Текст книги "Основы кибернетики предприятия"
Автор книги: Джей Форрестер
сообщить о нарушении
Текущая страница: 3 (всего у книги 33 страниц)
Как и в области военного дела, мы убедимся в существовании строго определенного базиса, на котором основывается практика решений, принимаемых в настоящее время хозяйственными руководителями. Их решения не являются выражением полной «свободы воли», а строго обусловлены окружающими обстоятельствами. И поскольку это так, имеется возможность установить правила, регулирующие эти решения, и определить влияние данных правил на производственное и экономическое поведение систем.
1. 3. Экспериментальный подход к анализу систем
Третьей основой динамического моделирования промышленных систем является экспериментальный подход к изучению их поведения.
Мощность математического анализа недостаточна для нахождения общих аналитических решений столь сложных ситуаций, которые встречаются в хозяйственной области. Выход можно найти в экспериментальном исследовании.
Для этого строится математическая модель промышленной системы. Такая модель дает подробное описание, показывающее, каким образом условия в определенный момент времени приводят к последующим условиям в другой, более поздний момент. Поведение модели подвергается наблюдению, причем проводятся эксперименты для выяснения специальных вопросов о действии системы, представленной в виде модели.
«Имитация» – этим термином нередко обозначается процесс экспериментирования на модели вместо проведения соответствующих опытов с реальной системой. В течение 50-х годов имитация получила широкое развитие при проектировании средств противовоздушной обороны и в технических проектных работах. Вот один из примеров.
При планировании развития бассейна реки числа в цифровой вычислительной машине обозначают объемы воды, скорость течения, расход воды для выработки электроэнергии, осадки. В течение нескольких секунд работы машина может представить данные о действии реальной системы в течение целых суток. Могут быть намечены и спроектированы плотины, позволяющие обеспечить противоречивые требования производства электроэнергии, ирригации, навигации и регулирования стока вод.
Подобно этому, в течение последних лет в литературе по операционным исследованиям обычно освещаются многочисленные простые имитационные исследования отдельных частей предприятия. Методика имитации достигла теперь такой степени развития, что она может применяться к проблемам общего руководства промышленными организациями. В хозяйственной области имитация означает ввод в цифровую электронно-вычислительную машину определенных данных, описывающих деятельность предприятия. На основе этих данных и допущений о деятельности предприятия, вычислительная машина выдает результативные календарные графики, относящиеся к движению продукции, рабочей силе, финансам ит. п. Таким образом можно проверить разные варианты правил руководства или предположения об объеме сбыта, чтобы определить их влияние на успех хозяйственной деятельности фирмы.
Вместо того чтобы отправляться от общего аналитического решения и переходить к соответствующему специфическому случаю, мы теперь признаем высокую полезность, хотя бы и лишенную математического изящества, эмпирического подхода к поставленным задачам. Таким способом мы исследуем целый ряд специфических ситуаций, а на этой основе производим возможные обобщения.
Применение методов имитации не требует высокой математической квалификации. Разумеется, детали построения модели должны быть определены специалистами, поскольку для этого необходима особая квалификация, и надо избегать всяких погрешностей. Между тем работа по отбору исследуемых ситуаций, по оценке намеченных предположений и истолкованию полученных результатов вполне доступна для лиц, получивших подготовку в школах управления или на курсах совершенствования руководящего персонала.
1. 4. Цифровые электронно-вычислительные машины
Четвертой основой при динамическом моделировании промышленного процесса является цифровая электронно-вычислительная машина, которая, стала широко доступной между 1955 и 1960 гг. При ее отсутствии выполнение обширной работы по выявлению специфических данных, характеризующих комплексную систему, потребовало бы слишком крупных затрат. За последние 15 лет стоимость арифметических подсчетов снизилась в 10 000 раз и даже больше в тех областях, где цифровые электронно-вычислительные машины могут быть использованы с наивысшей эффективностью действия. Имитация поведения индустриальных систем с обратной связью принадлежит к числу областей высокой эффективности. Снижение затрат в 10 000 или даже в 100 000 раз создает совершенно иную обстановку для исследований в сравнении с той, которая существовала хотя бы 10 лет назад.
Появление вычислительных машин после второй мировой войны сделало возможным исследование весьма сложных систем. Машины-аналоги, применявшиеся для анализа электроэнергетических сетей и в анализаторах дифференциальных уравнений, получили развитие в период с 1930 по 1950 г. Сначала делались попытки использовать аналоговые вычислительные устройства для изучения экономических систем. Однако они оказались непригодными для решения вопросов практической значимости. Они неудобны при работе над нелинейными системами.
Появление быстродействующих цифровых электронно-вычислительных машин практически устранило вычислительный барьер. Технические характеристики электронно-вычислительных машин увеличивались ежегодно почти в 10 раз в течение десятилетия 50-х годов; почти с каждым годом происходил десятикратный рост быстродействия, емкости памяти, надежности машин. В общем, это было технологическое изменение, превосходящее по своему значению переход от химических взрывчатых веществ к атомным. Общество не может освоить такое крупное изменение за какие-нибудь 10 лет. Мы имеем громадный неиспользованный задел новых средств и возможностей их применения. Мы имеем основания предполагать, что дальнейшее развитие машин будет по-прежнему опережать развитие наших представлений о динамических связях в производстве и экономике. Вычислительные машины теперь настолько доступны, а затраты на вычисления и их программирование столь малы в сравнении с другими издержками, что прежние трудности в использовании имитирующей модели уже не должны лимитировать темпы нашего прогресса в познании динамических систем.
Глава 2
ПРИМЕР ПРОИЗВОДСТВЕННО-СБЫТОВОЙ СИСТЕМЫ
Используя простейшую модель системы сбыта в данной главе, мы ставим задачу показать, каким образом организационные формы и правила принятия решений могут стать источником типичных нежелательных явлений в поведении промышленного предприятия в целом. В частности, в данной главе будут освещены следующие вопросы:
Каким образом небольшие изменения объема розничных продаж могут вызвать значительные колебания производства продукции предприятия?
Почему ускорение выполнения конторских работ может не оказать существенного влияния на улучшение управленческих решений?
Почему руководство предприятием может оказаться не в состоянии выполнить заказы, хотя его производственные возможности неизменно превышают объем продаж?
Общее описание динамической модели предприятия, представленное в главе 1, станет более содержательным, если оно будет дано на простом примере. Каким образом можно применить концепцию информационной системы с обратной связью к конкретным хозяйственным условиям? Иначе говоря, как влияют запаздывания и усиления в круговом потоке информации на деятельность предприятия? Как можно использовать модель такой системы, чтобы выяснить влияние отдельных компонентов на ее общее поведение?
2. 1. Подход к задаче
Первым шагом в изучении системы является четкое определение исследуемой проблемы и тех вопросов, на которые надо получить ответ. Этот исходный пример обязательно должен быть прост. Для наибольшей ясности разумно начать с очень ограниченной подсистемы предприятия или фирмы в целом. Чтобы сохранить эту первоначальную простоту, нужно ставить только такие вопросы, которые связаны с проблемами, касающимися деятельности ограниченного участка промышленного предприятия. Позднее мы можем шире заняться всей областью управления.
Решающим звеном в деятельности большинства промышленных фирм является процесс производства и сбыта продукции. Важнейшая проблема этого звена – приведение темпа производства и темпов продаж продукции в соответствие с требованиями конечного потребителя. Как показывает практика, темпы производства часто колеблются в больших пределах, чем фактические темпы потребительских покупок. Неоднократно отмечалось, что сбытовая система с цепью взаимосвязанных товарных запасов и определенным порядком выдачи заказов на их пополнение имеет тенденцию усиливать небольшие колебания, возникающие в розничном звене. Для нашего примера характерны структура и образ действий многоступенчатой сбытовой системы. Каким образом данная система вызывает усиление небольших изменений в розничных продажах? Какие изменения в методах управления могут воздействовать на внутренние колебания системы? Как будет реагировать такая система на различные предполагаемые изменения розничных продаж?
Все эти вопросы могут быть изучены путем использования потоков информации, заказов и материалов.
Из шести потоков, характеризующих деятельность предприятия, мы не будем рассматривать в этой главе потоки оборудования, денежных средств и рабочей силы.
Даже такая ограниченная система все же будет интересной и содержательной. Она охватит многие из элементов, вызывающих расстройства в поведении реальных систем.
Если мы рассмотрим основы внутреннего поведения сбытовой системы даже в условиях независимо определяемых заказов клиентов и при отсутствии взаимодействия между фирмой и рынком, то убедимся, что обычный порядок производственной и сбытовой деятельности может вызвать типичные хозяйственные неполадки, которые часто относят за счет внешних причин. Случайные, незначительные колебания продаж могут превратиться в годовые или сезонные производственные циклы. Рекламная политика предприятия и практика снижения цен могут вызвать двух– и трехлетние циклические колебания сбыта. Несмотря на постоянное превышение производственной мощностью предприятия объема его розничного оборота, может возникнуть представление о недостаточном уровне располагаемых мощностей для удовлетворения покупательского спроса, и в результате они будут расширены.
2. 2. Необходимая информация
Чтобы начать изучение нашего примера производственно-сбытовой системы, необходимо располагать информацией трех видов: об организационной структуре системы, о запаздываниях решений и действий и о правилах, регулирующих закупки и товарные запасы.
Организационная структура. На рис. 2–1 показана типовая организационная структура для функции производства и сбыта металлических бытовых изделий. Нижняя фигура представляет розничное звено. Следующая над ней – оптовое. Еще выше и левей изображены заводской склад готовой продукции и, наконец, само производство. Прерывистые линии изображают восходящий поток заказов на товары. Сплошные линии изображают отгрузку товаров. Следует отметить наличие запасов троякого уровня: на заводе, в оптовом и в розничном звеньях.
Рис. 2–1. Организация производственно-сбытовой системы.
Запаздывания решений и действий. Чтобы иметь возможность определить динамические характеристики системы, необходимо также знать запаздывания в потоках заказов и товаров. Запаздывания указаны на рисунке в неделях и представляют собой обычные величины для предприятия, изготовляющего товары длительного пользования.
Поставка товаров потребителю в среднем занимает неделю с момента получения заказа от клиента. Запаздывания бухгалтерских операций и закупок составляют в розничном звене в среднем три недели от момента продажи вплоть до ее отражения в заявке на пополнение запаса. Время на отправку заказа по почте составляет полнедели. Оптовику требуется неделя для оформления заказа, а отправка товаров розничному звену занимает еще одну неделю. Аналогичные запаздывания имеют место и между оптовым звеном и заводским складом. На заводе в среднем уходит шесть недель с момента принятия решения об изменении темпа выпуска продукции до момента, когда производство достигает нового уровня.
Правила выдачи заказов и регулирования запасов. Чтобы завершить первоначальное описание примера, мы должны знать правила, регулирующие размещение заказов и размеры складских запасов в каждом звене реализации продукции. Мы рассмотрим три основных вида заказов: а) заказы на возмещение проданных товаров, б) заказы для пополнения запасов во всех звеньях в связи с изменением уровня продаж, в) заказы, необходимые для заполнения каналов обеспечения товарами по заказам, находящимся в стадии выполнения. Порядок выдачи заказов характеризуется следующим:
– На основе анализа продаж и в соответствии с запаздыванием закупки (три, две и одна неделя для соответствующих трех звеньев) заказы ближайшему высшему звену системы включают возмещение фактических продаж, реализованных заказывающим звеном.
– По истечении достаточного времени для определения средней величины краткосрочных колебаний продаж (восемь недель) принимаются меры для постепенного снижения либо повышения запасов в зависимости от увеличения или уменьшения оборота.
– Одна часть заказов, находящихся в процессе выполнения (отправленные почтой, невыполненные заказы у поставщика и товары в пути), всегда пропорциональна среднему уровню деловой активности и продолжительности выполнения заказа. Рост объема продаж, как и удлинение цикла поставок, обязательно вызывает увеличение общего объема заказов в каналах обеспечения. Эти заказы, находящиеся в процессе выполнения, совершенно неизбежны. Они являются частью «материальной базы» в структуре системы. При отсутствии заказов, специально предназначенных для заполнения каналов обеспечения (как это обычно бывает), соответствующая потребность в товарах на эти цели покрывается за счет снижения складских запасов, а это значит, что заказы на заполнение каналов товародвижения выдаются безотчетно под видом регулирования запасов.
Выдача заказов зависит также от ожидаемого объема продаж в будущем. Методы предвидения, которые состоят в распространении (экстраполяции) существующей тенденции на будущий период, приводят в общем к созданию менее устойчивой, колеблющейся системы. Однако для нашего примера мы используем установившуюся практику, определяющую темпы выдачи заказов, исходя из предположения, что нынешний уровень продаж, по всей вероятности, останется без изменений.
2. 3. Метод имитации
Прежде чем мы сможем определить воздействие описанной выше организационной структуры, запаздываний и правил на поведение системы, все приведенные ее характеристики должны быть выражены в четкой количественной форме
Построение уравнений, выражающих указанные взаимоотношения, будет представлено в главе 13. В данной же главе достаточно принять факт существования математической модели, которая может быть использована для более полного изучения характеристик системы.
Вслед за составлением четкого математического описания системы необходимо выяснить поведение системы в целом. Для этого мы можем воспользоваться произвольной схемой потребительских закупок в качестве входных данных и затем наблюдать за возникающими изменениями в состоянии складских запасов и в производстве продукции. Их воздействие на производственно-сбытовую систему можно выявить методами имитации. Последняя заключается в прослеживании, шаг за шагом, фактических потоков заказов, товаров и информации и в наблюдении за всем рядом принимаемых новых решений.
Примером имитации могла бы служить группа людей, сидящих вокруг стола, один из которых представляет розничное звено, другой– почтовую контору, третий – транспорт, четвертый – завод и т. д. Период времени в пять минут обозначал бы неделю, и в каждый отрезок времени можно было бы выдавать надлежащие заказы на закупку и производить поставки в соответствии с вышеописанными правилами, которые в более точной форме представлены уравнениями в главе 13. Впрочем, все это упражнение может быть выполнено одним человеком на бумаге в виде таблиц. Еще лучше осуществить всю эту процедуру с помощью цифровой электронно-вычислительной машины. Имитация с помощью цифровой вычислительной машины была использована для получения нижеследующих результатов.
2. 4. Испытание системы
Теперь можно проверить, каким образом вышеописанная производственно-сбытовая система будет реагировать на те или иные произвольно принятые вводные данные. Мы могли бы выбрать в качестве пробного ввода в систему некоторые фактические сведения из прошлой практики продаж. Однако это можно сделать впоследствии, поскольку на данной вступительной стадии такая сложная схема может внести путаницу. Целесообразнее для предварительного изучения взять простое, «чистое» изменение. Такое простейшее изменение имеет ступенчатый характер (то есть выражает мгновенный переход от одного постоянного уровня к другому) или же представляет синусоиду (плавное колеблющееся изменение). Более сложная искусственная схема может быть изображена кривой случайных помех с определенными статистическими характеристиками.
Ступенчатый ввод. Весьма показательным является ввод простого ступенчатого сигнала. Он вызывает одно смещение при вводе и позволяет наблюдать, как происходит последующая реакция внутренних компонентов системы на этот сигнал. На рис. 2–2 показан результат 10-процентного увеличения розничных продаж, имевших место в январе. Возникшие колебания представлены темпами выдачи заказов, выпуском продукции, размерами запасов на заводском складе и объемом невыполненных заказов. (В данном случае заказы розничного звена представлены в виде ввода, не зависящего от внутренних изменений в производственно-сбытовой системе. Между тем на деле они не являются независимыми, а испытывают влияние возможностей производства и действия рекламы.)
Рис. 2–2. Реакция промышленно-сбытовой системы на внезапное 10-процентное увеличение розничных продаж.
Ввиду запаздываний бухгалтерских расчетов, закупок и почтовой связи увеличение заказов оптового звена на 10 % отстает от роста требований розничного звена приблизительно на месяц. Важно заметить, что этот подъем не прекращается при достижении 10 %. По истечении 11 недель он достигает 18 % благодаря новым заказам, поступившим от розничного звена: а) в целях некоторого увеличения товарных запасов и б) для поднятия на 10 % уровня заказов и товаров, находящихся в каналах обеспечения, дабы они соответствовали десятипроцентному увеличению объема продаж. Это увеличение складских запасов и товаров в каналах обеспечения является единовременным, неповторяющимся добавлением к объему обычных заказов, а когда они будут выполнены, то заказы розничного звена оптовикам снова сократятся до уровня десятипроцентного возрастания продаж.
Заказы, поступающие от оптовиков на заводской склад, колеблются еще резче. Это объясняется тем, что объем поступающих к оптовикам заказов покрывает более чем четырехмесячные обороты розничной продажи и легко создает ошибочное впечатление об устойчивом росте объема деловой активности. Поэтому заказы оптовиков, поступающие на завод, включают не только 18 % прироста полученных ими заказов, но и соответствующее увеличение их складских запасов, а также увеличение заказов и товаров в процессе движения между заводом и оптовым звеном. В результате всего этого заказы, поступившие на заводской склад, достигают к 14-й неделе максимального увеличения в 34 % по отношению к уровню прошедшего декабря.
Обратимся теперь к производственным заказам. Они выдаются исходя из возрастающего объема заказов, поступающих на заводской склад с учетом уменьшения запасов готовой продукции, которые снизились на 15 %. Производственные заказы к 15-й неделе возросли на 51 %. В результате на 21-й неделе выпуск продукции превысил уровень, достигнутый в декабре, на 45 %. В то время как розничная продажа все еще выше декабрьского уровня на 10 %, объем производства продукции испытал увеличение, которое в четыре раза больше роста продаж.
Важно отметить, что все эти воздействия имеют обратимый характер. Как только заявки розничного звена на пополнение запасов будут удовлетворены, его заказы соответственно сократятся. Оптовики обнаружат, что объем выданных ими заказов, а также уровень их товарных запасов и запасов канала обеспечения превышают действительные потребности. Этот избыток будет вычтен из текущих заказов производству, так что их уровень на 32-й неделе будет на 6 % ниже уровня розничной продажи и только на 4 % выше уровня, достигнутого в декабре. В сентябре и октябре на 39-й неделе выпуск продукции на заводе окажется на 3 % ниже, чем в декабре, и на 13 % ниже уровня текущей розничной продажи.
Изображенная на рис. 2–1 организационная структура и общепринятый порядок выдачи заказов и регулирования запасов приводят к тому, что требуется больше года для стабилизации заказов и производства на уровне, соответствующем увеличению розничных продаж на 10 %.
Периодические колебания розничных продаж. Теперь рассмотрим проблему случайных периодических колебаний розничных продаж. Сначала допустим, что в прошлом наша система функционировала при постоянном уровне продаж, а затем на протяжении года наблюдался постепенный подъем и спад продаж.
На рис. 2–3 показано, каким образом подобные колебания розничных продаж усугубляются по мере продвижения заказа на завод. Раньше розничные продажи стабилизировались на уровне 1000 штук в неделю; поэтому опыт прошлого не давал повода планировать сезонность деятельности предприятий. В январе продажи начинают увеличиваться и в конце марта возрастают на 10 %, а к концу сентября наблюдается 10-процентный спад и, наконец, в конце декабря возврат к «нормальному» уровню.
Первоначальное увеличение заказов и заводского выпуска продукции во многом похоже на картину, представленную на рис. 2–2, за исключением того, что первоначальные высшие точки кривой расположены ниже и отстают по времени. Однако в то время, когда система уже должна была выйти из состояния перепроизводства, она получает дополнительный понижающий толчок, вызванный спадом розничных продаж, который усилился по причинам, рассмотренным выше. В итоге число заказов, поступающих от оптовиков на завод, снизилось в октябре по сравнению с обычным уровнем на 40 %, а объем выпуска продукции упал в ноябре на 60 % в сравнении с нормальным уровнем.
В следующем году выпуск продолжает колебаться между верхними и нижними точками кривой, которые лежат примерно на 72 % выше и соответственно на 60 % ниже нормального уровня. Товарные запасы колеблются в пределах, указанных в табл. 2–1.
Таблица 2–1. Диапазон колебаний объема запасов
Максимум, %
Минимум, %
Завод
+62
– 45
Оптовая сеть
+32
– 33
Розничная сеть
+12
– 12
Мы видим, таким образом, как усиливаются периодические колебания по мере того, как мы переходим от розничного звена к заводу.
Случайные отклонения в розничных продажах. Следует отметить, что на рис. 2–2 и 2–3 представлены плавные кривые, не имеющие тех кратковременных случайных колебаний, которые можно видеть на большинстве графиков фактического движения заказов в промышленности.
Имитируя деятельность предприятия, конечно, невозможно учесть все те незначительные факторы, которые могут влиять на ход его операций.
Эти дополнительные воздействия могут быть представлены в виде «шумовых» или случайных нарушений, вводимых в пункты решений данной системы. Предположим, что мы собираемся изучать поведение нашей производственно-сбытовой системы не в условиях неизменного покупательского спроса, а в условиях изменяющегося из недели в неделю объема продаж.
Колебательная система, показанная на рис. 2–2 и 2–3, будет реагировать на случайные внешние нарушения колебаниями, отражающими характеристики самой системы в большей степени, чем при условии, когда эти колебания прямо определяются легко устанавливаемой внешней причиной.
Рис 2–3. Реакция производственно-сбытовой системы на 10-процентное непредвиденное увеличение и падение розничных продаж с периодом в один год.
Даже если средний уровень розничных продаж в каждом периоде устойчив (как это изображено на рис. 2–2) и не подвержен регулярным изменениям в различные периоды (рис. 2–3), то и тогда система, для которой характерна неустойчивость, будет превращать случайные явления в подъемы и спады объема заказов и производства продукции. Мы уже видели (рис. 2–2), что в ответ на внезапный скачок объем производства и товарных запасов обнаруживает тенденцию к колебаниям с разрывом в 8–9 месяцев между крайними точками. Всякий, кто знаком с характеристиками информационных систем с обратной связью, знает, что случайные возмущения на вводе могут вызвать аналогичные колебания.
Ограниченная производственная мощность завода. До сих пор мы рассматривали только простые ситуации. Дополнительные фактические данные о деятельности фирмы могут быть введены в модель по мере надобности. В предшествующих примерах мы допускали, что завод может производить продукцию в любом объеме. Для более реальных условий, то есть когда принимается во внимание факт ограниченных производственных возможностей предприятия, характерны некоторые новые, весьма интересные последствия.
На рис. 2–4 показаны колебания системы, производственная мощность которой на 20 % превышает средний уровень продаж. Как и раньше, система полностью стабилизирована в начале первого года; затем предполагается, что на протяжении каждого года происходит подъем и спад розничных продаж на 10 %.
Рис. 2–4. Влияние колебаний розничных продаж на производство при максимальной мощности завода, на 20 % превышающей средние продажи.
Объем розничных продаж никогда не достигает уровня производственной мощности. Тем не менее под влиянием запасов и товаров в каналах обеспечения заказы оптового звена, поступающие на завод, превышают его производственную мощность. Мало того, по мере замедления отгрузок продукции заводом оптовое звено начинает выдавать заказы в предвидении будущих потребностей и, таким образом, еще больше заказов вводится в систему. В результате этого завод работает на полную мощность в течение трех месяцев первого года.
Затем наступает удовлетворение требований на пополнение запасов, что совпадает с началом спада розничных продаж. Во второй половине года сокращение розничных продаж и исчерпание запасов происходят одновременно с уменьшением невыполненных заказов, и все это приводит к улучшению поставок. В третьем квартале наблюдается быстрое сокращение производственных запасов и задолженности по невыполненным заказам и внезапное увеличение запасов на заводском складе. Естественным результатом является резкое сокращение объема производства, которое падает на-62 % в сравнении с нормальным уровнем.
В отличие от первого года во второй год система вступает в период диспропорциональности между объемом производства и средним уровнем продаж при увеличении количества заказов и сокращении товарных запасов. В итоге второго года происходит усугубление условий деятельности первого года. Темпы поступления заказов от оптового звена повышаются на 61 % сверх нормального уровня и обнаруживают еще более резкий скачок, чем вызванный тенденцией оптовиков выдавать заблаговременные заказы в случаях замедления поставок. В течение 6 месяцев завод работает на полную мощность, чтобы удовлетворить запросы оптового звена. Объем невыполненных заказов возрастает до 345 % сверх нормального уровня и представляет задолженность, которая больше обычной почти на шесть недель нормального выпуска продукции. Между тем заводские запасы уменьшились с четырехнедельного объема выпуска до величины, меньшей нормального недельного объема производства.
Несмотря на низкий уровень производственных запасов и замедление поставок, розничные запасы колеблются лишь в пределах 13 %, и фактически нет оснований опасаться, что покупательский спрос останется неудовлетворенным. Уровень запасов в розничном звене достигает максимума в тот момент, когда производственные запасы минимальны.
Следует подчеркнуть, что на 81-й неделе объем отгрузок равен сумме поступающих заказов; уровень запасов – постоянный. Следовательно, в этот момент объем невыполненных заказов достигает своей максимальной точки и затем начинает снижаться. Поскольку завод в течение 8 месяцев выпускал продукцию с превышением по сравнению с объемом продаж и поскольку средний долгосрочный объем выпуска обязательно должен равняться объему розничных продаж, в оставшиеся четыре месяца надо резко сократить производство продукции. Ее выпуск почти полностью приостановлен и падает до 79 % ниже нормального; в течение 17 недель объем производства остается на уровне ниже среднего уровня розничных продаж.
В последующие годы, пока действующие правила хозяйственной деятельности не будут изменены, система будет функционировать в основном точно так же, как и во втором году.
На рис. 2–4 показано стечение обстоятельств, которое может побудить фирму к чрезмерному наращиванию производственных мощностей. На протяжении всего второго года запасы оставались ниже желательного уровня; в течение девяти месяцев (с ноября по август) задолженность по невыполненным заказам постоянно возрастала. В этих условиях руководство фирмы может легко предпринять меры по расширению мощностей (даже если уровень розничной продажи никогда не достигал объема выпуска продукции).
Объяснение поведения промышленного предприятия составляет лишь первый шаг исследования. После точной характеристики текущей деятельности конкретной фирмы или предприятия следующим шагом является определение путей улучшения методов управления для обеспечения успеха хозяйственной деятельности.
Ликвидация оптового звена. Одним из радикальных организационных мероприятий могло бы явиться изменение порядка прохождения заказов. В частности, розничное звено могло бы передавать заказы на продукцию непосредственно заводу, минуя оптовиков. Результаты такого изменения приведены на рис. 2–5.
Рис. 2–5. Исключение из системы звена оптовой торговли.
Если устранить такие факторы, как накопление запасов, колебания числа заказов в процессе оформления и запаздываний в одном из трех звеньев системы, то увеличение объема производства в ответ на 10-процентное ступенчатое изменение продаж составит 26 % вместо 45 %, показанных на рис. 2–2.
Это обстоятельство выдвигает интересную проблему, относящуюся к тем предприятиям или отраслям, где имеется более трех звеньев товародвижения. Например, в текстильной промышленности, где часто существует четырех– или пятизвенное товародвижение от производства пряжи до конечного потребителя, наблюдается заметная неустойчивость. Не связана ли значительная степень неустойчивости, характерная для работы этой отрасли, с наличием такой многозвенности?