Текст книги "Основы кибернетики предприятия"
Автор книги: Джей Форрестер
сообщить о нарушении
Текущая страница: 31 (всего у книги 33 страниц)
Рис. A-З. Результаты расчета в зависимости от величины интервала решения.
Изложенное свидетельствует о том, что обычно можно выбирать интервал решений DT, равный или меньший 0,5 недели (меньше половины самого короткого времени запаздывания первого порядка, в данном случае равного 1 неделе для DCPF, DMBLF и DSF). Такой выбор величины DT дает численные результаты, незначительно отличающиеся от тех, которые получились бы при меньшей величине DT (см. рис. А-2).
Приложение B
ВЫРАВНИВАНИЕ ИНФОРМАЦИИ
Темпы потоков в промышленных и экономических системах обычно нерегулярны. Решения, порождающие эти потоки, принимаются под влиянием множества локальных событий. Нерегулярность потоков обусловливается разнообразными причинами: различиями в поведении людей, нарушением будничного ритма в предвыходные дни, угрозой забастовок, погодой, праздниками, ошибками, возникающими при сборе и обработке данных, использованием неопределенных и непостоянных принципов при выборе решений, зависимостью цен на товары от величины партии поставки, что стимулирует увеличение размера заказов, затратами на запуск и характером технологического процесса, когда поточное производство заменяется партионным, различием в продолжительности отчетных периодов (например, отдельных месяцев), событиями внутренней и внешнеполитической жизни, влияющими на настроение народа, практикой соблюдения заранее установленной частоты усреднения информации и принятия решений.
С другой стороны, многие действия руководства, зависящие от нерегулярных потоков, должны быть ограничены таким образом, чтобы реагировать только на сглаженную информацию. Нельзя допускать, чтобы темпы производства на заводе так же резко изменялись, как потоки ежедневно поступающих заказов.
Запасы возрастают и сокращаются медленно. Руководитель обычно весьма критически настроен в отношении мер, предпринимаемых другими лицами, и в то же время он пытается выявить как можно раньше любое длительное изменение, которое требует от него определенных действий.
Действия, направленные на выявление основных и существенных изменений в потоках информации и имеющие целью исключить такие колебания, которые большой роли не играют, принято называть выравниванием или усреднением. Выравнивание поступающей информации в известной степени имеет место в каждой точке системы, где принимаются решения.
Следует различать два метода выравнивания данных. Наиболее очевидный, но редко применяемый метод сводится к формальной числовой обработке информации для получения средних величин. Другой метод, более часто используемый, хотя и менее точный, представляет собой интуитивное выравнивание, основанное на ожидании и наблюдении в процессе принятия решений.
Наличие в системе формального математического процесса выравнивания легко обнаружить. Это практика, основанная на установившихся руководящих правилах. Еженедельные, месячные, квартальные и годовые отчеты о сбыте, производстве и затратах содержат величины, усредненные в пределах указанных промежутков времени. Эти формальные процессы выравнивания можно найти во многих каналах потоков информации.
Кроме того, дальнейшее выравнивание обычно вводится в систему в точках принятия решения. Мы могли бы рассматривать это как «психологическое выравнивание». Действительно, очень редко предпринимаются немедленные и энергичные действия в ответ на изменение поступившей информации, даже если это изменение является результатом числовой обработки первичных данных. Тенденция задерживать принятие решения до тех пор, пока изменение в поступившей информации не станет явным и пока другие многочисленные факторы не будут указывать на изменения в том же направлении, является выравниванием, обусловленным либо рассудительностью, либо проволочками, либо нерешительностью.
Процессы выравнивания представляют собой основу для правильной трактовки динамики системы. Выравнивание позволяет исключить кратковременные шумы и помехи. Но процесс выравнивания неизбежно вводит запаздывания в информационные каналы и в сферу принятия решений. Выравнивание изменяет чувствительность системы к колебаниям данных с различной периодичностью. Это – свойство выравнивания. Следовательно, процесс выравнивания искажает либо в лучшую, либо в худшую сторону информационные потоки в системе.
Выравнивание всегда является компромиссным процессом. Здесь всегда существует дилемма: или в большей степени выравнять информацию, чтобы уменьшить вредный шум/ или выравнять ее в меньшей степени, но зато сократить время запаздывания информации. Процесс выравнивания характеризуется двумя показателями: уменьшением кратковременных, но значительных по величине колебаний и возникновением запаздывания во времени. Они будут проанализированы после рассмотрения двух общепринятых способов выравнивания.
Проблема выравнивания сама по себе является сложной и большой проблемой. Здесь мы рассмотрим только наиболее простые положения.
Выравнивание представляет собой процесс рассмотрения ряда данных за прошедший интервал времени с целью выявления основного, определяющего их содержания, характеризующего значение рассматриваемой величины в текущий момент времени. Методы выравнивания могут изменяться в широких пределах в зависимости от того значения, которое мы придаем данным за различные периоды времени в прошлом. Здесь мы рассмотрим два метода выравнивания: метод равномерного выравнивания и метод экспоненциального выравнивания. При равномерном выравнивании каждой величине временного ряда придается одинаковая значимость. «Средняя величина продаж в течение последних 8 недель» является средней арифметической. Продажи за 8 недель складываются вместе (одинаковая значимость), и общую сумму делят на 8. Средняя величина могла бы определяться следующим образом:
Средняя арифметическая =,
где
S1 – соответствует последней неделе;
S2 – предшествующей ей, более ранней неделе и т. д.
Средние арифметические величины обычно используются в тех областях, где располагают официальными статистическими средними данными. Недельные, месячные и годовые уровни, характеризующие функционирование системы, являются средними величинами в том смысле, что в них придают одинаковый вес всем данным, включенным в рассматриваемый интервал. Так как эти средние величины подсчитываются через большие интервалы времени, равные периоду усреднения, то их следует рассматривать как прерывистые или отдельные величины.
Другим известным методом выравнивания, рассматриваемым ниже, является экспоненциальное выравнивание. В этом случае данным придают прогрессивно уменьшающееся значение по мере того, как эти данные относятся ко все более ранним интервалам времени. Значимость данных за прошедшие промежутки времени устанавливают по экспоненциальному закону, то есть значимость каждой предшествующей величины уменьшается в одно и то же число раз. Например, экспоненциальная средняя при постоянной времени усреднения в 8 недель применительно к полным недельным продажам может быть вычислена следующим образом:
,
где
S1 – величина продаж за последнюю целую неделю,
S2 – за предшествующую ей, более раннюю неделю и т. д.
В общем случае при постоянной времени выравнивания в Т недель экспоненциальная средняя величина будет определяться следующим образом:
.
Следует отметить, что принципиально каждая прошлая величина оказывает свое влияние на значение средней величины. Однако практически коэффициенты, определяющие значимость последних членов, становятся настолько малыми, что влияние этих членов оказывается несущественным, и ими можно пренебречь. Сумма коэффициентов ряда
,
при непрерывном увеличении числа его членов стремится к величине Т. Следовательно, при постоянном уровне продаж в каждом прошлом периоде средняя величина стремится, как и следовало ожидать, к той же самой величине.
При экспоненциальном выравнивании наибольший вес придается самым недавним величинам, и убывающие по прогрессии значения – наиболее устаревшей информации. Этот процесс ближе к интуитивному методу нахождения средних величин, чем процесс определения равномерной средней величины. Эта форма выравнивания достаточно удобна для отображения реальных условий и влияний в модели системы.
Экспоненциальная средняя имеет практическое преимущество по сравнению со средней арифметической величиной при использовании вычислительных машин. Экспоненциальную среднюю величину гораздо легче рассчитать, чем среднюю арифметическую. Средняя экспоненциальная величина в момент времени, равный единице, согласно ранее изложенному, равна
,
где величины 5 представляют собой прогрессивно устаревающие значения переменной (например, продаж), которая усредняется. Индексы обозначают время в прошлом. В последующий интервал, когда время равно 0,
.
Эта величина равна сумме нового члена и ранее определенной средней величины А1, умноженной на соответствующий экспоненциальный коэффициент; следовательно,
.
Каждое новое значение средней может быть рассчитано на основе значения средней за предшествующий период и нового значения переменной, которая выравнивается. Ранним, предшествующим значением средней величины можно затем пренебречь, и в дальнейшем следует иметь дело только с одним числовым значением средней, а не с длинным рядом более ранних данных. Последняя форма аналогична использованной в уравнении 13-8, где мы установили, что интервал между решениями не обязательно должен быть таким же, как единица времени, использованная для определения постоянной времени усреднения Т. Суммарная коррекция прежней средней величины для каждого интервала решения будет равна вышеприведенной величине, умноженной на продолжительность интервала решения. Экспоненциальная средняя, обобщенная для любого интервала решения, принимает форму:
,
B-1, L
где
А – среднее значение величины S (те же единицы измерения, что и S);
DT– интервал решения (единицы времени);
Т – постоянная времени экспоненциального выравнивания (единицы времени);
S – переменная величина, которая подвергается выравниванию (в соответствующих единицах измерения).
Схематически экспоненциальное выравнивание показано на рис. B–1. В начале вычислений, в момент времени К, известно старое значение средней величины A.J. Выравниваемая величина обозначена S.JK. Разность (S.JK – A.J), входящая в уравнение В-1 и обозначенная х, будучи умноженной на 1/T, дает необходимую коррекцию для каждой целой единицы времени; умножая затем эту величину на DT, мы определим коррекцию на данном интервале решения у.
Рис. В-1. Экспоненциальное выравнивание.
Теперь мы остановимся на рассмотрении запаздываний в потоках информации, которые возникают в результате ее усреднения. Сопоставим уравнение В-1 с обычной парой уравнений, используемых для отображения экспоненциального запаздывания первого порядка.
Рис. В-2. Экспоненциальное выравнивание первого порядка и запаздывание.
Допустим, что S в уравнении В-1 является вводом в запаздывание, выход из которого обозначен индексом W (см. рис. B–2). Уравнения экспоненциального запаздывания первого порядка могут быть представлены в следующем виде:
,
B-2, L
,
B-3, R
где
L – уровень в запаздывании (единицы S, умноженные на время);
S – входящий поток информации (в своих единицах измерения);
W – исходящий поток из запаздывания (те же единицы, что и S);
Т – постоянная времени экспоненциального выравнивания (единицы времени).
Уравнение В-3 может быть записано для более раннего периода:
.
Подставив это значение в уравнение В-2, получим
.
Если мы теперь предположим, что L.K = (T)(A.K), то после простых преобразований получим уравнение
,
которое идентично уравнению В-1. Следовательно, уравнение экспоненциального выравнивания и уравнение запаздывания первого порядка эквивалентны.
Экспоненциальное выравнивание первого порядка вызывает запаздывание в потоках информации той же величины и формы, что и экспоненциальное запаздывание первого порядка. Постоянная времени выравнивания эквивалентна постоянной запаздывания, которая рассматривалась в главе 8.
Запаздывание, создаваемое выравниванием, может быть представлено графически. На рис. В-3 представлено равномерное усреднение.
Рис. B-3. Запаздывание, обусловленное равномерным усреднением.
Действительные значения рассматриваемой переменной показаны равномерно увеличивающимися. В любой момент времени средняя величина равна значению действительной величины в середине периода усреднения; другими словами, средняя величина равна действительной с запаздыванием в 1/2 интервала усреднения.
Рис. В-4. Запаздывание, обусловленное экспоненциальным усреднением.
На рис. В-4 показано запаздывание при экспоненциальном выравнивании для случая равномерно возрастающей переменной. Как видно из графиков, запаздывание должно быть равным постоянной времени T; это можно легко доказать, рассмотрев подобные треугольники:
,
,
где у является изменением среднего значения величины, изображенной на рисунке, и равно правой части уравнения B–1, которое так же отражает изменение значения средней величины. Поэтому величина Т, отображающая на рисунке запаздывание в получении среднего значения по сравнению с действительным, обязательно должна быть равна по величине постоянной времени в уравнении B–1.
Постоянное запаздывание, обусловленное экспоненциальным выравниванием, как это показано на рис. В-4, имеет место только в случае линейно изменяющихся входных данных. При нелинейных потоках информации запаздывание, связанное с выравниванием, будет определяться более сложно. Можно показать, что для синусоидально изменяющихся входных данных запаздывание никогда не превышает четверти периода колебания на входе.
При выравнивании поток информации искажается как по амплитуде, так и во времени. Характер искажений зависит от величины изменений, которые вносятся во входную информацию, от используемого типа выравнивания и объема выравнивания, который определяется видом и степенью нежелательных возмущений, существующих в информации. Почти все потоки информации выравниваются либо посредством формальных математических приемов, либо под воздействием психологических суждений, либо с использованием того и другого методов выравнивания, прежде чем они лягут в основу принимаемых решений. Запаздывания и усиления, обусловленные процессом выравнивания, как мы видели в части III, существенно влияют на динамическое поведение системы.
Даже в тех случаях, когда модель проигрывается при отсутствии помех (как это изображено на большинстве рисунков в части III), процессы выравнивания должны быть отражены в модели. Выравнивание, обусловленное присутствием помех, неизбежно проявляется как фильтр, искажающий желаемую информацию. Эти искажения должны быть отражены даже при отсутствии помех, если мы хотим, чтобы система была правильно отображена в модели.
Приложение C
ШУМЫ
При работе с моделями замкнутых информационных систем необходимо четко понимать природу и происхождение шумов. Функции принятия решений, которые мы можем сформулировать, объясняют только главные факторы, влияющие на основные потоки. Многочисленные явления возникают за пределами изучаемой системы. Как отмечалось ранее в приложении В, наличие шумов, то есть случайных явлений, требует выравнивания, сглаживания данных, что в свою очередь вызывает запаздывания. Как видно из рис. 13–20 и 15-5, шумы порождают такие возмущения, к которым система чувствительна. Специальное исследование показывает, что шумы ограничивают возможность прогнозирования будущего состояния системы.
В данной книге мы решили начинать построение моделей с рассмотрения непрерывных, свободных от помех потоков информации, решений и действий. После того как изучена динамика системы при отсутствии помех, шумы могут быть введены дополнительно с тем, чтобы показать влияние случайных явлений на поведение системы. Такой порядок изучения отличается от подхода, принятого при рассмотрении стохастических моделей, в которых решения сформулированы так, чтобы создать последовательности отдельных событий, статистическая вероятность свершения которых может определяться состоянием системы. Автор считает, что, изучая вначале систему, свободную от помех, можно легче понять, каким образом основная структура системы определяет ее действия.
Когда мы будем готовы ввести составляющую шума в решения системы, мы должны четко представлять методологию того, как выполнить эту работу. Как следует определять шумы? Какие характеристики шумов интересуют нас? Сигнал шума несет мощность в широкой полосе частот.
Известно множество различных категорий шумов. В физических науках термин «белый шум» применяется для описания непрерывной функции, которая характеризуется равномерным распределением энергии по всему спектру частот от нуля до бесконечности, а плотность распределения вероятностей удовлетворяет Гауссову распределению. Белый шум является непрерывным сигналом, имеющим бесконечную мощность источника, и он может иметь мгновенные значения бесконечно большими; значение его в данный момент ничего не говорит о его значении в следующий момент времени даже через бесконечно малый интервал времени.
Рис. С-1. Белый шум имеет постоянную величину мощности, отнесенной к интервалу частоты.
Говоря о постоянной спектральной плотности, как это имеет место в случае белого шума, мы подразумеваем, что мощность одинакова в любой полосе частот конечной ширины, независимо от того, где эта полоса расположена (см. рис. С-1). Например, в широкополосном электронном генераторе шумов была бы замерена одинаковая мощность после того, как мы пропустили шум через фильтр с полосой пропускания 1 тыс. гц, который перекрывал диапазон частот от 1 тыс. гц до 2 тыс. гц, и после того, как мы пропустили бы шум через фильтр с диапазоном частот от 1111 тыс. гц до 1112 тыс. гц. Следует отметить, что величина мощности шума в белом шуме определяется шириной полосы пропускания частот, а не отношением нижней границы частоты к верхней. В первом примере верхняя граница частоты полосы пропускания вдвое больше нижней границы. Во втором примере эта разница составляет менее 0,1 %. Мощность шума одинакова в каждой полосе частот одной и той же абсолютной ширины, но различна в полосах частот, измеряемых в октавах. (Октава представляет полосу частот, у которой верхняя граница вдвое больше нижней частоты.) Для источника белого шума мощность шума на октаву удваивается с каждой более высокой октавой (см. рис. С-2). Например, предположим, что 1 единица мощности замерена в октаве, перекрывающей диапазон от 1 тыс. гц до 2 тыс. гц. Тогда если шум исходит от источника белого шума, то в октаве с 2 млн. гц до 4 млн. гц будет заключено 2 тыс. единиц мощности.
Рис. С-2. Белый шум, показывающий экспоненциальное увеличение мощности, отнесенной к октаве.
Белый шум характеризуется определенным распределением значений мощности в некотором диапазоне частот, но оно вовсе не обязательно будет описывать именно тот тип шума, который мы хотим включить в рассмотрение. Мы должны теперь увязать понятия белого шума и мощности шума с задачей использования шумов в моделях социальных систем.
В действительности генератор белого шума создать невозможно, ибо он должен обладать бесконечно большой мощностью и генерировать любые частоты. Однако можно осуществить достаточно близкое приближение к такому генератору, обеспечив генерирование белого шума в определенных диапазонах частот. Одной из точек зрения относительно сигнала шума является его представление в виде ряда дискретных случайных чисел. Эти числа могут быть распределены с равными промежутками времени. Исходя из этого, мы можем рассматривать непрерывный сигнал шума как кривую, соединяющую эти величины (рис. С-3). Форма кривой, изображенной на рис. С-3, является хорошим приближением к белому шуму вплоть до области частот, периоды которых вдвое больше интервала между дискретными импульсами шума. Другими словами, самая высокая частота, которую следует отразить в кривой, соединяющей серию случайных значений, равномерно распределенных во времени, составляет половину той частоты, с которой появляются сами случайные импульсы (данные).
Рис. С-3. Равномерно расположенные случайные числа и непрерывная кривая шума.
Ряд равномерно распределенных случайных чисел можно легко использовать в качестве источника шума при работе с моделями социальных систем. Но будет ли этот источник отображать обусловленные принятием решений возмущения, которые мы хотим изучить? Здесь возникает та же проблема, что и при выборе других взаимосвязей в модели и ее параметров. Нас интересуют источники шумов, отражающие характер возмущений, которые, как мы считаем, существуют в действительной системе. Произвольный выбор ряда случайных чисел не дает уверенности в том, что данный метод удовлетворяет поставленной задаче. Каким должно быть среднее отклонение? Какой должна быть мощность шума в зависимости от распределения частот? Как часто следует производить выборочные замеры шумов. Насколько уязвимы наши суждения в отношении состава шумов?
К счастью, те выводы, которые мы собираемся получить на основе изучения моделей, не очень чувствительны к различным категориям используемых сигналов шума. Однако следует обратить внимание на некоторые общие положения и рекомендации.
Сигнал шума, представленный в виде ряда случайных чисел, как это изображено на рис. С-3, близок к полученному от источника белого шума при частотах, меньших частоты импульсов. Такой сигнал имеет одинаковую мощность шума при бесконечно малом приращении частоты, но не на октаву. Зрительно наиболее наглядной является форма кривой, описывающей величину мощности в расчете на октаву. Из рассмотрения рис. С-3 мы можем заметить, что мощность шума преобладает при частотах, равных половине частоты импульсов. Мы не видим или не ощущаем низкочастотных составляющих, так как они очень незначительны в единицах мощности на октаву.
Сигнал шума нельзя выбирать как произвольный ряд случайных чисел, поскольку эта процедура позволяет произвольно и полно определить всю спектральную плотность, а она может оказаться непригодной для наших целей. В качестве примера рассмотрим переменную, изменяющуюся по закону случайной функции, представляющую, например, фактор погоды в модели экономической системы или товарного рынка. Допустим далее, что оценку модели следует производить ежедневно. Мы могли бы затем выбирать ежедневно случайные числа, характеризующие количество выпавших осадков. Случайный характер этих данных мог бы потребоваться для воспроизведения суточных изменений возможных осадков. Но этого недостаточно. Случайные данные суточных выпадений осадков должны анализироваться с целью выявления недельных, месячных, годовых и более длительных изменений, поскольку выпадение осадков не является чисто случайным, время от времени происходящим явлением, а имеет определенные закономерности, если речь идет о достаточно продолжительных интервалах времени.
В главах 13–15 использовался простой метод управления мощностью шумов: шумы подавались в систему и поддерживались в течение более длительного интервала, чем интервал решения уравнений. В главе 13 (уравнение 13–79) шумы подавались в модель и поддерживались в течение одной недели; а решение уравнений производилось для каждых 0,05 недели. Допустим, что мы попытались воспроизвести случайные недельные изменения продаж в диапазоне 2 к 1 (но не таких больших размеров, как в главе 13) путем добавления групп случайных чисел, взятых по 20 в группе. Изменения, происходящие из часа в час и изо дня в день, могли бы оказаться нереально большими, иногда даже вызывающими аннулирование числа заказов, превышающего располагаемое, с тем чтобы сделать долговременные изменения достаточно большими.
Когда мы говорим о характере сигнала помех, то особенно важен вопрос частотной избирательности системы. На рис. 15-5 показан сигнал случайной функции, который подается и поддерживается в течение 5 недель. В данном примере самое большое содержание мощности в величинах мощности на октаву приходится на диапазон самых высоких частот, отображенных на рисунке. Это диапазон, составляющий 10 недель, то есть частота равна около 5 периодам в год. Однако эта высокочастотная мощность почти полностью поглощается выравниванием и запаздыванием в системе. Система в целом реагирует на гораздо меньшую энергию шума, отображающего период в два года (или половину цикла за год). Это тот диапазон частот, в котором система обладает усилительными свойствами и амплитуды на выходе превышают амплитуды сигнала шумов на входе.
Следует отметить, что выравнивание подавляет высокие частоты источника шумов, но пропускает низкие частоты. Эти низкие частоты являются составляющими шума, которые авто-коррелируют на протяжении длительных периодов времени.
При оценке переменных, несущих шумы, мы должны проявлять осторожность и различать низкочастотные возмущения, возникающие вне системы (собственно шумы), от внутренне присущих ей частот. По-видимому, невозможно определить путем наблюдения, в какой мере низкочастотные случайные колебания привносятся внешним возмущением, а какая их часть обусловлена вводом, усиленным внутри системы. Мы обычно будем полагаться на наши знания деталей структуры системы при определении чувствительности модели к различным частотам и после этого найдем (как это было сделано в главе 12) такой сигнал помех, который даст амплитуды, наблюдаемые в рассматриваемой системе. Только в тех случаях, когда требуемые сигналы шума оказываются нереально большими, объективные знания природы шумов в реальной системе могут оказаться полезными при определении эффективности модели.
Использование шумов в динамических моделях требует глубокого и детального изучения. В данном приложении отмечены только некоторые важные положения.
Приложение D
ЗАПАЗДЫВАНИЯ
Ниже рассматриваются два связанных с запаздываниями вопроса, которые не были освещены ранее.
D. 1. Сопоставление информационного и «материального» запаздываний
Необходимо различать запаздывания в потоках информации и запаздывания в потоках конкретных физических величин. В предыдущих разделах уравнения запаздываний были использованы для определения запаздываний при транспортировке материалов и заказов. Выравнивающие уравнения использовались для отображения запаздываний в потоках информации. Как отмечалось в приложении В, их динамическое поведение аналогично. Тем не менее имеется некоторое различие между ними: они, в частности, ведут себя различно в том случае, когда постоянная запаздывания перестает быть постоянной и начинает изменяться.
«Материальное» запаздывание не должно создавать или поглощать содержимое проходящего через него потока. Это означает, что в «материальном» запаздывании с постоянным темпом входящего потока исходящий поток будет изменяться при изменении постоянной времени запаздывания. Очевидно, что выход будет отличаться от входа в течение достаточно длительного времени, необходимого для создания внутреннего уровня в запаздывании, которое подвергается регулированию.
Следующие уравнения представляют экспоненциальное запаздывание первого порядка с переменной величиной запаздывания:
LEV.K=LEV.J + (DT)(IN.JK – OUT.JK),
D-1, L
,
D-2, R
где
LEV – уровень, накопленный в запаздывании (единицы);
DT – интервал решения уравнения (время);
IN – темп входящего потока (единицы/время);
OUT – темп исходящего потока (единицы/время);
DEL – запаздывание, переменное (время).
Уравнение D-1 аккумулирует разницу между входящим и исходящим потоками. В уравнении D-2 темп исходящего потока определяется на основании уровня, полученного в предшествующем уравнении. При постоянном темпе входящего потока и установившихся условиях уровень равнялся бы произведению темпа входящего потока на запаздывание. Если теперь уменьшить запаздывание на половину от его первоначального значения, то объем уровня должен обязательно снизиться, даже при условии, что темп входящего потока остался бы неизменным. Это требует, чтобы темп исходящего потока в течение некоторого промежутка времени превышал темп потока входящего.
С другой стороны, значения величин в информационном потоке не должны изменяться только потому, что изменились запаздывания в передаче информации. Эти неустановившиеся независимые изменения в запаздываниях могут быть оценены с помощью следующего выравнивающего уравнения:
,
D-3, L
где
INS – выравненный ввод (в единицах измерения входящей величины);
DT – интервал решения уравнения (время);
DEL – запаздывание, переменное (время);
IN – входящая информация (в собственных единицах измерения).
В установившихся условиях, когда темп входящего потока IN постоянен, выравненная величина INS будет иметь то же самое значение, при этом разность, определяемая членом в круглых скобках в правой части уравнения D-3, будет равна нулю. Таким образом, запаздывание DEL может измениться, не оказав влияния на изменения величины выравненного потока на выходе. Это справедливо, и этого следовало ожидать при передаче информации. Более того, в уравнении D-3 сохраняются неизменными и единицы измерения величин от входа до выравненной величины на выходе, в то время как в уравнении D-2 содержимое исходящего из материального запаздывания потока измеряется в тех же единицах, что и содержимое входа, умноженных на единицы времени. Это оказывается неудобным и бессмысленным, когда речь идет о каналах информации.
Для отображения запаздывания в передаче физических величин следует использовать уравнения запаздывания, аналогичные, например, уравнениям D-1 и D-2 или приведенным в главе 8. Для отображения запаздывания в потоках информации следует использовать рассмотренные в приложении В уравнения выравнивания и уравнения типа D-3.
D. 2. Альтернативные уравнения для экспоненциальных запаздываний
Разностные уравнения типа D-1 и D-2 могут быть записаны в различных формах. Форма записи, данная в разделе D-1, несколько неудобна, поскольку она требует суммирования двух количеств LEV и OUT при переходе от одного момента времени к следующему. В принципе, при таком переходе экспоненциальное запаздывание первого порядка должно бы требовать определения только одной числовой величины.
Для отображения экспоненциального запаздывания третьего порядка разработанная нами программа-компилятор использует одно уравнение для каждой ступени запаздывания первого порядка, которое может быть получено исходя из следующих соображений. Запишем уравнение D-2 для периода времени, предшествующего данному моменту времени К, при постоянном запаздывании: