Текст книги "Тени разума. В поисках науки о сознании"
Автор книги: Роджер Пенроуз
Жанр:
Философия
сообщить о нарушении
Текущая страница: 4 (всего у книги 49 страниц)
До сих пор я рассматривал «вычисление» только в том смысле, в котором этот термин применим к современным цифровым компьютерам или, точнее, к их теоретическим предшественникам – машинам Тьюринга. Существуют и другие разновидности вычислительных устройств, особенно широко распространенные в не столь отдаленном прошлом; вычислительные операции здесь осуществляются не посредством переходов между дискретными состояниями «вкл./выкл.», знакомыми нам по цифровым вычислениям, а с помощью непрерывного изменения того или иного физического параметра. Самым известным из таких устройств является логарифмическая линейка, изменяемым физическим параметром которой является линейное расстояние (между фиксированными точками на линейке). Это расстояние служит для представления логарифмов чисел, которые нужно перемножить или разделить. Существует много различных разновидностей аналоговых вычислительных устройств, в которых могут применяться и другие типы физических параметров – такие, например, как время, масса или электрический потенциал.
В случае аналоговых систем необходимо учитывать одно формальное обстоятельство: стандартные понятия вычисления и вычислимости применимы, строго говоря, только к дискретным системам (над которыми, собственно, и выполняются «цифровые» действия), но не к непрерывным, таким, например, как расстояния или электрические потенциалы, с которыми имеет дело традиционная классическая физика. Иными словами, для того чтобы применить обычные вычислительные понятия к системе, описание которой требует не дискретных (или «цифровых»), а непрерывных параметров, мы естественным образом должны прибегнуть к аппроксимации. Действительно, при компьютерном моделировании физических систем вообще стандартной процедурой является аппроксимациявсех рассматриваемых непрерывных параметров в дискретной форме. Подобная процедура, однако, неминуемо вносит некоторую погрешность, величина которой определяется заданной степенью точности аппроксимации; при этом вполне возможно, что для той или иной интересующей нас физической системы заданной точности может оказаться недостаточно. В итоге дискретное компьютерное моделирование очень просто может привести нас к ошибочным выводам относительно поведения моделируемой непрерывной физической системы.
В принципе, ничто не мешает повысить точность до уровня, адекватного для моделирования рассматриваемой непрерывной системы. Однако на практике, особенно в случае хаотических систем, требуемые для этого время вычислений и объем памяти могут оказаться непомерно большими. Кроме того, можем ли мы, строго говоря, быть абсолютно уверены в том, что выбранная нами степень точности является действительно достаточной? Необходим какой-то критерий, который позволил бы нам определить, что нужный уровень точности достигнут, дальнейшего ее повышения не требуется и качественному поведению, вычисленному с такой точностью, в самом деле можно доверять. Все это поднимает ряд достаточно щекотливых математических вопросов, рассматривать которые подробно на этих страницах мне представляется не совсем уместным.
Существуют, однако, и другие подходы к проблемам вычислений в случае непрерывных систем; например, такие, в которых непрерывные системы рассматриваются как самостоятельные математические структуры со своим собственнымпонятием «вычислимости» – понятием, обобщающим идею вычислимости по Тьюрингу с дискретных величин на непрерывные {12} . При таком подходе исчезает необходимость в аппроксимации непрерывной системы дискретными параметрами с целью применить к ней традиционную концепцию вычислимости по Тьюрингу. Такие идеи вызывают определенный интерес с математической точки зрения; к сожалению, им, как нам представляется, не достает пока той неотразимой естественности и уникальности, которые присущи стандартному понятию вычислимости по Тьюрингу для дискретных систем. Более того, вследствие определенной непоследовательности данного подхода, формально «невычислимыми» оказываются и некоторые простые системы, в применении к которым подобная терминология выглядит как-то не совсем уместно (даже такие, например, как известное всем из физики простое «волновое уравнение»; см. [ 314] и НРК, с. 187-188). С другой стороны, следует упомянуть и об одной сравнительно недавней работе ([ 328]), в которой показано, что теоретические аналоговые компьютеры, объединяемые в некоторый достаточно обширный класс, не могут выйти за рамки обычной вычислимости по Тьюрингу. Я надеюсь, что дальнейшие исследования должным образом осветят эти безусловно интересные и важные темы. Пока же у меня нет оснований полагать, что работы в этом направлении в целом уже достигли той стадии завершенности, чтобы их результаты можно было применить к рассматриваемым здесь проблемам.
В этой книге меня в особенности занимает вопрос о вычислительной природе умственной деятельности, где термин «вычислительный» следует рассматривать в стандартном смысле вычислимости по Тьюрингу. В самом деле, компьютеры, которыми мы сегодня повседневно пользуемся, являются цифровыми, и именно это их свойство оказывается существенным для современных разработок в области ИИ. Наверное, логичным будет предположить, что в будущем может появиться «компьютер» какого-то иного типа, решающуюроль в функционировании которого будут играть (пусть даже и не выходя при этом за общепринятые теоретические рамки современной физики) непрерывные физические параметры, что позволит такому компьютеру демонстрировать поведение, существенно отличноеот поведения цифрового компьютера.
Как бы то ни было, все эти вопросы важны, главным образом, для проведения границы между «сильной» и «слабой» версиями позиции C. Согласно слабойверсии C, поведение обладающего сознанием человеческого мозга обусловлено некоторой физической активностью, которую невозможно вычислить в стандартном смысле дискретной вычислимости по Тьюрингу, но которую можно полностью объяснить в рамках современных физических теорий. Если так, то эта активность, по всей видимости, должна зависеть от каких-то непрерывных физических параметров таким образом, чтобы ее невозможно было адекватно воспроизвести с помощью стандартных цифровых процедур. В соответствии же с сильнойверсией C, невычислимость сознательной деятельности мозга может быть исчерпывающе объяснена в рамках некоторой невычислительной физической теории (пока еще не открытой), следствия из которой, собственно, и обусловливают упомянутую деятельность. Хотя второй вариант может показаться несколько надуманным, альтернатива (для сторонников C) и в самом деле состоит в отыскании для какого-либо непрерывного процесса в рамках известных физических законов такой роли, которую невозможно было бы адекватно воспроизвести посредством каких угодно вычислений. На данный же момент, несомненно, следует ожидать, что для любой достоверной аналоговой системы любого типа из тех, что получили более или менее серьезное рассмотрение, обязательноокажется возможным (по крайней мере, в принципе) создать эффективную цифровую модель.
Даже если не принимать во внимание всевозможные теоретические проблемы общего плана, на сегодняшний день наибольшее превосходство перед аналоговыми вычислительными системами демонстрируют именно цифровыекомпьютеры. Цифровые вычисления имеют гораздо более высокую точность благодаря, в основном, тому, что при хранении данных в цифровом виде повышение точности обеспечивается простым увеличением разрядности чисел, что легко достижимо с помощью весьма скромного увеличения (логарифмического) мощности компьютера; в аналоговых же машинах (по крайней мере, в полностью аналоговых, в конструкцию которых не заложено никаких цифровых концепций) увеличения точности можно добиться лишь посредством весьма и весьма значительного увеличения (линейного) соответствующих параметров. Возможно, когда-нибудь в будущем возникнут новые идеи, которые пойдут на пользу аналоговым вычислителям, однако в рамках современной технологии большая часть существенных практических преимуществ принадлежит, по всей видимости, цифровомувычислению.
1.9. Невычислительные процессыИз всех типов вполне определенных процессов, что приходят в голову, большая часть относится, соответственно, к категории феноменов, называемых мною «вычислительными» (имеются в виду, конечно же, «цифровые вычисления»). Возможно, читатель уже начал волноваться, что сторонники позиции Cтак и останутся у нас не при деле. Причем я еще ни словом не упоминал о строго случайныхпроцессах, которые могут быть обусловлены, скажем, какими-либо исходными данными, получаемыми от квантовой системы. (О квантовой механике мы немного подробнее поговорим во второй части, главы 5и 6.) Впрочем, для самой системы практически безразлично, подается на ее вход подлиннослучайная последовательность данных или же всего лишь псевдослучайная, которую можноцеликом и полностью сгенерировать вычислительным путем (см. §3.11). Действительно, несмотря на то, что между «случайным» и «псевдослучайным», строго говоря, существуют некоторые формальные отличия, они, на первый взгляд, не имеют непосредственного отношения к проблемам ИИ. Далее, в §3.11, §3.18и последующих, я приведу некоторые серьезные доводы в пользу того, что «чистая случайность» и в самом деле абсолютно бесполезна для наших целей; если уж возникает такая необходимость, то лучше все же придерживаться псевдослучайности хаотического поведения, а все нормальные типы хаотического поведения, как уже подчеркивалось выше, относятся к категории «вычислительных».
А что нам известно о роли окружения? По мере развития каждого индивидуума у него или у нее формируется уникальное окружение, отличное от окружения любого другого человека. Возможно, именно это уникальное личное окружение и дает каждому из нас ту особенную последовательность входных данных, которая неподвластна вычислению? Хотя лично мне, например, сложно сообразить, на что именно в данном контексте может повлиять «уникальность» нашего окружения. Эти рассуждения напоминают разговор о хаосе, который мы вели выше (см. §1.7). Для обучения управляемого компьютером робота достаточно одной лишь модели некоего правдоподобногоокружения (хаотического), при том, разумеется, условии, что в этой модели не будет ничего заведомо невычислимого. Роботу нет нужды учиться тем или иным навыкам в каком-то конкретном реальном окружении; его, разумеется, вполне устроит типичноеокружение, моделирующее реальность вычислительными методами.
А может быть, численное моделирование пусть даже всего лишь правдоподобного окружения невозможно в принципе. Быть может, в окружающем физическом мире все же есть нечто такое, что на самом деле неподвластно численному моделированию. Возможно, некоторые сторонники Aили Bуже вознамерились приписать все не поддающиеся, на первый взгляд, вычислению проявления человеческого поведения невычислимости внешнего окружения. Должен, однако, заметить, что намерение это несколько опрометчиво. Ибо, как только мы признаем, что физическое поведение допускает где-точто-то такое, что невозможно моделировать вычислительными методами, мы тем самым тут же лишаемся главного, по всей видимости, основания сомневаться в правдоподобии, в первую очередь, самой точки зрения C. Если во внешнем окружении (т.е. вне мозга) имеют место процессы, не поддающиеся численному моделированию, то почему не могут оказаться таковыми и процессы, протекающие внутримозга? В конце концов, внутренняя физическая организация мозга человека, по всей видимости, гораздо более сложна, чем большая часть (и это еще слабо сказано) его окружения, за исключением, быть может, тех его участков, где это окружение само оказывается под сильным влиянием деятельности других мозгов. Признание возможности внешней невычислимой физической активности лишает всякой силы главный аргумент против C. (См. также §3.9, §3.10.)
Следует сделать еще одно замечание относительно «не поддающихся вычислению» процессов, возможность существования которых предполагает позиция C. Под этим термином я имею в виду отнюдьне те процессы, которые всего-навсего невычислимы практически. Здесь, конечно же, уместно вспомнить и о том, что, хотя моделирование любого правдоподобного окружения, или же любое точное воспроизведение всех физических и химических процессов, протекающих в мозге, может быть, в принципе, вычислимым, на такое вычисление, скорее всего, понадобится столько времени или такой объем памяти, что вряд ли удастся выполнить его на любом реально существующем или даже вообразимом в ближайшем будущем компьютере. Вероятно, нереально даже написание соответствующей компьютерной программы, если учесть, какое огромное количество различных факторов придется принимать в расчет. Однако сколь бы существенными ни были все эти соображения (а мы еще вернемся к ним в §2.6, Q8и §3.5), они не имеют никакогоотношения к тому, что называю «невычислимостью» я (и чего требует C). Под «невычислимостью» я подразумеваю принципиальную невозможность вычисления в том смысле, который мы очень скоро обсудим. Вычисления, которые просто выходят за рамки существующих (или вообразимых) компьютеров или имеющихся в нашем распоряжении вычислительных методов, формально все равно остаются «вычислениями».
Читатель имеет полное право спросить: если ничего, что можно счесть «невычислимым», не обнаруживается ни в случайности, ни во влиянии окружения, ни в банальном несоответствии уровня сложности феномена нашим техническим возможностям, то что вообще я имею в виду, говоря «чего требует C»? В общем случае, это некий вид математически точной активности, невычислимость которой можно доказать. Насколько нам на данный момент известно, при описании физического поведения в подобной математической активности необходимости не возникает. Тем не менее, логически она возможна. Более того, она представляет собой нечто большее, нежели просто логическую возможность. Согласно приводимой далее в книге аргументации, возможность активности подобного общего характера прямо подразумевается физическими законами, несмотря на то, что ни с чем подобным в известной физике мы еще не встречались. Некоторые примеры такой математической активности замечательно просты, поэтому представляется вполне уместным проиллюстрировать с их помощью то, о чем я здесь говорю.
Начать мне придется с описания нескольких примеров классов хорошо структурированных математических задач, не имеющих общего численного решения (ниже я поясню, в каком именно смысле). Начав с любого из таких классов задач, можно построить «игрушечную» модель физической вселенной, активность которой (даже будучи полностью детерминированной) фактически не поддается численному моделированию.
Первый пример такого класса задач знаменит более остальных и известен под названием «десятая проблема Гильберта». Эта задача была предложена великим немецким математиком Давидом Гильбертом в 1900 году в составе этакого перечня нерешенных на тот момент математических проблем, которые по большей части определили дальнейшее развитие математики в начале (да и в конце) двадцатого века. Суть десятой проблемы Гильберта заключалась в отыскании вычислительной процедуры, на основании которой можно было бы определить, имеют ли уравнения, составляющие данную систему диофантовых уравнений, хотя бы одно общее решение.
Диофантовыми называются полиномиальные уравнения с каким угодно количеством переменных, все коэффициенты и все решения которых должны быть целыми числами. (Целые числа – это числа, не имеющие дробной части, например: …, -3, -2, -1, 0, 1, 2, 3, 4, …. Первым такие уравнения систематизировал и изучил греческий математик Диофант в третьем веке нашей эры.) Ниже приводится пример системы диофантовых уравнений:
6ω + 2x 2– y 3= 0, 5xy – z 2+ 6 = 0, ω 2– ω + 2x – y + z – 4 = 0
Вот еще один пример:
6ω + 2x 2– y 3= 0, 5xy – z 2+ 6 = 0, ω 2– ω + 2x – y + z – 3 = 0.
Решением первой системы является, в частности, следующее:
ω= 1, x= l, у= 2, z= 4,
тогда как вторая система вообще не имеет решения (судя по первому уравнению, число у должно быть четным, судя по второму уравнению, число zтакже должно быть четным, однако это противоречит третьему уравнению, причем при любом ω, поскольку значение разности ω 2 – ω– это всегда четное число, а число 3 нечетно). Задача, поставленная Гильбертом, заключалась в отыскании математической процедуры (или алгоритма), позволяющей определить, какие системы диофантовых уравнений имеют решения (наш первый пример), а какие нет (второй пример). Вспомним (см. §1.5). что алгоритм – это всего лишь вычислительная процедура, действие некоторой машины Тьюринга. Таким образом, решением десятой проблемы Гильберта является некая вычислительная процедура, позволяющая определить, когда система диофантовых уравнений имеет решение.
Десятая проблема Гильберта имеет очень важное историческое значение, поскольку, сформулировав ее, Гильберт поднял вопрос, который ранее не поднимался. Каков точный математический смыслсловосочетания «алгоритмическое решение для класса задач»? Если точно, то что это вообще такое – «алгоритм»? Именно этот вопрос привел в 1936 году Алана Тьюринга к его собственному определению понятия «алгоритм», основанному на изобретенных им машинах. Примерно в то же время другие математики (Черч, Клин, Гёдель, Пост и др.; см. [ 135]) предложили несколько иные процедуры. Как вскоре было показано, все эти процедуры оказались эквивалентными либо определению Тьюринга, либо определению Черча, хотя особый подход Тьюринга приобрел все же наибольшее влияние. (Только Тьюрингу пришла в голову идея специфической и всеобъемлющей алгоритмической машины, – названной универсальноймашиной Тьюринга, – которая способна самостоятельно выполнить абсолютно любоеалгоритмическое действие. Именно эта идея привела впоследствии к созданию концепции универсального компьютера, который сегодня так хорошо нам знаком.) Тьюрингу удалось показать, что существуют определенные классы задач, которые не имеюталгоритмического решения (в частности, «проблема остановки», о которой я расскажу ниже). Однако самой десятой проблеме Гильберта пришлось ждать своего решения до 1970 года, когда русский математик Юрий Матиясевич (представив доказательства, ставшие логическим завершением некоторых соображений, выдвинутых ранее американскими математиками Джулией Робинсон, Мартином Дэвисом и Хилари Патнэмом) показал невозможность создания компьютерной программы (или алгоритма), способной систематически определять, имеет ли решение та или иная система диофантовых уравнений. (См. [ 72] и [ 89], глава 6, где приводится весьма занимательное изложение этой истории.) Заметим, что в случае утвердительного ответа (т.е. когда система имеет-таки решение), этот факт, в принципе, можно констатировать с помощью особой компьютерной программы, которая самым тривиальным образом проверяет один за другим все возможные наборы целых чисел. Сколько-нибудь систематической обработке не поддается именно случай отсутствия решения. Можно, конечно, создать различные совокупности правил, которые корректно определяли бы, когда система не имеет решения (наподобие приведенного выше рассуждения с использованием четных и нечетных чисел, исключающего возможность решения второй системы), однако, как показывает теорема Матиясевича, список таких совокупностей никогдане будет полным.
Еще одним примером класса вполне структурированных математических задач, не имеющих алгоритмического решения, является задача о замощении. Она формулируется следующим образом: дан набор многоугольников, требуется определить, покрывают ли они плоскость; иными словами, возможно ли покрыть всю евклидову плоскость только этими многоугольниками без зазоров и наложений? В 1966 году американский математик Роберт Бергер показал (причем эффективно), что эта задача вычислительными средствами неразрешима. В основу его доводов легло обобщение одной из работ американского математика китайского происхождения Хао Вана, опубликованной в 1961 году (см. [ 176]). Надо сказать, что в моей формулировке задача оказывается несколько более громоздкой, чем хотелось бы, так как многоугольные плитки описываются в общем случае с помощью вещественных чисел (чисел, выражаемых в виде бесконечных десятичных дробей), тогда как обычные алгоритмы способны оперировать только целыми числами. От этого неудобства можно избавиться, если в качестве рассматриваемых многоугольников выбрать плитки, состоящие из нескольких квадратов, примыкающих один к другому сторонами. Такие плитки называются полиомино(см. [ 161]; [ 136], глава 13; [ 222]). На рис. 1.2показаны некоторые плитки полиомино и примеры замощений ими плоскости. (Другие примеры замощений плоскости наборами плиток см. в НРК, с. 133-137, рис. 4.6-4.12.) Любопытно, что вычислительная неразрешимость задачи о замощении связана с существованием наборов полиомино, называемых апериодическими; такие наборы покрывают плоскость исключительно апериодически(т.е. так, что никакой участок законченного узора нигде не повторяется, независимо от площади покрытой плиткой плоскости). На рис. 1.3представлен апериодический набор из трех полиомино (полученный из набора, обнаруженного Робертом Амманом в 1977 году; см. [ 176], рис. 10.4.11-10.4.13 на с. 555-556).
Математические доказательства неразрешимости с помощью вычислительных методов десятой проблемы Гильберта и задачи о замощении весьма сложны, и я, разумеется, не стану и пытаться приводить их здесь {13} . Центральное место в каждом из этих доказательств отводится, в сущности, тому, чтобы показать, каким образом можно запрограммировать машину Тьюринга на решение задачи о диофантовых уравнениях или задачи о замощении. В результате все сводится к вопросу, который Тьюринг рассматривал еще в своем первоначальном исследовании: к вычислительной неразрешимости проблемы остановки– проблемы определения ситуаций, в которых работа машины Тьюринга не может завершиться. В §2.3мы приведем несколько примеров явных вычислительных процедур, которые принципиально не могутзавершиться, а в §2.5будет представлено достаточно простое доказательство – основанное, по большей части, на оригинальном доказательстве Тьюринга, – которое, помимо прочего, показывает, что проблема остановки действительно неразрешима вычислительными методами. (Что же касается следствий из того самого «прочего», ради которого, собственно, и затевалось упомянутое доказательство, то на них, в сущности, построены рассуждения всей первой части книги.)
Рис. 1.2. Плитки полиомино и замощения ими бесконечной евклидовой плоскости (допускается использование зеркально отраженных плиток). Если брать полиомино из набора (с) по отдельности, то ни одно из них не покроет всю плоскость.
Рис. 1.З. Набор из трех полиомино, покрывающий плоскость апериодически (получен из набора Роберта Аммана).
Каким же образом можно применить такой класс задач, как задачи о диофантовых уравнениях или задачи о замощении, к созданию «игрушечной» вселенной, которая, будучи детерминированной, является, тем не менее, невычислимой? Допустим, что в нашей модели вселенной течет дискретноевремя, параметризованное натуральными (т.е. целыми неотрицательными) числами 0, 1, 2, 3, 4, …. Предположим, что в некий момент времени nсостояние вселенной точно определяется одной задачей из рассматриваемого класса, скажем, набором полиомино. Необходимо установить два вполне определенных правила относительно того, какой из наборов полиомино будет представлять состояние вселенной в момент времени n+ 1 при заданном наборе полиомино для состояния вселенной в момент времени n, причем первое из этих правил применяется в том случае, если полиомино покрываютвсю плоскость без зазоров и наложений, а второе – если это не так. То, как именно будут выглядеть подобные правила, не имеет в данном случае особого значения. Можно составить список S 0, S 1, S 2, S 3, S 4, S 5, … всех возможных наборов полиомино таким образом, чтобы наборы, содержащие в общей сложности четноечисло квадратов, имели бы четные индексы S 0, S 2, S 4, S 6, …, а наборы с нечетнымколичеством квадратов – нечетные индексы S 1, S 3, S 5, S 7, …. (Составление такого списка не представляет особой сложности; нужно лишь подобрать соответствующую вычислительную процедуру.) Итак, «динамическая эволюция» нашей игрушечной вселенной задается теперь следующим условием:
Из состояния S nв момент времени tвселенная переходит в момент времени t+ 1 в состояние S n +1, если набор полиомино S nпокрывает плоскость, и в состояние S n+2, если набор S nне покрываетплоскость.
Поведение такой вселенной полностью детерминировано, однако поскольку в нашем распоряжении нет общей вычислительной процедуры, позволяющей установить, какой из наборов полиомино Sn покрывает плоскость (причем это верно и тогда, когда общее число квадратов постоянно, независимо от того, четное оно или нет), то невозможно и численное моделирование ее реального развития. (См. рис. 1.4.)
Рис. 1.4. Невычислимая модель «игрушечной» вселенной. Различные состояния этой детерминированной, но невычислимой вселенной даны в виде возможных конечных наборов полиомино, пронумерованных таким образом, что четные индексы S nсоответствуют четному общему количеству квадратов в наборе, а нечетные индексы – нечетному количеству квадратов. Временная эволюция происходит в порядке увеличения индекса ( S 0, S 2, S 3, S 4, …, S 278, S 280, …), при этом индекс пропускается, когда предыдущий набор оказывается не в состоянии замостить плоскость.
Безусловно, такую схему нельзя воспринимать хоть сколько-нибудь всерьез – она ни в коем случае не моделирует реальную вселенную, в которой все мы живем. Эта схема приводится здесь (как, собственно, и в НРК, с. 170) для иллюстрации того часто недооцениваемого факта, что между детерминизмом и вычислимостью существует вполне определенная разница. Некоторые полностью детерминированные модели вселенной с четкими законами эволюции невозможно реализовать вычислительными средствами. Вообще говоря, как мы убедимся в §7.9, только что рассмотренные мною весьма специфические модели не совсем отвечают реальным требованиям точки зрения C. Что же касается тех феноменов, которые отвечают-таки этим самым реальным требованиям, и некоторых связанных с упомянутыми феноменами поразительных физических возможностях, то о них мы поговорим в §7.10.