирована геометрически операция линейной суперпозиции на примере обычного трехмерного пространства.
Рис. 5.22. Если вообразить, что гильбертово пространство тождественно трехмерному евклидову пространству, то сумму векторов | ψ〉 и | φ〉 можно найти с помощью обычного правила параллелограмма (в плоскости ( 0, | ψ〉, | φ〉).
Вспомним, что вектор квантового состояния | ψ〉 соответствует тому же физическому состоянию, что и любой кратный ему вектор u| ψ〉, где u– ненулевое комплексное число. В нашей геометрической интерпретации это означает, что физическое состояние представляется не одинокой точкой в гильбертовом пространстве, но прямой, соединяющей гильбертову точку | ψ〉 с началом координат 0(такую прямую называют лучом). Пример луча изображен на рис. 5.23; следует, впрочем, учитывать, что ввиду комплексного характера гильбертова пространства луч этот только выглядит как обычная одномерная прямая, на деле же за ним скрывается целая комплексная плоскость.
Рис. 5.23. Лучв гильбертовом пространстве есть множество всех комплексных кратных вектора состояния | ψ〉. Мы представляем этот луч в виде прямой, проходящей через начало гильбертовых координат, однако не следует забывать о том, что за этой прямой на деле скрывается комплексная плоскость.
До сих пор мы рассматривали гильбертово пространство, имея в виду лишь то, что структурно оно представляет собой комплексное векторное пространство. Однако, помимо комплексно-векторной структуры, у гильбертова пространства имеется еще одно, не менее важное, свойство, крайне полезное для описания процедуры редукции R. Речь идет об эрмитовом скалярном произведении(или внутреннем произведении), каковая операция позволяет из любой пары гильбертовых векторов получить одно-единственное комплексное число. Она же дает нам возможность ввести два весьма важных понятия. Первое – квадрат длиныгильбертова вектора как скалярное произведение вектора на самого себя. Например, нормированноесостояние (необходимое, как мы отмечали выше – см. §5.8, – для строгой применимости правила квадратов модулей) задается гильбертовым вектором, квадрат длины которого равен единице. Вторым важным понятием, сопутствующим скалярному произведению, является понятие ортогональностигильбертовых векторов – векторы ортогональны, когда их скалярное произведение равно нулю. Ортогональными считаются векторы, направленные, в том или ином смысле, «под прямым углом» друг к другу. Применительно к состояниям, ортогональными обычно называют состояния, независимыеодно от другого. Важность этого понятия для квантовой физики заключается в том, что различные альтернативные результаты любого измерения всегда ортогональны друг другу.
В качестве примера ортогональных состояний можно привести состояния |↑〉 и |↓〉, с которыми мы встречались при рассмотрении частицы со спином 1/2. (Отметим, что ортогональность в гильбертовом пространстве, как правило, не соответствует перпендикулярности в пространстве обычном; в случае спина 1/2 ортогональные состояния |↑〉 и |↓〉 представляют физические конфигурации, ориентированные, скорее, в противоположных направлениях, нежели под прямым углом.) Следующий пример – состояния |↑↑…↑〉, |↓↑…↑〉, …, |↓↓…↓〉 спина 1/2 n; каждое такое состояние ортогонально всем остальным. Ортогональными являются и всеразличные возможные положения, в которых может находиться квантовая частица. Более того, ортогональны как состояния | B〉 и i| C〉 (см. §5.7– прошедшая и отраженная части состояния фотона, получаемые в результате падения фотона на полупрозрачное зеркало), так и состояния i| D〉 и —| E〉, в которые эволюционируют первые два после отражения от двух непрозрачных зеркал.
Последний факт иллюстрирует одно важное свойство шрёдингеровой эволюции U. Любые два изначально ортогональных состояния ортогональными и остаются, если каждое эволюционирует в соответствии с Uв течение одного и того же временного периода. Таким образом, свойство ортогональности при эволюции U сохраняется. Кроме того, эволюция Uсохраняет и значениескалярного произведения состояний. Собственно, именно в этом и заключается формальный смысл понятия унитарная эволюция.
Как уже упоминалось выше, ключевая роль ортогональности состоит в следующем: различные возможные квантовые состояния, возникающие при любом «измерении» квантовой системы и дающие – при поднятии на классический уровень – непосредственно различимыерезультаты, непременно ортогональны друг другу. Особенно наглядно это проявляется в нулевыхизмерениях – таких, например, как в задаче об испытании бомб, §§5.2и 5.9. Не-обнаружение какого-либо квантового состояния устройством, способным это состояние обнаружить, приводит в конечном счете к тому, что результирующее состояние «перескакивает» в нечто, ортогональнопротивоположное тому состоянию, какое детектор, собственно, призван обнаруживать.
Как мы только что отметили, ортогональность математически выражается как обращение в нульскалярного произведения состояний. Это скалярное произведение, в общем случае, представляет собой комплексное число, поставленное в соответствие какой-либо паре элементов гильбертова пространства. Если обозначить эти элементы (или состояния) через | ψ〉 и | φ〉, то упомянутое комплексное число записывается так: 〈 ψ| φ〉. При этом выполняется ряд простых алгебраических тождеств, которые мы можем записать в следующем (несколько, правда, неуклюжем) виде:
〈 ψ¯| ¯φ〉 = 〈 φ| ψ〉,
〈 ψ|(| φ〉 + | χ〉) = 〈 ψ| φ〉 + 〈 ψ| χ〉,
( z〈 ψ|)| φ〉 = z〈 ψ| φ〉,
〈 ψ| ψ〉 > 0, кроме случая | ψ〉 = 0.
Кроме того, можно показать, что 〈 ψ| ψ〉 = 0 при | ψ〉 = 0. Мне не хочется надоедать читателю прочими математическими подробностями (если же таковые подробности кого-то заинтересуют, то ознакомиться с ними можно, открыв любой стандартный текст по квантовой теории; см., например, [ 94]).
Существенными для наших дальнейших нужд свойствами скалярного произведения являются лишь следующие два (уже, впрочем, упоминавшиеся выше):
векторы | ψ〉 и | φ〉 ортогональнытогда и только тогда, когда 〈 ψ| φ〉 = 0,
произведение 〈 ψ| ψ〉 есть квадрат длинывектора | ψ〉.
Отметим, что отношение ортогональности является симметричным (поскольку 〈 ψ¯| ¯φ〉 = 〈 φ| ψ〉). Более того, произведение 〈 ψ| ψ〉 всегда представляет собой неотрицательное вещественное число, из какового числа легко извлекается неотрицательный квадратный корень, который мы можем называть длиной(или величиной) вектора | ψ〉.
Поскольку при умножении любого вектора состояния на ненулевое комплексное число физическая интерпретация этого вектора никаких изменений не претерпевает, мы всегда можем нормироватьсостояние таким образом, чтобы длина соответствующего вектора стала равна единице, получив в результате так называемый единичный вектор, или нормированное состояние. Тут, впрочем, имеется некоторая неясность, так как мы можем умножить вектор состояния и на чистую фазу (число вида e iθ, где θ– вещественное число; см. §5.10).
5.13. Описание редукции R в терминах гильбертова пространстваКак в терминах гильбертова пространства представить процедуру R? Рассмотрим простейший случай измерения (типа «да/нет»), при котором прибор делает запись ДАпри достоверном обнаружении у измеряемого квантового объекта некоторого свойства и НЕТ, если обнаружить данное свойство не удается (или, что то же самое, прибор обнаруживает достоверное указание на то, что таким свойством измеряемый квантовый объект не обладает). Этот случай включает в себя и ту возможность, которая нас в настоящий момент как раз и интересует, – вариант НЕТможет оказаться нулевымизмерением. Подобные измерения выполняют, например, детекторы фотонов из §5.8. Они регистрируют результат ДА, обнаруживая прибытие фотона, и НЕТ, если обнаружения фотона не произошло. В данном случае измерение НЕТявляется не чем иным, как нулевым измерением – измерением оно при этом быть не перестает, вследствие чего состояние системы «скачком» переходит в состояние, ортогональное тому, какое наблюдалось бы, получи мы при измерении результат ДА. Аналогичным образом, к нулевым можно непосредственно отнести и измерения спина (для атома со спином 1/2) в опыте Штерна—Герлаха; можно говорить, что измерение дает результат ДА, если обнаруживается, что атом имеет спин |↑〉 (что происходит, когда атом отклоняется в сторону, соответствующую направлению «вверх»), или НЕТ, если атом в эту сторону не отклоняется, что дает нам спиновое состояние, ортогональное состоянию |↑〉, т.е. |↓〉.
Более сложные измерения всегда можно представить в виде последовательности измерений типа «да/нет». Рассмотрим, например, атом со спином 1/2 n. Чтобы не упустить ни одного из n+ 1 различных возможных результатов измерения доли спина, ориентированного в направлении «вверх», начнем с того, что зададим вопрос, не находится ли атом в спиновом состоянии, например, |↑↑…↑〉. Для ответа на вопрос попытаемся обнаружить атом в луче, соответствующем этому спиновому состоянию «единодушно вверх». Если измерение дает ответ ДА, то на этом наши мучения и заканчиваются. Если же мы получаем НЕТ, то измерение оказывается нулевым, и мы переходим к следующему вопросу: «Не находится ли атом в спиновом состоянии |↓↑…↑〉?» И так далее. Каждый раз ответ НЕТследует считать нулевым измерением, каковое указывает лишь на то, что в данном случае не был получен ответ ДА. Запишем наши рассуждения более подробно. Предположим, что первоначально атом находится в спиновом состоянии
z 0|↑↑↑…↑〉 + z 1|↓↑↑…↑〉 + z 2|↓↓↑…↑〉 + … + z n|↓↓↓…↓〉,
а мы выполняем измерение с целью выяснить, не ориентирован ли весь спин атома в направлении «вверх». Получив ответ ДА, мы удостоверяемся в том, что атом действительно находится в состоянии |↑↑↑…↑〉, или, если точнее, «перескакивает» в состояние |↑↑↑…↑〉 при измерении. Если же ответ НЕТ, то измерение является нулевым, и приходится предположить, что первоначальное состояние «перескакивает» в ортогональное состояние
z 1|↓↑↑…↑〉 + z 2|↓↓↑…↑〉 + … + z n|↓↓↓…↓〉.
Мы выполняем следующее измерение, на этот раз желая выяснить не находится ли атом в состоянии |↓↑↑…↑〉. Получив при этомизмерении ответ ДА, мы говорим, что атом и в самом деле находится в состоянии |↓↑↑…↑〉 или, что правильнее, «перескакивает» в состояние |↓↑↑…↑〉 в результате измерения. Если же мы получаем ответ НЕТ, то происходит «скачок» в следующее состояние,
z 2|↓↓↑…↑〉 + … + z n|↓↓↓…↓〉,
и так далее.
Эти «скачки», совершаемые (или, по крайней мере, кажущиесясовершаемыми) вектором состояния, олицетворяют собой наиболее головоломный аспект квантовой теории. Думаю, недалеко от истины утверждение, что большинство квантовых физиков либо испытывают немалые трудности, пытаясь примириться с тем фактом, что подобные «скачки» неотъемлемо присущи объективной физической реальности, либо вообще отказываются признавать, что реальность может вести себя столь абсурдным образом. Тем не менее, какой бы точки зрения относительно связи описываемых здесь процессов с «реальностью» мы ни придерживались, упомянутые «скачки» представляют собой существенный элемент квантового формализма.
В предыдущем рассуждении я воспользовался правилом, иногда называемым проекционным постулатоми однозначно определяющим форму подобных «скачков» (например, состояние z 0|↑↑↑…↑〉 + z 1|↓↑↑…↑〉 + … + z n|↓↓↓…↓〉 Должно «перескакивать» в состояние z 1|↓↑↑…↑〉 + … + z n|↓↓↓…↓〉). Название постулата обусловлено геометрическими соображениями, в чем мы вскоре убедимся. По мнению некоторых физиков, проекционный постулат представляет собой несущественное допущение квантовой теории. Физики эти, впрочем, имеют в виду, как правило, отнюдь не нулевые измерения, но измерения, при которых квантовое состояние нарушаетсянеким физическим взаимодействием. Такое нарушение происходит, когда измерение (в вышеописанных примерах) дает ответ ДА, т.е. детектор регистрирует фотон, поглощая его при этом, а атом по прохождении установки Штерна—Герлаха оказывается в некотором конкретном луче (что опять же означает ДА). Для рассматриваемого же нулевого измерения (т.е. измерения, при котором мы получаем ответ НЕТ) проекционный постулат оказывается как нельзя более существенным, поскольку без него никак невозможно узнать, что квантовая теория думает (и, кстати, правильно думает) по поводу измерений, следующих за нулевым.
Для того, чтобы получить более наглядное представление о смысле проекционного постулата, попробуем описать происходящее в терминах гильбертова пространства. Для этого введем понятие примитивногоизмерения. Примитивным я буду называть измерение типа «да/нет», при котором результат ДАозначает, что система находится в некотором определенном квантовом состоянии | α〉 (либо в кратном ему состоянии u| α〉. где u≠ 0) – или только что в это состояние «перескочила». Таким образом, в случае примитивного измерения результат ДАопределяет физическое состояние системы как нечто конкретное и единственное, тогда как результат НЕТможет предполагать несколько альтернативных вариантов развития событий. Примитивными являются, например, описанные выше измерения спина, посредством которых мы пытались установить, не находится ли спин в том или ином состоянии (скажем, в состоянии |↓↓↑…↑〉).
При примитивном измерении результат НЕТ проецируетсостояние системы на состояние, ортогональное | α〉. На рис. 5.24представлена геометрическая интерпретация этой процедуры. За начальное состояние примем состояние | ψ〉 (обозначенное на рисунке большой стрелкой) – в результате измерения оно «перескакивает» либо в состояние, кратное | α〉 (если ответ ДА), либо проецируется на состояние, ортогональное | α〉 (если ответ НЕТ). Со случаем НЕТникаких дополнительных проблем не возникает – согласно стандартной квантовой теории, именно такого результата и следует ожидать. В случае же ответа ДАситуация осложняется тем, что здесь квантовая система вступает во взаимодействие с измерительным устройством, переходя в состояние, значительно более хитроумное, нежели просто | α〉. Результатом такой эволюции оказывается, в общем случае, так называемое сцепленное состояние, «сплетающее» в одно целое исходную квантовую систему и измерительное устройство. (Сцепленные состояния мы рассмотрим в §5.17.) Тем не менее, дальше квантовая система должна эволюционировать так, будтоона и в самом деле перескочила в состояние, кратное | α〉; в противном случае последующая эволюция системы становится неоднозначной.
Рис. 5.24. Примитивное измерение проецирует состояние | ψ〉 в состояние, кратное заданному состоянию | α〉 (в случае ответа ДА), или в состояние, являющееся ортогональным дополнением | α〉 (в случае ответа НЕТ).
Алгебраически этот скачок выражается следующим образом. Вектор состояния | ψ〉 всегда можно записать (в данном случае – однозначно, поскольку вектор а) задан) в виде
| ψ〉 = z| α〉 + | χ〉,
где | χ〉 ортогонален | α〉. Вектор z| α〉 есть ортогональная проекция вектора | ψ〉 на луч, содержащий вектор | α〉, а | χ〉 – это ортогональная проекция | ψ〉 на пространство ортогональных дополнений| α〉 (т.е. на пространство всех векторов, ортогональных | α〉). Если измерение дает результат ДА, то это нужно понимать так, что вектор состояния перескочил в z| α〉 (или просто в | α〉), что является отправной точкой его последующей эволюции. Если же результат НЕТ, то вектор перескакивает в | χ〉.
Какие вероятности следует приписать каждому из двух альтернативных результатов? Для того, чтобы воспользоваться предложенным выше «правилом квадратов модулей», будем полагать вектор | α〉 единичными выберем некоторый единичный вектор | φ〉 в направлении вектора | χ〉, т.е. | χ〉 = w| φ〉. Тогда выражение принимает вид
| ψ〉 = z| α〉 + w| φ〉
(где, собственно, z= 〈 α| ψ〉 и w= 〈 φ| ψ〉), а относительные вероятности результатов ДАи НЕТвычисляются через отношение квадратов | z| 2и | w| 2. Если и сам вектор | ψ〉 является единичным, то величины | z| 2и | w| 2представляют собой фактические вероятности, соответственно, результатов ДАи НЕТ.
Можно сформулировать все это и по-другому, причем в настоящем контексте получится даже несколько проще (в качестве упражнения предлагаю заинтересованному читателю самостоятельно убедиться в том, что эти формулировки эквивалентны). Для того чтобы определить фактическую вероятность каждого из возможных результатов (в данном случае, ДАи НЕТ), мы просто возводим в квадрат длину вектора | ψ〉 (ненормированного к единичному вектору), после чего сравниваем полученное значение с квадратами длины соответствующих проекций. Коэффициент уменьшения в каждом случае и будет представлять собой искомую вероятность.
В заключение следует упомянуть, что в случае общего измерения типа «да/нет» (т.е. не только примитивного), когда ДА-состояния не обязательно принадлежат одному-единственному лучу, рассуждение будет по большей части аналогично вышеприведенному. Только здесь речь пойдет о ДА-подпространстве Ди НЕТ-подпространстве Н. Эти подпространства являются ортогональными дополнениями друг друга – в том смысле, что любой вектор одного ортогонален любому вектору другого, вместе же они заполняют все исходное гильбертово пространство. Согласно проекционному постулату, при измерении первоначальный вектор состояния | ψ〉 ортогонально проецируется на подпространство Д, если получен ответ ДА, и на подпространство Н, если получен ответ НЕТ. Относительные вероятности этих результатов здесь также определяются коэффициентами уменьшения квадрата длины вектора состояния при соответствующем проецировании (см. НРК, с. 263, рис. 6.23). Впрочем, статус проекционного постулата в данном случае представляется несколько менее ясным, чем при нулевом измерении, поскольку при утвердительном результате измерения результирующее состояние сцепляется с состоянием измерительного устройства. Поэтому в последующих рассуждениях я ограничусь более простыми примитивнымиизмерениями, ДА-пространство которых состоит из одного-единственного луча (содержащего векторы, кратные | ψ〉). Для наших нужд этого будет вполне достаточно.