Текст книги "Основы кибернетики предприятия"
Автор книги: Джей Форрестер
сообщить о нарушении
Текущая страница: 4 (всего у книги 33 страниц)
Изменение правил регулирования запасов. Поведение простой производственно-сбытовой системы по типу изображенной на графиках, по-видимому, гораздо больше зависит от практики регулирования запасов и невыполненных заказов, чем от любой другой характеристики системы. Величина изменения запасов и сроки их регулирования имеют очень важное значение. Они заслуживают специального внимания и должны быть тщательно рассмотрены руководителями предприятия.
Например, на рис. 2–6 изображена та же производственно-сбытовая система, но при этом предполагается, что администрация изменила сроки регулирования запасов (но не всего объема корректировок, вносимых в систему). Во всех предыдущих примерах предполагалось, что регулирование запасов должно основываться на данных о продажах за 8 предыдущих недель (экспоненциальное выравнивание при константе времени в 8 недель). Это правило остается в силе и в данном случае, так что регулирование запасов никогда не может произойти раньше, чем это определяется запаздыванием на выравнивание продаж. Кроме этого, возникает вопрос, как быстро следует размещать заказы после выявления необходимой корректировки запасов. Если запасы ниже объема, желательного для обеспечения текущего уровня деловой активности, то какую долю разности или разрыва следует добавить к заказам, передаваемым на завод на следующей неделе?
Рис. 2–6. Изменение времени на корректировку объема запасов и размещение заказов.
Кривые выпуска продукции заводом показывают влияние различных сроков регулирования запасов. Каждая кривая соответствует определенной скорости регулирования, то есть известной недельной доле суммарного отклонения от нормального уровня запасов, которая должна быть учтена путем корректировки заказываемых объемов продукции для приведения их в соответствие с требованиями сбыта. Скорость регулирования колеблется от уровня верхней кривой, по которой заказы, предназначенные для компенсации любого нарушения нормального уровня запасов, а равно заказы, находящиеся в процессе выполнения, полностью выдаются на следующей неделе, вплоть до уровня нижней кривой, по которой только 1/26 любого остаточного расхождения исправляется на следующей неделе. Нижняя кривая обеспечивает корректировку почти 60 % первоначального нарушения на 26 недель, или возмещение почти 85 % начального отклонения за 1 год.
Мы видим, что последующие предельные значения производства для еженедельного регулирования запасов (верхняя кривая) в результате внезапного подъема розничной продажи на 10 % отклоняются соответственно на 57 % вверх, на 10 % вниз и на 15 % вверх от первоначального уровня. Между смежными высшими точками имеется интервал в 27 недель.
В условии другой крайности, когда регулирование производится через 26 недель (нижняя кривая), верхняя точка кривой лежит только на 20 % выше первоначального уровня и, по мере того как темпы производства достигают уровня, повышенного на 10 %, постепенно снижаются.
Во всех других примерах данной главы применяется четырехнедельный срок регулирования запасов; так что кривая на рис. 2–6, обозначенная «1/4 в неделю», совпадает с кривой объема производства на рис. 2–2.
На рис. 2–6 видно, что постепенное регулирование запасов в связи с изменением уровня деловой активности приводит к большей стабильности. Далее, уменьшение колебаний производства достигается без увеличения крайних значений запасов.
Табл. 2–2 показывает минимальный объем запасов в каждом из звеньев системы и общий минимум всей суммы запасов в системе по сравнению с исходным их уровнем для различных сроков регулирования заказов. Общий объем изменений запасов меньше, чем сумма запасов отдельных звеньев, потому что крайние значения не совпадают во времени.
Таблица 2–2. Влияние сроков регулирования заказов на пополнение запасов на минимальный их уровень
Регулирование (время)
Розничное звено, %
Оптовое звено, %
Завод, %
Итого, %
1 неделя
– 3,6
– 9,4
– 16,0
– 6,6
2 недели
– 3,9
– 9,8
– 15,8
– 6,9
4 недели
– 4,2
– 9,9
– 14,8
– 7,0
8 недель
– 4,6
– 9,7
– 13,0
– 7,0
12 недель
– 4,8
– 9,6
– 11,9
– 7,1
26 недель
– 5,2
– 9,2
– 10,2
– 7,1
Следует заметить, что многие способы прогнозирования продаж имеют тенденцию ускорять реакцию запасов на изменение уровня продаж. Такое прогнозирование будет поэтому создавать менее стабильную работу системы. Это происходит из-за того, что корректировка запасов и товаров в каналах обращения концентрируется на периодах наивысших подъемов и спадов и обнаруживает тенденцию к самовоспроизводству.
Корректирование нормы запасов в одном звене принимается ближайшим вышестоящим звеном за реальные изменения деловой активности и становится основой для еще большей корректировки запасов.
Рассмотренный пример имитации поведения производственно-сбытовой системы в различных условиях розничных продаж далеко не исчерпывает всего содержания деятельности такой системы, в которой наряду с потоками заказов, товаров, информации важное место принадлежит потокам оборудования, денежных средств, рабочей силы и их взаимодействию друг с другом под влиянием многочисленных меняющихся внутренних и внешних условий объективного и сознательно регулируемого характера.
Так, например, исключительно важное значение для розничного товарооборота имеет характер и способ действия торговой рекламы, создание и освоение производства новых моделей продукции, ее усовершенствование и удешевление благодаря изменению методов производства.
В ряде случаев поведение системы и ее эффективность могут быть улучшены путем рационализации счетной и конторской работы, что дало бы значительное сокращение запаздываний в различных звеньях оформления и исполнения заказов, учета и анализа продаж, получения необходимой информации для принятия обоснованных решений и т. п.
Но поведение системы зависит и от таких факторов, как политика расширения завода, порядок установления и пересмотра цен, образ действия конкурентов, условия найма рабочей силы, а также уровень техники в данной отрасли промышленности. В идеале представляется желательным отразить все эти элементы в динамической модели предприятия. Но практически это сопряжено с большими трудностями, и, что особенно важно, детализация описания имитируемой системы усложняет ее модель в такой степени, что она в ряде случаев утрачивает свою четкость и познавательную ценность. Поэтому важно, чтобы исследователь умел в нужных случаях проявить разумное ограничение. Кроме того, необходимо применять четко целевой подход к имитации действия системы, не стремясь обязательно полностью отразить все многообразие ее функций и определяющих факторов, а последовательно анализируя различные стороны этой деятельности и постепенно подключая соответствующие важнейшие факторы, чтобы отчетливо выделить влияние каждого из них, а затем и совокупное воздействие их сочетания. В данной главе мы сделали попытку проиллюстрировать именно такой подход, не претендуя на исчерпывающее изучение построенной простой модели, а стремясь показать методику ее использования для познания внутренних динамических характеристик исследуемой системы. В последующих главах дано обстоятельное изложение важнейших вопросов моделирования промышленного предприятия и методов его изучения как информационной системы с обратной связью.
Глава 3
МОДЕЛИ
Модели могут служить основой для проведения экспериментов с меньшей затратой средств и в более короткие сроки, чем при исследовании изменений на реальных системах. Социологические модели должны отражать всю информационную систему с обратной связью, а не отдельные изолированные ее элементы. Наши эмпирические знания дают богатый материал, позволяющий создавать динамические модели.
Модели получили широкое признание как средство изучения сложных явлений. Они заменяют реальное оборудование или целую систему. Ценность моделей заключается в том, что они гораздо эффективнее способствуют более глубокому пониманию неясных характеристик поведения системы, чем если бы это делалось путем наблюдения за реальной системой. Модель может давать необходимую информацию при меньшей затрате средств, чем представляемая ею реальная система. Создается возможность более быстрого приобретения знаний в условиях, не наблюдаемых в реальной действительности.
3. 1. Классификация моделей
Модели можно классифицировать по-разному. Вариант группировки моделей, представляющий интерес для нашего исследования, приведен на рис. 3–1.
Рис. 3–1. Классификация моделей.
Материальные или абстрактные. Прежде всего можно выделить модели материальные и абстрактные.
Материальные модели наиболее доступны для понимания. Обычно это копии исследуемых предметов, часто – уменьшенные.
Статические материальные модели, например архитектурные, помогают наглядно представить размещение элементов на плоскости и пространственные соотношения. Примером динамических материальных моделей служит аэродинамическая труба, применяемая для изучения аэродинамических характеристик проектируемых летательных аппаратов.
Абстрактные модели состоят не из материальных элементов, а из символов, и применяются они гораздо чаще, чем материальные, но они не всегда считаются моделями. Используемая символика может иметь форму письменной речи или мыслительного процесса С помощью мысленного представления или словесного описания может быть построена модель фирмы и ее деятельности.
Хозяйственные руководители постоянно имеют дело с такими мысленными и словесными моделями фирмы. (Это мысленное представление о фирме, и оно не обязательно точное.)
Модели призваны заменить в нашем представлении реальную систему.
Математическая модель является особой разновидностью абстрактных моделей. Она выражается языком математических символов и, как другие абстрактные модели, является описанием представляемой системы. Математические модели широко применяются, но воспринимаются они труднее, чем материальные, и не столь часто встречаются в повседневной практике, как словесные модели.
Уравнения, описывающие напряжения в конструкции, представляют собой статическую математическую модель балок и опор. Уравнения движения планет вокруг солнца являются динамической математической моделью солнечной системы.
Математическая модель представляет собой более четкое описание, чем большинство словесных моделей. При построении математических моделей мы начинаем со словесных и уточняем их до тех пор, пока нам не удастся перевести их на язык математики. Сам по себе перевод не труден. При переходе от словесных утверждений к математическим трудности возникают в том случае, когда исходная словесная модель является неточным описанием и ее недостатки обнаруживаются при попытке преобразования в математическую форму.
Преимущество математической модели в сравнении со словесной или материальной заключается в том, что с ней легче оперировать, ее логическая структура более определенна, на ее основе легче проследить путь от предположений до вытекающих из них следствий.
Статические или динамические. Модели могут отражать ситуации, меняющиеся или не меняющиеся во времени. Статическая модель описывает взаимосвязи, не подверженные изменениям. В динамической модели рассматриваются отношения, изменяющиеся во времени.
Линейные или нелинейные. Системы, отображаемые в моделях, могут быть линейными и нелинейными; соответственно классифицируются и модели.
В линейной системе внешние воздействия просто суммируются[13]. При линейной трактовке предприятия удвоение числа поступающих заказов вызвало бы в любой последующий момент времени в десять раз большие изменения, чем увеличение объема заказов на 10 %. В такой модели предприятия не учитываются ограничения производственной мощности; производительность труда не должна снижаться даже в том случае, если возникнет избыток рабочей силы по сравнению с наличным оборудованием, а осуществление крупных изменений мощности предприятия требует не больше времени, чем незначительные изменения такого рода. Рабочая сила, оборудование и материалы – каждый из этих элементов оказывал бы свое влияние на производство совершенно независимо от состояния двух других; в частности, наличия двух элементов – рабочей силы и оборудования – было бы достаточно для выпуска продукции даже при полном отсутствии материалов. Линейные модели приемлемы во многих работах в области физики, но они не в состоянии отразить существенные характеристики промышленных и социальных процессов.
При помощи линейных моделей гораздо проще достигнуть конкретного математического решения, чем при помощи нелинейных. За незначительным исключением математический анализ не дает общих решений для нелинейных систем. Поэтому когда для приближенного отражения нелинейных по существу явлений используются линейные модели, то нелинейные характеристики этих явлений утрачиваются.
Как только мы отказываемся от попытки найти общее решение, которое описывало бы в едином комплексе все возможные характеристики поведения системы, сразу же исчезает различие в сложности исследования линейных и нелинейных систем. Методы моделирования, дающие частное решение для каждой отдельной совокупности условий, одинаково применимы для анализа как линейных, так и нелинейных систем.
Устойчивые и неустойчивые. Динамические модели, в которых условия меняются во времени, могут быть разделены на устойчивые и неустойчивые, точно так же, как и реальные системы, которые они отражают, можно охарактеризовать как устойчивые или неустойчивые.
Устойчивой является такая система, которая, будучи выведена из своего исходного состояния, стремится вернуться к нему. Она может колебаться некоторое время около исходной точки, подобно обычному маятнику, приведенному в движение, но возмущения в ней со временем затухают и исчезают.
В неустойчивой системе, находящейся первоначально в состоянии покоя, возникшее возмущение усиливается, вызывая увеличение значений соответствующих переменных или их колебания с возрастающей амплитудой. В нелинейной системе, которая при обычных условиях неустойчива, могут возникнуть колебания, возрастающие до тех пор, пока их не ограничит появление нелинейных по форме воздействий (недостаток рабочей силы, производственной мощности или же материальных ресурсов). Продолжающиеся колебания в этих условиях можно рассматривать как достигшие устойчивой амплитуды изменений от максимума до некоторого минимума. Очевидно, что в экономических системах максимальные уровни деловой активности ограничены ресурсами, а минимальные – нулевым ее значением.
Есть основания полагать, что производственно-сбытовые и экономические системы, представляющие для нас наибольший интерес, часто относятся к тому типу, в котором, как в неустойчивых системах, малые возмущения усиливаются до тех пор, пока не натолкнутся на нелинейные (по форме) ограничивающие факторы.
С устойчивым или меняющимся режимом. Модели (и системы) могут далее различаться в зависимости от того, является ли их поведение по своему характеру установившимся или изменчивым.
Модель с изменчивым режимом является цикличной, так что ее поведение в некоторый период времени носит тот же характер, что и в любой другой. С известной точки зрения модель неувеличивающейся национальной экономики, которая обнаруживает циклический характер деловой активности, можно считать колеблющейся в устойчивом режиме, несмотря на то что ни одна отдельно взятая последовательность событий никогда не повторяется совершенно одинаково. Точно так же при выяснении некоторых вопросов можно считать (как это делается в настоящее время с автомашинами), что длительный период эффективной эксплуатации определенного вида изделий можно представить в форме динамической модели с устойчивым режимом. В системах, относящихся к управлению хозяйственными организациями, устойчивый режим поведения представляет собой особый частный случай. (Система, рассматриваемая в главе 2, является динамической моделью с устойчивым режимом.)
Модели с меняющимся режимом отражают такие системы, которые с течением времени изменяют свой характер. Системе, обнаруживающей признаки роста, свойственны черты неустойчивости поведения. Изменчивые реакции представляют собой однократные, неповторяющиеся явления. Многие важные проблемы управления (например, рост фирмы, строительство нового предприятия, расширение рынка) изменчивы по своему характеру.
Открытые или замкнутые. В дополнение к классификации, показанной на рис. 3–1, модели могут быть «открытыми» и «замкнутыми». Но различие между ними не столь четкое, как можно было бы судить по названиям. Модели могут быть «открытыми» в разной степени.
Замкнутой динамической моделью является модель, которая функционирует вне связи с внешними (экзогенными) переменными. В замкнутой модели изменения значений, переменных во времени. определяется внутренним взаимодействием самих переменных. Замкнутая модель может выявить интересное и поучительное поведение системы без ввода переменной извне[14].
Информационные системы с обратной связью по существу являются замкнутыми системами. Это самонастраивающиеся системы, и наиболее интересные их характеристики вытекают из внутренней структуры и взаимодействий, а не в порядке реакций, которые лишь отражают ввод информации извне.
Интересующие нас модели могут приводиться в действие как замкнутые системы. При этом первостепенный интерес представляют внутренние динамические взаимодействия. Мы не всегда будем отдавать предпочтение изучению строго замкнутых моделей. Часто бывает целесообразно в порядке эксперимента ввести данные извне, чтобы возбудить внутренние реакции системы. Импульсы, скачки, гармонические колебания и помехи (случайные возмущения) обычно вводятся при такого рода экспериментах. Эти внешние (экзогенные) вводы имеют смысл только при условии, если мы готовы допустить, что внешние вводы совершенно независимы от результирующей реакции внутри системы.
Модели промышленных систем. Большинство математических моделей, которые встречаются в литературе по управлению и экономике, принадлежит к одной из двух групп, отмеченных кружками на рис. 3–1. Почти все они устойчивые, линейные, с постоянным режимом. Одни – статические, другие – динамические. Такие модели при анализе экономических систем не были особо эффективными. Модели ситуаций, складывающихся в промышленном производстве и изучаемых методами исследования операций, нередко возмещали с избытком затраты на анализ, но и они не решали важнейших проблем хозяйственного руководства. Чтобы модель можно было использовать для исследования практических вопросов хозяйственного руководства и экономических проблем первостепенной важности, нужно, чтобы она включала все разновидности, перечисленные в схеме на рис. 3–1. Управление крупными фирмами имеет дело с изменчивостью условий роста и с устойчивостью нормальных колебаний хозяйственной активности и неопределенностью ее результатов.
Устойчивые промышленные системы могут иметь место в отраслях, производящих предметы широкого потребления. Неустойчивые системы, ограниченные только входящими в них нелинейными функциями, имеют, очевидно, место в производстве оборудования и предметов длительного пользования, и, пожалуй, также в отношении американской экономической системы в целом. Чтобы создать действительно эффективную модель промышленного предприятия, в нее следует включить нелинейные функции в виде ограничений производственной мощности, дефицита рабочей силы и ограниченности кредита, а также учесть зависимость решений от комплексного взаимодействия между переменными.
Поскольку время и связанные с ним изменения составляют главную заботу хозяйственного руководителя, эффективная модель должна быть динамической и способной создавать собственную эволюцию во времени.
Таким образом, речь идет о таких математических моделях, которые могут применяться для отражения последовательного во времени действия динамических систем линейных и нелинейных, устойчивых и неустойчивых, с постоянным или меняющимся режимом. Модель должна быть пригодна для воспроизведения того, что мы называем организационными формами, методами управления, а также тех явных и скрытых факторов, которые определяют характер развития системы во времени. Эти модели слишком сложны (десятки, сотни и тысячи переменных) для аналитического решения. Ведь современная математика может аналитическими методами решать лишь самые простые задачи из области нелинейных систем. Между тем модели, рассматриваемые в данной работе, применяются для имитации определенного порядка действий, являющегося результатом определенного комплекса исходных условий в сочетании с известной комбинацией помех и иных вводов в систему. Это экспериментальный, эмпирический подход в поиске правильного понимания проблемы и, следовательно, лучших результатов, однако без гарантии нахождения «оптимальных» решений того или иного вопроса.
В науке об управлении и в экономической литературе термином «математическая модель» обычно обозначаются любые математические взаимосвязи между вводом и выводом применительно к какой-либо части системы. В терминологии, принятой для технических целей, эту реакцию на выводе части системы в ответ на один или несколько вводов называют обычно «передаточной» функцией.
Данная функция определяет, каким образом условия на вводе передаются на вывод. В данном контексте простое математическое выражение, описывающее воздействие какого-либо звена системы на другие, непосредственно к нему примыкающие, мы не будем называть «моделью», а будем передавать его одним из синонимов: «передаточная функция», «функциональная связь», «уравнение решения» или «уравнение темпа». В противоположность этому «модель» будет означать систему, состоящую из комплекса взаимодействующих «уравнений решения».
3. 2. Модели в естественных науках, технике и общественных науках
Математические модели, применяемые в общественных науках, часто сравнивают с несложными моделями из области физических наук и биологии. Это может дать повод к заблуждению.
Созданные модели солнечной системы, атома, ньютоновских законов движения, а также наследственности намного проще, чем модели, которые могут оказаться эффективными при анализе промышленных предприятий и экономических систем.
Для естественнонаучных систем чаще всего применяется анализ, основанный на допущении об их линейности. Большинство естественнонаучных систем, для которых удалось создать удачные модели, содержали в себе значительно меньше помех (неопределенности) по сравнению с нашими социальными системами. В естественных науках модели строятся на основе объяснения явлений, которые поддаются наблюдению, но обычно не подвержены изменениям. Методы установления статистических закономерностей, успешно применяемые в биологии при определении влияния косвенных причин на изменение наследственности, не обязательно окажутся эффективными при изучении социальных систем, где имеет место обратное воздействие следствия на причину.
Подход к источникам и задачам естественнонаучного и социологического моделирования был одинаков, и это нанесло ущерб развитию моделирования общественных систем.
Модели в технической и военной областях настолько отличаются от моделей естественнонаучных систем, что вполне можно говорить Об их принципиальном отличии. Они создаются разными путями и служат различным целям.
Модели, применяемые в технике и военном деле, гораздо ближе к моделям в области общественных наук, чем модели систем биологических и естественнонаучных. Управление и экономика, подобно технике, имеют дело с комплексными системами гораздо более высокого порядка, чем отдельные элементарные явления, которые зачастую являются объектом моделирования в естественных науках. В отличие от обычных естественнонаучных систем технические системы по своей сложности приближаются к общественным. Как технические, так и социальные системы имеют непрерывную градацию факторов (от несомненно важных к неопределенным и далее – к совершенно незначительным) по степени их влияния на каждое отдельное действие и решение. В отличие от этого естественнонаучные системы характеризуются резким разрывом между немногими важнейшими факторами, которые включаются в состав модели, и теми почти совершенно несущественными факторами, которыми пренебрегают. Для социальных систем особенно характерна замкнутость контура (обратные информационные связи), которая имеет место и во многих технических системах, но не свойственна большинству моделей в основных естественных науках. В моделях социальных систем, как и в технических (в отличие от простых естественнонаучных моделей), нас должны интересовать неустановившиеся, нециклические, неповторяющиеся явления.
Динамические модели оказались необходимыми при проектировании физических систем. Они применяются в авиационной технике, в проектировании управляющих систем для военных целей и при изучении сетей связи. Они включают людей и технику, поэтому они приобретают аспект социальных систем. Современную передовую технику невозможно было бы создать без знаний, полученных на основе математического моделирования.
О влиянии математических моделей на решения в области экономики и управления предприятиями этого сказать нельзя. Хотя моделирование в экономических исследованиях применяется уже давно, оно не пользуется общим признанием в качестве инструмента, помогающего хозяйственному руководству предприятия или целой страны.
Многие из неудач в построении экономических моделей могут быть объяснены ошибочными методами и попытками решить невыполнимые задачи. Нам необходим новый подход к построению и применению моделей социальных систем.
Цели. Вышеназванный контраст в отношении эффективности динамических моделей в технике и в экономике может быть частично объяснен характером использования средств построения моделей. Особенности применения моделей в этих областях вытекают, по-видимому, из различий в подходе к их конечным целям. В технике модели используются для проектирования новых систем, в экономике же они обычно применяются для объяснения систем уже существующих. Но оказывается, что в моделях, созданных исключительно для объяснения, ставились столь ограниченные задачи, что эти модели оказывались непригодными не только для проектирования, но даже для объяснения моделируемых явлений.
Основа модели. Модели технических систем строятся на основе данных об отдельных составных частях этих систем. Проектирование модели системы в восходящем порядке, отправляясь от строго определенных и наблюдаемых ее элементов, – эффективный метод, многократно и успешно применявшийся в прошлом.
В экономике модели нередко создавались в обратном порядке, исходя из суммарных результатов действия всей системы. Даже если ставить чисто теоретические задачи, нет никаких оснований полагать, будто такой обратный процесс построения модели (отправляясь от поведения системы в целом и переходя к характеристике отдельных ее частей) может дать положительные результаты в применении к усложненным системам с большим количеством помех, которые встречаются в экономике и управлении предприятиями.
Попытка воспроизвести существующую экономическую систему приводит к созданию моделей, представляющих собой результат статистической обработки данных о прошлом поведении системы в течение изученных периодов времени. Весьма маловероятно, что внутренние причинные механизмы сложной нелинейной информационной системы с обратной связью могут быть объяснены на основе ряда внешних наблюдений за обычными действиями данной системы. В противоположность этому использование моделей для проектирования физических систем переносит центр тяжести на модели систем, еще не существующих, но могущих быть созданными на основе уже наблюдаемых результатов. Модель самолета, испытываемая в динамической трубе, не строится для того только, чтобы воспроизвести наблюдавшееся ранее поведение уже известного типа летательного аппарата; она не создается также, чтобы воспроизвести некоторое подобие среднего арифметического всех сконструированных ранее самолетов. Она строится для каждой части отдельно с тем, чтобы так отразить испытываемый новый самолет, чтобы можно было с помощью модели изучить взаимодействие всех частей и летные качества самолета как единого целого.
Создавая модель системы, мы должны меньше полагаться на статистические и формальные данные, а полней использовать обширный запас описательной информации.
Оценка модели. Проверка адекватности модели также различна в зависимости от того, применяется ли она в технике или в экономике. В технической и военной областях модель оценивается ее способностью отражать такие динамические характеристики систем, как усиление, ширина поля допуска и чувствительность к меняющимся условиям. В экономике модели часто оценивались в зависимости от того, насколько с их помощью можно было предсказать специфическое состояние системы в некоторый будущий момент времени, и модели обычно не выдерживали испытаний на точность прогноза.
При создании моделей нам следовало бы меньше уделять внимания предсказанию определенных действий в будущем и больше – углублению понимания характеристик, внутренне присущих системе. Существуют, как нам кажется, серьезные причины, не позволяющие использовать модели для прогноза специфического состояния системы на достаточно длительное время, чтобы это могло иметь практическое значение. Но если это так, то точность прогноза специфической последовательности действий не является целесообразным моментом в испытании моделей.
Вместо этого модель следовало бы оценивать по ее способности воспроизводить или предсказывать характеристики поведения системы – устойчивость, колебания, рост, средний период колебаний, общие взаимосвязи переменных, изменяющихся во времени, и тенденцию к усилению или ослаблению возмущений, вызванных внешними причинами.
Подобие моделей и систем. В технике математические модели в большей мере соответствуют отражаемым реальным системам в отношении деталей структуры и действий, чем в классических экономических моделях. Барьер непонимания, отделяющий математические модели общественных наук от руководящего персонала промышленных предприятий и государственных учреждений, был почти непреодолимым. Это обстоятельство усугубляется тем, что модели социальных систем в отличие от моделей физических систем описываются в терминах, не принятых в данной области. Расхождения в терминологии могут возникнуть из различия исходных точек зрения. Администратор имеет дело с отдельными частями своей организации, совершенно аналогично тому, как инженер – с деталями своего самолета; при этом администратор не пользуется абстрактными коэффициентами, которые нельзя приурочить к конкретным источникам в реальной системе. Проектировщик же модели, выявляющий взаимосвязи путем статистического анализа, может оперировать своими коэффициентами как абстрактными эмпирическими результатами, которые не совпадают с определенными признаками реальной системы.