Текст книги "Основы кибернетики предприятия"
Автор книги: Джей Форрестер
сообщить о нарушении
Текущая страница: 5 (всего у книги 33 страниц)
В последующих главах мы попытаемся придать каждой переменной и каждой константе конкретный смысл, соответствующий повседневной практике управления. Поскольку каждая константа по своему существу будет иметь физический или логический смысл, можно будет судить о ее соответствии реальности.
3. 3. Модели для контрольных опытов
Математические модели позволяют ставить контрольные опыты. Таким путем можно проверять результаты различных допущений и влияния внешних факторов. В отличие от реальной системы модель позволяет наблюдать результаты изменения одного фактора при неизменности всех прочих.
Такое экспериментирование создает возможность более глубокого рассмотрения характеристик моделируемой системы. Используя модель сложной системы, можно больше узнать о внутренних взаимодействиях, чем при манипулировании реальной системой. Ведь по своему содержанию модель дает возможность более полно выявить организационную структуру системы, ее образ действий, ее чувствительность к различным событиям. А в формальном отношении это позволяет наблюдать влияние гораздо более широкого круга обстоятельств, чем это возможно в реальной жизни.
На модели можно производить наблюдения таких переменных, которые не поддаются учету в реальной системе. Адекватная модель должна включать любые «неуловимые» факторы, которые, по нашему убеждению, существенно влияют на поведение системы. Неуловимые в реальной действительности факторы и наши допущения о них в модели становятся осязаемыми и поддаются наблюдению. Таким путем мы получаем возможность проследить последствия наших допущений.
3. 4. Механизация модели
Динамическая математическая модель дает описание возникновения действий, которые должны сменять друг друга в известной последовательности. Чтобы модель была эффективной, ее следует механизировать, а для этого нужно установить определенный способ выполнения необходимых действий.
Действия, предусмотренные в модели, могли бы выполняться группой людей, олицетворяющих отдельные части имитируемой реальной системы. Их решения и действия приводили бы к определенным результатам, которые в свою очередь являлись бы отправными данными для последующих решений и действий. Такая имитация с привлечением группы людей использовалась при изучении реальных систем. Это хороший способ показа основных принципов действия системы учащимся в аудитории. Но при исследовании больших систем он обременителен и является дорогостоящим.
Для выполнения тех же операций вместо группы людей можно использовать цифровую вычислительную машину. Затраты составят меньше тысячной доли стоимости тех же вычислительных операций, выполняемых группой людей. Такого рода задача наиболее подходит к уникальным характеристикам цифровой электронной машины.
3. 5. Область применения моделей
В недавние годы стало возможным создавать динамические модели поведения предприятий, достаточно полно отражающие взаимодействие между производством, сбытом, рекламой, исследовательскими работами, капиталовложениями и потребительским спросом. При такой постановке вопроса в модель могут быть включены как материальные, так и психологические факторы.
В наши дни техника построения моделей и стоимость вычислений уже не ограничивают круг систем, доступных для изучения. Теперь прогресс будет определяться темпами расширения и уточнения наших знаний о промышленных предприятиях.
Непосредственная задача сейчас состоит в том, чтобы обратиться к нашей литературе и науке об «описательном управлении» и «описательной экономике» и формализовать наши представления об отдельных составных частях той и другой. Это даст возможность улучшить наше понимание взаимодействия частей. При исследовании построения динамических моделей в данной работе не делается никакого различия между фирмами, предприятиями и экономикой в целом, ибо различия в подходе или произвольные разграничения между микроэкономикой и макроэкономикой, на наш взгляд, неправильны. Такими принципами мы руководствуемся во всех случаях. Одинаковые теоретические соображения будут определять в нашем анализе и способы агрегирования показателей. Возможности совершенствования наших знаний в обоих случаях имеют те же ограничения в отношении выполнимости задач. Поэтому соображения, излагаемые в данной книге, в одинаковой степени применимы для всех хозяйственных единиц – от динамического поведения отдельной фирмы до мировой экономики.
3. 6. Задачи применения математических моделей
Математическая модель промышленного предприятия должна способствовать пониманию последнего. Она должна также быть полезным руководящим началом для правильных суждений и интуитивных решений. Она должна помогать в установлении желательного образа действий. Использование модели предполагает, что
– мы располагаем известным знанием частных характеристик системы;
– эти известные и предполагаемые факты в их взаимодействии влияют на характер развития системы;
– наша способность интуитивно представлять взаимодействие частей менее надежна, чем наши знания о каждой из них;
– построив модель и наблюдая на ней взаимодействие различных факторов, мы сможем лучше понять анализируемую систему.
Эти допущения составляют ту же основу, на которой мы строим модели планировок и оборудования. Модель фирмы будет оправдана постольку, поскольку она позволит улучшить управление фирмой. Это не значит, что результаты должны быть совершенными, чтобы модель оказалась эффективной. Модель может принести пользу при определении степени чувствительности производственной системы к изменениям ее образа действий или структуры. Она может помочь в определении относительной ценности информации, отличающейся по своему характеру, точности и своевременности. Она может показать, насколько система усиливает или ослабляет возмущения, вызванные воздействием окружающей среды. Это инструмент выявления уязвимости системы под воздействием колебаний, чрезмерного расширения или спада. Модель может указать способ действия, который позволит улучшить ее характеристики. Одним словом, математические модели должны служить орудием «организации предприятия», то есть проектирования таких промышленных организаций, которые наилучшим образом отвечают своему назначению.
Из вышеприведенных соображений следует, что эффективная модель реальной системы должна выражать сущность системы, она должна показывать, каким образом изменения образа действий или структуры системы приводят к улучшению или ухудшению ее поведения. На модель возлагается задача выявления различных видов внешних возмущений, к которым система чувствительна. Она должна служить руководством в деле повышения эффективности управления.
Однако необходимо особо подчеркнуть, что предсказание определенных событий в определенный будущий момент времени не входит в задачу модели. Часто ошибочно полагают, что эффективная динамическая модель должна предсказывать конкретное состояние системы в какой-то будущий момент времени[15]. Это может быть желательным, но при оценке эффективности моделей не следует исходить из их способности предсказывать будущие конкретные действия. Такая позиция будет более благоразумной, поскольку имеются достаточные основания считать, что такие предсказания не будут достигнуты в пределах обозримого будущего.
3. 7. Источники информации для построения модели
Многие не признают потенциальной пользы моделей деятельности предприятий, основываясь на том, что у нас нет достаточных данных для моделирования. Они уверены, что первым шагом должен быть широкий сбор статистических сведений. Верно же как раз обратное.
Мы обычно приступаем к делу, уже будучи вооружены достаточной описательной информацией, чтобы начать строить весьма эффективную модель. Нужно начинать именно с моделирования. И одним из первых применений модели должно быть установление того, какие фактические данные следует собирать. Бесспорно, что сбор сведений – операция весьма трудоемкая и, вместе с тем, ценность этих данных гораздо ниже затрат на их получение. В то же время наиболее существенная и легкодоступная информация обычно не выявляется и не используется.
Конторская работа по собиранию цифрового материала едва ли пригодна для выявления новых понятий и неизвестных ранее, но важных переменных. Широкий сбор данных сам по себе не может дать представление об общем характере изучаемых переменных. Более того, некоторые наиболее важные источники информации, необходимые для построения динамической модели, вообще не существуют в обычном смысле слова, то есть в виде статистических таблиц.
Каково относительное значение различных переменных? Насколько точной должна быть необходимая информация? Какими будут последствия использования ошибочных данных? На эти вопросы следует ответить прежде, чем затрачивать большие средства и много времени на сбор данных.
Фактически мы постоянно пользуемся моделями фирм и экономических систем на базе данных, имеющихся под рукой. Словесное отображение или описание есть модель; наше мысленное представление о том, как функционирует организация, – тоже модель. Словесная модель и математическая модель очень близки друг к другу. Обе являются абстрактными описаниями реальных систем. Математическая модель более упорядоченна, ибо для нее характерно стремление к устранению неясностей и противоречий, которые могут быть в словесном описании. Математическая модель более «точна». Под точностью подразумевается «конкретность», «четкость», «отсутствие расплывчатости». Математическая модель не обязательно более «правильна», чем словесная, если под правильностью понимать степень соответствия реальному положению вещей. Математическая модель могла бы «точно» представлять наше словесное описание и все же быть совершенно «неправильной».
Ценность математической модели во многом связана с ее «точностью», а не с ее «правильностью». Само построение математической модели заставляет нас быть точными. Оно требует конкретного определения того, что именно мы имеем в виду. Построение модели не связано тем или иным образом с правильностью того, что точно установлено.
Распространенное мнение, будто математическая модель не может быть построена до тех пор, пока не будут полностью известны каждая константа и функциональная зависимость, представляется недоразумением. Оно часто ведет к пренебрежению весьма важными факторами (большинством «неуловимых» влияний, определяющих выбор решения) на том основании, что они не учтены или не поддаются учету. Пренебрежение такими переменными равносильно сведению их влияния на выбор решения к нулю, что является заведомо ошибочным.
При отборе данных и оценке их достоверности надо исходить из особенностей уже обсуждавшихся объектов и целей моделирования.
Если единственно полезной и приемлемой моделью является та, которая полностью объясняет реальную систему и предсказывает ее конкретное состояние в будущем, тогда недостаточно обеспечить точность модели, а нужно, чтобы она была правильной. При отсутствии такой правильности моделирование становится малоэффективным.
Если же задача состоит в том, чтобы углубить понимание изучаемой системы, модель может быть эффективной и в том случае, если она отражает только то, что мы считаем сущностью изучаемой системы. Такая модель придает точность нашему мышлению; неопределенность подлежит устранению в процессе построения математической модели; мы получаем возможность решить вопрос об относительной важности различных факторов и обнаружить несоответствия в наших исходных положениях. Нередко оказывается, что наши допущения, касающиеся отдельных компонентов системы, не могут привести к ожидаемым последствиям. Наша словесная модель, будучи преобразована в точную математическую форму, может оказаться не соответствующей качественной природе реального мира. Мы можем убедиться, что никакой правдоподобной комбинацией допущений нельзя оправдать наших излюбленных предрассудков. На каждой такой ошибке мы учимся.
Таким образом, мы пользуемся моделью так же, как инженер или военный стратег. Каково было бы положение, если бы реальная система соответствовала нашим отправным допущениям? Какой была бы предполагаемая система, если бы мы создавали ее согласно модели? Какие изменения в модели могли бы приблизить ее к характеристикам той существующей системы, которую она призвана отразить? Такие вопросы можно задать по отношению к замкнутой модели (или стремящейся к замкнутой), они особенно важны в том случае, когда речь идет о системе столь сложной, что правильные ответы не могут быть получены путем ее простого рассмотрения.
Модель прежде всего должна иметь структуру, то есть определенный порядок внутренних взаимосвязей. Допущения относительно структуры должны быть сделаны раньше, чем мы начнем собирать данные о реальной системе. Имея структуру, соответствующую нашим описательным знаниям о системе, мы можем сделать следующий шаг и придать коэффициентам реальные числовые значения, поскольку коэффициенты должны отражать строго определенные характеристики реальной системы. Затем можно приступать к изменениям модели и реальной системы, чтобы ликвидировать их несоответствия и приблизить к желательному уровню эффективности.
Такова позиция руководителя по отношению к словесному описанию, которое он использует в качестве модели управляемой им. фирмы. Он стремится уяснить, какое значение имеют для него наблюдаемые факторы, пытается связать отдельные формы поведения и характеристики системы с вытекающими из них следствиями, пробует дать оценку результатам изменения тех частей системы, которые находятся под его управлением.
На определенной ступени деталировки модели для ее приближения к реальной или предполагаемой системе можно использовать саму модель для изучения значения различных допущений, на которых она построена. Для каждого числового значения, по необходимости принятого нами произвольно, существуют известные пределы, между которыми лежит истинное значение величины. Часто приходится наблюдать случаи, когда модель сравнительно нечувствительна к изменениям значений в этих пределах; при этом, по-видимому, нецелесообразно уточнять принятую приблизительную оценку[16].
С другой стороны, общее качественное поведение системы может в значительной мере зависеть от принятых нами численных значений. В этих случаях надо помнить, что принятые допущения представляют некоторый риск При выявлении чувствительности модели к ошибкам в численных значениях коэффициентов нужно выбирать между:
– измерением соответствующих величин с достаточной точностью;
– регулированием установленной величины в требуемых пределах;
– перестройкой системы и модели, чтобы сделать влияние величины менее существенным.
Математическая модель должна основываться на самой достоверной информации, какая только может быть получена в данный момент, но построение модели не следует откладывать до тех пор, пока будут точно измерены все связанные с ней параметры. Так можно ждать бесконечно. Величины следует устанавливать там, где это необходимо, с тем чтобы можно было продвигаться вперед в изучении многих вопросов, а тем временем будет осуществляться сбор данных. Заметим, что достаточная информация имеется в описательных сведениях, накопленных практиками в области управления и экономики, которые могут помочь создателю модели в его первоначальных усилиях. По мере исследования он убедится, что гораздо большую опасность представляет недооценка важных переменных и невнимание к ним, чем недостаток информации, когда он уже выявлен и определен. Специалист, хорошо знающий решающие моменты в динамике системы, может выявить гораздо более полезную информацию, чем получаемая обычно в отчетных данных.
Эти замечания не преследуют цели свести на нет целесообразность использования доступных сведений или проведения измерений, которые представляются оправданными; они лишь подвергают сомнению общепринятое мнение, будто учет фактических данных является первым и самым главным шагом в построении модели. Известное изречение, что «мы понимаем по-настоящему только в той мере, в которой можем измерить», остается полностью в силе. Но, прежде чем измерять, мы должны четко обозначить свой объект, определить его размерность, а чтобы действовать эффективно, нужно иметь известную цель познания. Даже при проведении фундаментальных исследований, в которых поиск информации считается самоцелью, мы все же располагаем ограниченными ресурсами, а потому исследователь должен быть убежден, что его поиск обещает с высокой степенью вероятности дать важные результаты.
Такое отношение к данным, составляющим основу построения модели, некоторыми будет сочтено поверхностным и неприемлемым. Но другим это покажется трезвым и правильным подходом к решению трудной проблемы.
Одно из важных применений модели состоит в исследовании поведения системы вне нормальных исторических границ ее функционирования. Эти границы лежат вне области любых данных, которые могли бы быть накоплены за предыдущий период. При определении реакции отдельных частей системы на новые явления многое зависит от нашего понимания внутреннего характера этих частей. К счастью, это обычно возможно. В самом деле, мы можем с большей уверенностью судить о крайних ограничивающих обстоятельствах, определяющих поведение человека, его вероятные решения, а также технологический характер продукции или уровень запасов, чем о том, каковы «нормальные» границы поведения системы в целом. Эти частные ограничительные условия входят в состав наших описательных знаний. Включение же возможных границ всех функциональных взаимоотношений в состав модели позволяет изучить действие системы в более широких пределах. Оно улучшает также отражение моделью нормальных границ, поскольку включение установленных экстремальных значений помогает ограничить и определить многие характеристики системы в нормальных границах ее действия.
Модели, построенные указанном выше способом – исходя из характеристик отдельных составных элементов с включением и оценкой значений всех факторов, которые являются достаточно важными по данным нашего описательного знакомства с системой, – могут дать полезные результаты. Они легко доступны для руководителя-практика, так как основаны на источниках и терминологии, которые знакомы ему из его личного опыта.
Глава 4
ПРИНЦИПЫ ФОРМУЛИРОВКИ МОДЕЛЕЙ ДИНАМИЧЕСКИХ СИСТЕМ
Построению модели предшествует выявление вопросов, на которые надо получить ответы. Модель должна отражать замкнутый контур, свойственный структуре системы. Должны быть правильно представлены запаздывания, усиления и искажения информации. Все константы и переменные в модели могут и должны быть отражениями соответствующих величин и категорий реальной системы. Размерность величин в модели должна быть тщательно согласованной. Предпочтительно начинать с построения модели с детерминированной (нестохастической) структурой решений, а затем включать в нее элементы случайности и периодические колебания. При построении модели не следует предполагать, что система заведомо линейна и устойчива.
Прежде чем углубляться в специфические особенности уравнений и соответствующие математические построения динамической модели, рассмотрим некоторые общие принципы, которыми следует руководствоваться при создании модели промышленно-сбытовой системы.
4. 1. Что включать в модель!
Практически не может быть единой модели социальной системы, подобно тому как не существует единой модели самолета.
Для испытаний самолета в аэродинамической трубе создаются несколько аэродинамических моделей для разных целей плюс макет устройства кабины, модели для имитации максимальных нагрузок и т. д. При разработке динамической модели для имитации фирмы или экономической системы выбор факторов, подлежащих включению в модель, обусловлен непосредственно теми вопросами, на которые должен быть дан ответ.
При отсутствии всеобъемлющей модели должны применяться различные модели для разных категорий вопросов относительно одной и той же системы. И при исследовании каждого нового вопроса соответствующая конкретная модель подлежит изменению и расширению.
Квалификация исследователя, приступающего к использованию модели, тотчас же проверяется тем, насколько существенны вопросы, которые он ставит, имея в виду получить важные ответы. Тривиальные же вопросы могут привести лишь к тривиальным ответам. Вопросы слишком общего характера – например, о том, как добиться наилучших результатов, – непригодны для уточнения направления исследования. Слишком узкие вопросы могут направить исследование в столь ограниченную область, в которой нельзя добиться существенного результата. Наконец, вопросы, вообще не поддающиеся решению, способны породить лишь разочарование.
Вопросы, на которые нужно ответить, определяют содержание модели. Но каким образом? Здесь снова нужна проницательность и трезвость суждений исследователя. Он должен отобрать, основываясь на своем знании существа дела, те факторы, которые ему представляются существенными. Важны навыки и опыт в изучении динамического поведения систем. То, что новичку представляется крайне важным, может на самом деле оказаться совершенно несущественным. Некоторые факторы, которым при статическом анализе уделяется особое внимание, могут вообще не фигурировать в качестве существенных элементов в динамической модели. Факторы, сплошь и рядом опускаемые при статическом анализе и в обычном описательном обсуждении проблемы, могут оказаться решающими. Здесь снова на сцену выступает «искусство» как руководящее начало в правильном использовании инструментария научного исследования. В данный момент мы вынуждены довольствоваться обсуждением общих принципов, но в дальнейшем мы приведем некоторые характерные примеры, которые помогут начинающему исследователю постепенно выработать навыки моделирования.
Поскольку задача состоит в том, чтобы включить в модель факторы, влияющие на искомый ответ, нельзя ограничить базу построения модели какой-либо узкой научной дисциплиной. Мы должны располагать возможностью включать в модель технические, правовые, организационные, экономические, психологические, трудовые, денежные и исторические факторы. Все они должны найти надлежащее место при определении взаимодействий составных частей системы.
При построении количественной модели в нее следует смело включать все те стороны системы, которые имеют, по нашему мнению, существенное значение при словесном описании изучаемых явлений. В прошлом, когда математические модели были ограничены поиском аналитических решений, они не могли охватить весь тот объем представлений, который содержится в нашем описательном знании. Имитирующие модели и вычислительные машины изменили это положение.
Как правило, наиболее важные модели, отвечающие запросам общего хозяйственного руководства, включают от 30 до 3000 переменных. Нижний предел близок к тому минимуму, который отражает основные типы поведения системы, интересующие руководителя; верхний же предел будет в течение некоторого времени ограничивать наши возможности исследования системы и ее существенных взаимосвязей. Уже проведено несколько поисковых исследований на моделях, отражающих процесс развития как в установившихся, так и в неустановившихся условиях и охватывающих до нескольких сотен переменных.
4. 2. Информация в моделях с обратной связью
Экономическая и промышленно-сбытовая деятельность представляет собой замкнутую информационную систему с обратной связью. Модели таких систем должны сохранять замкнутый контур, в условиях которого создается так много интересных моментов в поведении системы.
В информационной системе с обратной связью те или иные явления порождают информацию, которая служит основой для решений, управляющих действиями, направленными на изменение этих явлений. Цикл непрерывен. Мы не можем определенно говорить о каком-то начале или конце цепи. Это замкнутый контур.
Данное общее определение охватывает большинство действий отдельных индивидов, а также проявлений общественной и технической деятельности. Экономический цикл есть одно из проявлений изменяющихся во времени взаимодействий, которые происходят в контурах систем с обратной связью. На уровне отдельной фирмы увеличение продаж, превышающее производственную мощность предприятия, порождает планы расширения производства, что восстанавливает равновесие между спросом и объемом выпуска продукции. Сокращение же сбыта и рост запасов могут вызвать активизацию мероприятий по расширению рынка, чтобы увеличить продажи до уровня производства.
Необходимость совершенствования продукции вызывает затраты на исследования, технический прогресс, развитие конкуренции, порождая потребность в дальнейшем обновлении изделий и в еще более широких исследованиях. Все эти, как и другие решения в области управления, принимаются в рамках информационной системы с обратной связью, когда решение в конечном счете воздействует на среду, которая его вызвала.
Общее представление об информационной системе с обратной связью важно потому, что оно характеризует поведение системы в целом, которое не может быть выяснено рассмотрением отдельных ее частей. Схема взаимосвязей в системе, усиления, вызванные решениями и правилами поведения, запаздывания действий, а также искажения информации – все это, вместе взятое, определяет устойчивость системы и ее развитие[17]. Как мы видели в главе 2, сочетание самых обычных действий фирмы может вызвать колебания в производстве, занятости рабочих и в использовании мощностей. Поскольку одно действие порождает другое и так далее и может вновь вернуться к первому, это порождает неустойчивость, которая характерна для обегающих устройств в регулирующих механизмах. Надо очень тщательно подходить к правильному отражению запаздываний, искажений информации и факторов, определяющих решения.
Временные зависимости. Поведение информационных систем с обратной связью тесно связано с временной последовательностью во взаимоотношениях между разными действиями в системе. Запаздывания возникают на каждой стадии деятельности системы – при принятии решений, в процессах транспортировки, при усреднении данных, а также в форме всякого рода запасов и остатков материальных ценностей.
Переменные величины такого рода накоплений должны быть тщательно зафиксированы и представлены в модели, если соответствующие интервалы времени являются существенными. В пунктах этих накоплений могут возникать или преднамеренно создаваться запаздывания между темпами потоков на входе и выходе. Основное назначение материальных запасов состоит в некотором разобщении темпов этих потоков во избежание необходимости обеспечить точное соответствие в каждый данный момент между поступлением товаров и темпами их отпуска. Уровень запасов колеблется в зависимости от разности темпов потоков.
Мы должны предусмотреть резервуары в каналах движения информации и заказов совершенно так же, как и в потоках материальных ценностей. Такие резервуары будут включать задолженность по невыполненным заказам, заказы в пути, отправленные почтой, принятые и еще не выполненные решения, собранные и обработанные, но еще не использованные сведения. Резервуары материальных ценностей содержат незавершенное производство, запасы готовой продукции и товары в пути. Резервуары в денежном потоке отражают банковскую наличность и полученные ссуды[18]. Резервуары в потоках людей охватывают всех работающих, различные категории не имеющих работы, а также потребителей и акционеров. Резервуары основных средств включают производственные сооружения и оборудование, разделенные, если нужно, по сроку службы, типу, производительности и долговечности.
Хотя запаздывания очень важны и наши системы не могли бы отразить без запаздываний свойственные Им тенденции неустойчивости, тем не менее совершенно неправильно считать, что все запаздывания в системе вредны. Также неверно, будто практический путь совершенствования системы всегда состоит в сокращении запаздываний[19].
Метод построения модели и типы используемых уравнений дают возможность отразить запаздывания либо по их средней продолжительности, либо по их текущим значениям, в полном соответствии с тем, как мы представляем себе возникновение запаздываний на практике[20]. Ни интервал решений в уравнениях, образующих модель, ни интервалы, в течение которых может быть выполнен сбор данных в реальной системе, не должны играть определяющей роли при установлении запаздываний в модели.
Усиление. Усиление – самое важное свойство, определяющее поведение информационных систем с обратной связью. Термин «усиление» используется здесь не в качестве технического, а подразумевает большую реакцию той или иной части системы, чем это оправдывается на первый взгляд вызвавшими ее причинами. Например, мы часто наблюдаем, что колебания темпов производства на заводе значительно превосходят величину изменений в темпах розничных продаж.
Усиление встречается во многих областях рассматриваемой социальной системы. Оно возникает, как это будет показано ниже, как результат определенных правил принятия решений, регулирующих темпы потоков. Образ действий и результирующие решения должны быть тщательно изучены, поскольку они являются источником усиления в социальных системах.
Усиление возникает во многих местах. Заказы на товары не только воспроизводят темп продаж: в дополнение к этому выдаются заказы для увеличения товарных запасов, для заполнения каналов товародвижения и для спекуляции. Усиление возникает при использовании многих методов прогнозирования и предвидения, например когда экстраполяция прежнего роста темпов ведет к чрезмерным капиталовложениям для увеличения производственных мощностей. Усиление вызывается также тенденцией заказывать заблаговременно в случаях замедления поставок[21]. Выдача заказов на будущее время в периоды повышения цен и задержка заказов при их снижении тоже порождают явления усиления. Все это имеет важнейшее значение в отражении факторов, регулирующих развитие и устойчивость промышленно-сбытовой системы.
Искажение информации. Информация является вводом для принятия решений, и потому решения подвержены влиянию всех факторов, которые воздействуют на потоки информации. Она может быть искажена не только запаздываниями и усилением. Информация изменяется при усреднениях и суммировании сведений об отдельных операциях для получения сводных данных, используемых руководством при принятии решения. Информация по-разному интерпретируется различными людьми и организациями. Предубеждения, прежний опыт, добросовестность, надежды и внутренняя обстановка организации – все это ведет к нарушениям потоков информации. Информация содержит в себе ошибки и случайные шумы, а также невыявленные возмущения, источники которых лежат вне системы.