355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Роджер Пенроуз » Тени разума. В поисках науки о сознании » Текст книги (страница 15)
Тени разума. В поисках науки о сознании
  • Текст добавлен: 20 сентября 2016, 17:17

Текст книги "Тени разума. В поисках науки о сознании"


Автор книги: Роджер Пенроуз


Жанр:

   

Философия


сообщить о нарушении

Текущая страница: 15 (всего у книги 49 страниц)

Явную модификацию алгоритма A, дающую такое предписание K, можно произвести следующим образом. Сначала находим в определении Aначальную команду 0 1→  Xи отмечаем для себя, что это в действительности за « X». Мы подставим это выражение вместо « X» в спецификации, представленной ниже. Один технический момент: следует, помимо прочего, положить, чтобы алгоритм Aбыл составлен таким образом, чтобы машина, после активации команды 0 1→  X, никогда больше не перешла во внутреннее состояние 0 алгоритма A. Это требование ни в коей мере не влечет за собой каких-либо существенных ограничений на форму алгоритма [19]19
  Более того, сам Тьюринг первоначально предполагал вообще  останавливатьмашину всякий раз, когда она повторно переходит во внутреннее состояние «0» из любого другого состояния. В этом случае нам не только не понадобилось бы вышеупомянутое ограничение, мы спокойно могли бы обойтись и без команды STOP. Тем самым мы достигли бы существенного упрощения, поскольку последовательность  11110в качестве команды нам была бы уже не нужна, и ее можно было бы использовать как разделитель, что позволило бы избавиться от последовательности 111110. Это значительно сократило бы длину предписания K, и, кроме того, вместо пятеричной системы счисления мы обошлись бы четверичной.


[Закрыть]
. (Нуль можно использовать только в командах-пустышках.)

Затем при определении алгоритма  Aнеобходимо установить общее число Nвнутренних состояний (включая и состояние 0, т.е. максимальное число внутренних состояний  Aбудет равно N – 1). Если в определении  Aнет завершающей команды вида ( N – 1) 1Y, то в конце следует добавить команду-пустышку ( N – 1) 1→ 0 0R. Наконец, удалим из определения  Aкоманду 0 1→  Xи добавим ее к приводимому ниже списку машинных команд, а каждый номер внутреннего состояния, фигурирующий в этом списке, увеличим на N(символом ∅ обозначено результирующее внутреннее состояние 0, а символом « X» в записи «1 1X» представлена команда, которую мы рассмотрели выше). (В частности, первые две команды из списка примут в данном случае следующий вид: 0 1→ N 1R, N 0→ (N + 4) 0R.)

1→ 0 1R, 0 0→ 4 0R, 0 1→ 0 1R, 1 0→ 2 1R, 1 1X, 2 0→ 3 1R, 2 1→ ∅ 0R, 3 0→ 55 1R, 3 1→ ∅ 0R, 4 0→ 4 0R, 4 1→ 5 1R, 5 0→ 4 0R, 51 → 6 1R, 6 0→ 4 0R, 6 1→ 7 1R, 7 0→ 4 0R, 7 1→ 8 1R, 8 0→ 4 0R, 8 1→ 9 1R, 9 0→ 10 0R, 9 1→ ∅ 0R, 10 0→ 11 1R, 10 1→ ∅ 0R, 11 0→ 12 1R, 11 1→ 12 0R, 12 0→ 13 1R, 12 1→ 13 0R, 13 0→ 14 1R, 13 1→ 14 0R, 14 0→ 15 1R, 14 1→ 1 0R, 15 0→ 0 0R, 15 1→ ∅ 0R, 16 0→ 17 0L, 16 1→ 16 1L, 17 0→ 17 0L, 17 1→ 18 1L, 18 0→ 17 0L, 18 1→ 19 1L, 19 0→ 17 0L, 191 → 20 1L, 20 0→ 17 0L, 20 1→ 21 1L, 21 0→ 17 0L, 21 1→ 22 1L, 22 0→ 22 0L, 22 1→ 23 1L, 23 0→ 22 0L, 23 1→ 24 1L, 24 0→ 22 0L, 24 1→ 25 1L, 25 0→ 22 0L, 251 → 26 1L, 26 0→ 22 0L, 26 1→ 27 1L, 27 0→ 32 1R, 27 1→ 28 1L, 28 0→ 33 0R, 28 1→ 29 1L, 29 0→ 33 0R, 29 1→ 30 1L, 30 0→ 33 0R, 30 1→ 31 1L, 31 0→ 33 0R, 31 1→ 11 0R, 32 0→ 34 0L, 32 1→ 32 1R, 33 0→ 35 0R, 33 1→ 33 1R, 34 0→ 36 0R, 34 1→ 34 0R, 35 0→ 37 1R, 35 1→ 35 0R, 36 0→ 36 0R, 36 1→ 38 1R, 37 0→ 37 0R, 37 1→ 39 1R, 38 0→ 36 0R, 38 1→ 40 1R, 39 0→ 37 0R, 39 1→ 41 1R, 40 0→ 36 0R, 40 1→ 42 1R, 41 0→ 37 0R, 41 1→ 43 1R, 42 0→ 36 0R, 42 1→ 44 1R, 43 0→ 37 0R, 43 1→ 45 1R, 44 0→ 36 0R, 44 1→ 46 1R, 45 0→ 37 0R, 45 1→ 47 1R, 46 0→ 48 0R, 46 1→ 46 1R, 47 0→ 49 0R, 47 1→ 47 1R, 48 0→ 48 0R, 48 1→ 49 0R, 49 0→ 48 1R, 49 1→ 50 1R, 50 0→ 48 1R, 50 1→ 51 1R, 51 0→ 48 1R, 51 1→ 52 1R, 52 0→ 48 1R, 52 1→ 53 1R, 53 0→ 54 1R, 53 1→ 53 1R, 54 0→ 16 0L, 54 1→ ∅ 0R, 55 0→ 53 1R.

Теперь мы готовы точно определить предельную длину предписания K, получаемого путем вышеприведенного построения, как функцию от длины алгоритма A. Сравним эту «длину» со «степенью сложности», определенной в §2.6(в конце комментария к возражению Q8). Для некоторой конкретной машины Тьюринга  T m(например, той, что выполняет вычисление A) эта величина равна количеству знаков в двоичном представлении числа m. Для некоторого конкретного машинного действия T m( n) (например, выполнения предписания K) эта величина равна количеству двоичных цифр в большем из чисел тип. Обозначим через  αи  κколичество двоичных цифр в  aи k'соответственно, где

A =  T aи  K= T k'(= C k).

Поскольку алгоритм  Aсодержит, как минимум, 2 N – 1 команд (учитывая, что первую команду мы исключили) и поскольку для каждой команды требуется, по крайней мере, три двоичные цифры, общее число двоичных цифр в номере его машины Тьюринга а непременно должно удовлетворять условию

α≥ 6 N – 6.

В вышеприведенном дополнительном списке команд для  Kесть 105 мест (справа от стрелок), где к имеющемуся там числу следует прибавить N. Все получаемые при этом числа не превышают N+ 55, а потому их расширенные двоичные представления содержат не более 2 log 2( N+ 55) цифр, в результате чего общее количество двоичных цифр, необходимых для дополнительного определения внутренних состояний, не превышает 210 log 2( N+ 55). Сюда нужно добавить цифры, необходимые для добавочных символов 0, 1, Rи L, что составляет еще 527 цифр (включая одну возможную добавочную «команду-пустышку» и учитывая, что мы можем исключить шесть символов 0по правилу, согласно которому 0 0можно представить в виде 0). Таким образом, для определения предписания  Kтребуется больше двоичных цифр, чем для определения алгоритма A, однако разница между этими двумя величинами не превышает 527 + 210 log 2( N+ 55):

κ< α+ 527 + 210 log 2( N+ 55).

Применив полученное выше соотношение α≥ 6 N – 6, получим (учитывая, что 210 log 26 > 542)

κ< α– 15 + 210 log 2( α+ 336).

Затем найдем степень сложности  ηконкретного вычисления C k( k), получаемого посредством этой процедуры. Вспомним, что степень сложности машины  T m( n) определяется как количество двоичных цифр в большем из двух чисел m, n. В данной ситуации C k= T k, так что число двоичных цифр в числе « m» этого вычисления равно κ. Для того чтобы определить, сколько двоичных цифр содержит число « n» этого вычисления, рассмотрим ленту, содержащую вычисление C k( k). Эта лента начинается с последовательности символов 111110, за которой следует двоичное выражение числа k', и завершается последовательностью 11011111. В соответствии с предложенным в НРК соглашением всю эту последовательность (без последней цифры) следует читать как двоичное число; эта операция дает нам номер « n», который присваивается ленте машины, выполняющей вычисление T m( n). То есть число двоичных цифр в данном конкретном номере « n» равно  κ+ 13, и, следовательно, число κ+ 13 совпадает также со степенью сложности ту вычисления C k( k), благодаря чему мы можем записать η = κ+ 13 < α– 2 + 210 log 2( α+ 336), или проще:

η< α+ 210 log 2( α+ 336).

Детали вышеприведенного рассуждения специфичны для данного конкретного предложенного еще в НРК способа кодирования машин Тьюринга, и при использовании какого-либо иного кодирования они также будут несколько иными. Основная же идея очень проста. Более того, прими мы формализм λ– исчисления, вся операция оказалась бы, в некотором смысле, почти тривиальной. (Достаточно обстоятельное описание λ-исчисления Черча можно найти в НРК, конец главы 2; см. также [ 52].) Предположим, например, что алгоритм  Aопределяется некоторым λ-оператором A, выполняющим действие над другими операторами  Pи Q, что выражается в виде операции ( AP) Q. Оператором  Pздесь представлено вычисление C p, а оператором Q– число q. Далее, оператор  Aдолжен удовлетворять известному требованию, согласно которому для любых  Pи Qдолжно быть истинным следующее утверждение:

Если завершается операция ( AP) Q, то операция PQне завершается.

Мы без труда можем составить такую операцию λ-исчисления, которая не завершается, однако этот факт невозможно установить посредством оператора A. Например, положим

K = λ x.[( Ax) x],

т.е. KY= ( AY) Yдля любого оператора Y. Затем рассмотрим λ-операцию

KK

Очевидно, что эта операция не завершается, поскольку  KK= ( AK) K, а завершение последней операции означало бы, что операция  KKне завершается по причине принятой нами природы оператора A. Более того, оператор  Aне способен установить этот факт, потому что операция ( AK) Kне завершается. Если мы полагаем, что оператор  Aобладает требуемым свойством, то мы также должны предположить, что операция  KKне завершается.

Отметим, что данная процедура дает значительную экономию. Если записать операцию  KKв виде

KK = λ y.( yy)(λ x.[( Ax) x]),

то становится ясно, что число символов в записи операции  KKвсего на 16 больше аналогичного числа символов для алгоритма  A(если пренебречь точками, которые в любом случае избыточны)!

Строго говоря, это не совсем законно, поскольку в выражении для оператора  Aможет также появиться и символ « x», и с этим нам придется что-то делать. Можно усмотреть сложность и в том, что генерируемое такой процедурой незавершающееся вычисление нельзя считать операцией над натуральными числами (поскольку вторая  Kв записи  KK«числом» не является). Вообще говоря, λ-исчисление не вполне подходит для работы с явными численными операциями, и зачастую бывает довольно сложно понять, каким образом ту или иную заданную алгоритмическую процедуру, применяемую к натуральным числам, можно выразить в виде операции λ-исчисления. По этим и подобным причинам обсуждение с привлечением машин Тьюринга имеет, как нам представляется, более непосредственное отношение к теме нашего исследования и достигает требуемого результата более наглядным путем.

3. О невычислимости в математическом мышлении
3.1. Гёдель и Тьюринг

В главе 2была предпринята попытка продемонстрировать мощь и строгий характер аргументации в пользу утверждения (обозначенного буквой G), суть которого заключается в том, что математическое понимание не может являться результатом применения какого-либо осмысленно осознаваемого и полностью достоверного алгоритма (или, что то же самое, алгоритмов; см. возражение Q1). В приводимых рассуждениях, однако, ни словом не упомянуто еще об одной возможности, существенно более серьезной и ничуть не противоречащейутверждению G, а именно: убежденность математика в истинности своих выводов может оказаться результатом применения им некоего неизвестного и неосознаваемого алгоритма, или же, возможно, математик применяет какой-то вполне постижимый алгоритм, однако при этом не может знать наверняка (или хотя бы искренне верить), что выводы его являются целиком и полностью результатом применения этого самого алгоритма. Ниже я покажу, что, хотя подобные допущения и вполне приемлемы с логической точки зрения, вряд ли их можно счесть хоть сколько-нибудь правдоподобными.

Прежде всего следует указать на то, что тщательно выстраивая последовательности умозаключений (вполне, заметим, осознанных) с целью установления той или иной математической истины, математики вовсе не считают, что они лишь слепо следуют неким неосознаваемым правилам, будучи при этом не в состоянии постичь эти правила ни рассудком, ни верой. Напротив, они твердо знают, что их аргументация опирается исключительно на непреложные истины – в основе своей существенно «очевидные»; столь же непреложными, на их взгляд, являются и все промежуточные умозаключения, составляющие упомянутую последовательность. Какой бы длинной, запутанной или даже концептуально неочевидной ни была цепь умозаключений, само рассуждение в основе своей остается принципиально неопровержимым и логически безупречным, а автор его искренне верит в свою правоту. Ни один математик не согласится с предположением о том, что на самом-то деле все его действия определяются какими-то совершенно иными процедурами, о которых он ничего не знает и в которые не верит, но которые, возможно, неким непостижимым образом исподволь влияют на его убеждения.

Разумеется, в этом отношении математики могут и ошибаться. Может быть, и впрямь существует какая-то алгоритмическая процедура, которая руководит всем математическим мышлением, оставаясь при этом неизвестной самим математикам. Всерьез принять такую возможность, пожалуй, легче людям, далеким от математики, нежели большинству из тех, для кого математика является профессией. Полагая, что деятельность математика не сводится к простому выполнению некоего неизвестного (и непостижимого) алгоритма (равно как и алгоритма, в существовании которого он испытывает сомнения), это самое большинство оказывается как нельзя более правым, в чем я и постараюсь убедить читателя в этой главе. Разумеется, полностью исключить возможность того, что суждения и убеждения математиков и в самом деле определяются какими-то неизвестными и неосознаваемыми факторами, нельзя; однако, даже если так оно и есть, я полагаю, что такие факторы не имеют ничего общего с алгоритмически описываемыми процедурами.

Весьма поучительным представляется рассмотреть точки зрения двух выдающихся мыслителей от математики, которым мы, собственно говоря, и обязаны идеями, приведшими нас к утверждению G. Что, в самом деле, думал по этому поводу Гёдель? А Тьюринг? Примечательно, что, исходя из одинаковых математических данных, они пришли к противоположным, в сущности, выводам. Следует, впрочем, пояснить, что оба вывода находятся в полном согласии с утверждением G. Гёдель, по всей видимости, полагал, что разум, вообще говоря, не ограничен не только необходимостью выступать исключительно в качестве вычислительной сущности, но и конечными физическими параметрами самого мозга. Он даже упрекал Тьюринга за то, что тот не допускал такой возможности. По словам Хао Вана ([ 375], с. 326, см. также Собрание сочиненийГёделя, т. 2 [ 159], с. 297), соглашаясь с обоими, вытекающими из позиции Тьюринга положениями, т. е. с тем, что «мозг, в сущности, функционирует подобно цифровому компьютеру», и с тем, что «физические законы, равно как и наблюдаемые следствия из них, обладают конечным пределом точности», Гёдель напрочь отвергал утверждение Тьюринга о неотделимости разума от материи, считая это «свойственным эпохе предрассудком». Таким образом, согласно Гёделю, сам по себе физическиймозг действует исключительно как вычислитель, разум же по отношению к мозгу представляет собой нечто высшее, вследствие чего активность разума оказывается свободной от ограничений, налагаемых вычислительными законами, управляющими поведением мозга как физического объекта. Гёдель, судя по его собственным словам {38} , не считал, что утверждение  Gможно рассматривать в качестве  доказательстваего тезиса о невычислимости деятельности разума:

«С другой стороны, учитывая доказанное ранее, следует допустить принципиальную возможность существования (и даже эмпирической реализации) некоей машины для доказательства теорем, каковая машина в сущности представляет собой эквивалент математической интуиции, однако доказатьэту эквивалентность невозможно, как невозможно доказать и то, что на выходе такой машины мы будем получать только корректные теоремы конечной теории чисел».

Надо сказать, что вышеприведенное допущение ни в коей мере не противоречит  G(и я ничуть не сомневаюсь, что Гёделю был хорошо известен тот недвусмысленный вывод, какой в моей формулировке получил обозначение G). Гёдель допускал  логическую возможностьтого, что разум математика может функционировать в соответствии с некоторым алгоритмом, о котором сам математик не знает, либо знает, но в таком случае не может быть однозначно уверен в его обоснованности (… доказать… невозможно, … только корректныетеоремы…). В соответствии с моей собственной терминологией такой алгоритм следует отнести к категории «непознаваемо обоснованных». Разумеется, совсем иное дело действительно поверить в возможность того, что деятельность разума математика и в самом деле определяется таким вот непознаваемо обоснованным алгоритмом. Похоже, сам Гёдель в это так и не поверил – и оказался в результате окружен компанией мистиков (точка зрения D), которые полагают, что средствами науки о феноменах физического мира разум объяснить невозможно.

Что же касается Тьюринга, то он, по-видимому, мистическую точку зрения не принял, будучи в то же время солидарен с Гёделем в том, что мозг, как и всякий другой физический объект, должен функционировать каким-либо вычислимым образом (вспомним о «тезисе Тьюринга», §1.6). Таким образом, Тьюрингу пришлось искать какой-то другой способ обойти затруднение в виде утверждения G. При этом особенно значимым ему показался тот факт, что математикам-людям свойственно делать ошибки; если мы хотим, чтобы наш компьютер стал подлинно разумным, следует позволить ему хоть иногда ошибаться {39} ;

«Иными словами, это означает, что если мы требуем от машины непогрешимости, то не стоит ожидать от нее еще и разумности. Существует несколько теорем, суть которых почти буквально сводится к вышеприведенному утверждению. Однако в этих теоремах ничего не говорится о степени разумности, которую нам может продемонстрировать машина, не претендующая на непогрешимость».

Под «теоремами» Тьюринг, вне всякого сомнения, подразумевает теорему Гёделя и другие аналогичные теоремы – такие, например, как его собственная, «вычислительная» версия теоремы Гёделя. То есть, по Тьюрингу, получается, что наиболее существенной способностью человеческого математического мышления является способность ошибаться, благодаря которой свойственное (предположительно) разуму неточно-алгоритмическое функционирование обеспечивает большую мощность, нежели возможно получить посредством каких угодно полностью обоснованных алгоритмических процедур. Исходя из этого допущения, Тьюринг предложил способ обойти ограничение, налагаемое следствиями из теоремы Гёделя: мыслительная деятельность математика подчиняется-таки некоему алгоритму, только не «непознаваемо обоснованному», а формально необоснованному. Таким образом, точка зрения Тьюринга приходит в полное согласие с утверждением G, а сам Тьюринг, по-видимому, присоединяется к сторонникам точки зрения A.

Завершая дискуссию, я хотел бы представить мои собственные причины усомниться в том, что «необоснованность» управляющего разумом математика алгоритма может послужить  подлиннымобъяснением тому, что в этом самом разуме происходит. Как бы ни обстояло дело в действительности, в самой идее о том, что превосходство человеческого разума над точной машиной достигается за счет неточностиразума, мне видится какое-то глубинное противоречие, особенно когда речь – как в нашем случае – идет о способности математика  открывать неопровержимые математические истины, а не о его оригинальности или творческих способностях. Поразительно, что два великих мыслителя, какими, несомненно, являются Гёдель и Тьюринг, руководствуясь соображениями вроде утверждения G, пришли к выводам (пусть и различным), которые многие из нас склонны считать, скажем так, маловероятными. Кроме того, весьма интересно поразмыслить о том, к каким бы выводам они пришли, имей они шанс хоть сколько-нибудь всерьез предположить, что физический процесс может иногда оказаться в основе своей невычислимым – в соответствии с точкой зрения C, ради продвижения которой и была написана эта книга.

В последующих разделах (особенно, в §§3.2-3.22) я представлю вашему вниманию несколько детальных обоснований (некоторые из них довольно сложны, запутаны или специальны), целью которых является демонстрация неспособности вычислительных моделей  Aи  Bвыступить в качестве вероятной основы для исследования феномена математического понимания. Если читатель не нуждается в подобном убеждении либо не склонен погружаться в детали, то я бы порекомендовал ему (или ей) все же начать чтение, а затем, когда уж совсем надоест, переходить сразу к итоговому воображаемому диалогу ( §3.23). Если у вас затем появится желание вернуться к пропущенным рассуждениям, буду только рад, если же нет – забудьте о них и читайте дальше.

3.2. Способен ли необоснованный алгоритм познаваемым образом моделировать математическое понимание?

 Согласно выводу G, для того чтобы математическое понимание могло оказаться результатом выполнения некоего алгоритма, этот алгоритм должен быть необоснованным или непознаваемым, если же он сам по себе обоснован и познаваем, то о его обоснованности должно быть принципиально невозможно узнать наверняка (такой алгоритм мы называем непознаваемо обоснованным); кроме того, возможно, что различные математики «работают» на различных типах таких алгоритмов. Под «алгоритмом» здесь понимается просто какая-нибудь вычислительная процедура (см. §1.5), т.е. любой набор операций, который можно, в принципе, смоделировать на универсальном компьютере с неограниченным объемом памяти. (Как нам известно из обсуждения возражения Q8, §2.6, «неограниченность» объема памяти в данном идеализированном случае на результаты рассуждения никак не влияет.) Такое понятие алгоритма включает в себя нисходящие процедуры, восходящие самообучающиеся системы, а также различные их сочетания. Сюда, например, входят любые процедуры, которые можно реализовать с помощью искусственных нейронных сетей (см. §1.5). Этому определению отвечают и иные типы восходящих механизмов – например, так называемые «генетические алгоритмы», повышающие свою эффективность с помощью некоей встроенной процедуры, аналогичной дарвиновской эволюции (см. §3.11).

О специфике приложения аргументации, представляемой в настоящем разделе (равно как и доводов, выдвинутых в  главе 2), к восходящим процедурам я еще буду говорить в §§3.9-3.22(краткое изложение их можно найти в воображаемом диалоге, §3.23). Пока же, для большей ясности изложения, будем рассуждать, исходя из допущения, что в процессе участвует один-единственный тип алгоритмических процедур, а именно – нисходящие. Такую алгоритмическую процедуру можно относить как к отдельному математику, так и к математическому сообществу в целом. В комментариях к возражениям Q11и Q12, §2.10, рассматривалось предположение о том, что разным людям могут быть свойственны различные обоснованные и известные алгоритмы, причем мы пришли к заключению, что такая возможность не влияет на результаты рассуждения сколько-нибудь значительным образом. Возможно также, что разные люди постигают истину посредством различных необоснованныхи  непознаваемыхалгоритмов; к этому вопросу мы вернемся несколько позже (см. §3.7). А пока, повторюсь, будем считать, что в основе математического понимания лежит одна-единственная алгоритмическая процедура. Можно, кроме того, ограничить рассматриваемую область той частью математического понимания, которая отвечает за доказательство Π 1-высказываний (т.е. определений тех операций машины Тьюринга, которые не завершаются; см. комментарий к возражению Q10). В дальнейшем вполне достаточно интерпретировать сочетание «математическое понимание» как раз в таком, ограниченном смысле (см. формулировку G**).

В зависимости от познаваемости предположительно

лежащей в основе математического понимания алгоритмической процедуры F(будь то обоснованной или нет), следует четко выделять три совершенно различных случая. Процедура Fможет быть:

I сознательно познаваемой, причем познаваем также и тот факт, что именно эта алгоритмическая процедура ответственна за математическое понимание;

II сознательно познаваемой, однако тот факт, что математическое понимание основывается именно на этой алгоритмической процедуре, остается как неосознаваемым, так и непознаваемым;

III неосознаваемой и непознаваемой.

Рассмотрим сначала полностью сознательный случай I. Поскольку и сам алгоритм, и его роль являются познаваемыми, мы вполне можем счесть, что мы о них ужезнаем. В самом деле, ничто не мешает нам вообразить, что все наши рассуждения имеют место уже после того, как мы получили в наше распоряжение соответствующее знание – ведь слово «познаваемый» как раз и подразумевает, что такое время, по крайней мере, в принципе, когда-нибудь да наступит. Итак, алгоритм Fнам известен, при этом известна и его основополагающая роль в математическом понимании. Как мы уже видели ( §2.9), такой алгоритм эффективно эквивалентен формальной системе F. Иными словами, получается, что математическое понимание – или хотя бы понимание математики каким-то отдельным математиком – эквивалентно выводимости в рамках некоторой формальной системы F. Если мы хотим сохранить хоть какую-то надежду удовлетворить выводу G, к которому нас столь неожиданно привели изложенные в предыдущей главе соображения, то придется предположить, что система Fявляется необоснованной. Однако, как это ни странно, необоснованность в данном случае ситуацию ничуть не меняет, поскольку, в соответствии с I, известная формальная система Fявляется действительно известной, то есть любой математик знаети, как следствие, верит, что именно эта система лежит в основе его (или ее) математического понимания. А такая вера автоматически влечет за собой веру (пусть и ошибочную) в обоснованность системы F. (Согласитесь, крайне неразумно выглядит точка зрения, в соответствии с которой математик позволяет себе не верить в самые фундаментальные положения собственной заведомо неопровержимой системы взглядов.) Независимо от того, является ли система Fдействительно обоснованной, верав ее обоснованность уже содержит в себе веру в то, что утверждение G( F) (или, как вариант, Ω( F), см. §2.8) истинно. Однако, поскольку теперь мы полагаем (исходя из веры в справедливость теоремы Гёделя), что истинность утверждения G( F) в рамках системы Fнедоказуема, это противоречит предположению о том, что система Fявляется основой всякого(существенного для рассматриваемого случая) математического понимания. (Это соображение одинаково справедливо как для отдельных математиков, так и для всего математического сообщества в целом; его можно применять индивидуально к любому из всевозможных алгоритмов, предположительно составляющих основу мыслительных процессов того или иного математика. Более того, согласно предварительной договоренности, для нас на данный момент важна применимость этого соображения лишь в той области математического понимания, которая имеет отношение к доказательству Π 1-высказываний.) Итак, невозможно знать наверняка, что некий гипотетический известный необоснованный алгоритм F, предположительно лежащий в основе математического понимания, и в самом деле выполняет эту роль. Следовательно, случай  Iисключается, независимо от того, является система Fобоснованной или нет. Если система Fсама по себе познаваема, то следует рассмотреть возможность II, суть которой заключается в том, что система Fвсе же может составлять основу математического понимания, однако узнать об этой ее роли мы не в состоянии. Остается в силе и возможность III: сама система Fявляется как неосознаваемой, так и непознаваемой.

На данный момент мы достигли следующего результата: случай  I(по крайней мере, в контексте полностью нисходящих алгоритмов) как сколько-нибудь серьезную возможность рассматривать нельзя; тот факт, что система Fможет в действительности оказаться и необоснованной, как выяснилось, сути проблемы ничуть не меняет. Решающим фактором здесь является невозможность точно установить, является та или иная гипотетическая система F(независимо от ее обоснованности) основой для формирования математических убеждений или же нет. Дело не в непознаваемости самого алгоритма, но в непознаваемости того факта, что процесс понимания действительнопроисходит в соответствии с данным алгоритмом.


    Ваша оценка произведения:

Популярные книги за неделю