355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Морис Клайн » Математика. Утрата определенности. » Текст книги (страница 4)
Математика. Утрата определенности.
  • Текст добавлен: 31 октября 2016, 02:56

Текст книги "Математика. Утрата определенности."


Автор книги: Морис Клайн


Жанр:

   

Математика


сообщить о нарушении

Текущая страница: 4 (всего у книги 38 страниц)

II
Расцвет математических истин

Главной целью всех исследований внешнего мира должно быть открытие рационального порядка и гармонии, которые бог ниспослал миру и открыл нам на языке математики.

Иоганн Кеплер

Созданная греками великая цивилизация распалась по нескольким причинам. Первой причиной ее заката было постепенное завоевание римлянами Греции, Египта и Ближнего Востока. Распространяя свое владычество, римляне не ставили целью распространение своей культуры. Завоеванные территории римляне быстро превращали в колонии, из которых грабежом и поборами выкачивали колоссальные богатства.

Другой удар языческой культуре греков нанесло возникновение христианства. Создатели новой религии включили в нее множество греческих и восточных мифов и обычаев с очевидным намерением сделать христианство более доступным для новообращенных, но в то же время заняли непримиримую позицию по отношению к языческой науке и даже осмеивали математику, астрономию и естественные науки. Несмотря на жестокие преследования со стороны римлян, христианство продолжало распространяться и достигло такого могущества, что римский император Константин Великий Миланским эдиктом 313 г. провозгласил христианство официальной религией Римской империи. Несколько позднее Феодосий (правивший в 379-392 гг.) запретил языческие религии и в 392 г. приказал разрушить языческие храмы. {13}13
  В 529 г. византийский император Юстиниан приказал закрыть, как языческую, платоновскую Академию, существовавшую около 800 лет.


[Закрыть]

Тысячи греческих книг были сожжены. В 47 г. до н.э. римляне подожгли египетские суда, стоявшие в Александрийской гавани. В огне пожара, охватившего город, погибла знаменитая Александрийская библиотека – ценнейшее собрание древних рукописей. В тот год, когда Феодосий запретил языческие религии, христиане разрушили храм Сераписа в Александрии – хранилище уникального собрания уцелевших греческих рукописей. Многие сочинения греческих авторов, написанные на пергаменте, были стерты христианами, которые использовали этот пергамент для записи собственных текстов религиозного содержания.

Последующая история Римской империи также имеет непосредственное отношение к интересующей нас теме. Император Феодосий разделил необъятную империю между двумя своими сыновьями – Гонорием, которому отошла Италия и Западная Европа, и Аркадием, получившим в наследство Грецию, Египет и Ближний Восток. Западная часть Римской империи была завоевана в V в. готами, и ее дальнейшая история относится уже к истории средневековой Европы. Восточная часть Римской империи сохранила независимость. В состав Восточной Римской империи, известной также под названием Византийской империи, входили собственно Греция и Египет, что в какой-то мере способствовало сохранению греческой культуры и сочинений греческих ученых.

Завоевание Египта (640 г.) сторонниками набиравшего силу ислама нанесло греческой культуре удар, от которого она уже не смогла оправиться. Все ранее уцелевшие книги были уничтожены; как говорит предание, халиф Омар провозгласил: «Либо в этих книгах написано то, что есть в Коране, и тогда нам незачем их читать, либо они утверждают то, что противоречит Корану, и тогда их не подобает читать». Почти полгода бани Александрии отапливались пергаментными свитками.

После захвата Александрии приверженцами пророка Мухаммеда (Магомета) большинство ученых уехали в Константинополь, ставший столицей Восточной Римской империи. И хотя традиционная греческая культура не могла процветать в неблагоприятной для нее атмосфере Византии, приток ученых и возможность продолжать научную работу в условиях относительной безопасности способствовали приумножению сокровищницы знаний, ставшей через 800 лет достоянием Европы.

Свой вклад в дальнейшее развитие математики как науки внесли индийцы и арабы. Некоторые идеи индийских и арабских математиков сыграли немалую роль в дальнейшем. {14}14
  Подробнее о достижениях арабских и индийских математиков рассказывается в гл. V.


[Закрыть]
За тысячелетие (200-1200 гг.) индийцы (не без влияния греческих источников) получили важные результаты в области арифметики и алгебры. Арабы – созданный ими Арабский халифат в период расцвета простирался по всему побережью Средиземного моря, глубоко вторгался на Ближний Восток и объединял разноплеменные народы, исповедовавшие ислам, – усвоили лучшие достижения греческой и индийской математики и получили ряд новых результатов. Действуя в духе греков александрийского периода, арабы в своих трудах опирались и на дедуктивные рассуждения, и на эксперимент. Арабские ученые сказали свое слово в алгебре, географии, астрономии и оптике. Заботясь о передаче знаний грядущим поколениям, арабы создавали школы и даже высшие учебные заведения. К чести арабов следует заметить, что, будучи ревностными приверженцами своей религии, они тем не менее считали недопустимым ограничивать религиозными догмами математические и естественнонаучные исследования.

Хотя индийцы и арабы основывали свои исследования на прочном фундаменте, воздвигнутом греками, и внесли свой вклад в дальнейшее развитие эллинской математики и естествознания, они не смогли в такой мере, как греки, проникнуться пониманием структуры Вселенной. Арабы переводили труды греческих ученых и составляли к ним обширные комментарии, в том числе и критические, но их достижения не пополнили сокровищницу знаний, накопленных их предшественниками, сколько-нибудь существенно (см., впрочем, [9], гл. III). К 1500 г. Арабский халифат распался, теснимый христианами на Западе и раздираемый междоусобицами на Востоке.

В то время как арабы строили и расширяли свою цивилизацию, в Западной Европе зарождалась новая цивилизация. В период средневековья (500-1500 гг.) в этой части мира был достигнут высокий уровень культуры. В европейской культуре того времени безраздельно господствовала христианская религия, а ее доктрины, при их определенных достоинствах, отнюдь не способствовали познанию физического мира. Вселенной, как утверждали отцы церкви, правит бог, и роль человека сводится к безропотному служению богу и снисканию милости божьей в надежде на спасение, дабы душа в загробном мире обрела радость и вечное блаженство. Земному существованию не следует придавать особого значения; трудности и страдания надлежит переносить с кротким терпением, ибо господь ниспосылает их, чтобы испытать, крепка ли вера человека. Нужно ли говорить, что в подобных условиях интерес к математике и естественным наукам, стимулом которого в античности служило изучение физического мира, переживал глубокий кризис. Мыслители средневековой Европы были ревностными искателями истин, но искали их в прилежном изучении Священного писания, а не в познании природы. Тем не менее в позднем средневековье философия поддерживала убеждение в правильности и постоянстве управляющих природой механизмов, хотя и считала, что в природе все происходит по воле божьей.

В конце периода средневековья Европа испытала поистине революционные потрясения, которые привели к значительным изменениям. Среди многих причин, способствовавших превращению средневековой цивилизации в современную, самой важной с точки зрения интересующей нас темы было пробуждение интереса к трудам греческих авторов и вновь начавшееся изучение их. Сочинения античных ученых становились известными в арабских переводах и через оригиналы, сохранившиеся в Византийской империи. После завоевания Византии турками в 1453 г. многие греческие ученые, захватив с собой книги, бежали на Запад. Именно из сочинений греков ведущие европейские мыслители того времени узнали, что природа построена на математических принципах и что план творения гармоничен, эстетически привлекателен и являет собой сокровенную истину о природе. Природа не только рациональна и упорядочение, но и действует в соответствии с неизбежными и неизменными законами. Европейские ученые приступили к исследованию природы как последователи древнегреческих философов.

Не подлежит сомнению, что многих европейских ученых побудило приступить к изучению природы возрождение греческих идеалов. Но темпы и широкий размах возрождения математики и естествознания были обусловлены и многими другими факторами. Силы, приводящие к крушению одной и вызывающие развитие другой культуры, многообразны и сложны. Процесс зарождения науки изучали многие ученые, и немало трудов по истории посвящено выяснению его причин. Мы ограничимся здесь кратким перечислением факторов, обусловивших тот интеллектуальный переворот, который ныне именуют Возрождением.

Возникновение класса свободных ремесленников небывало повысило интерес к материалам, способам их обработки и технологии, породив новые научные проблемы. Географические исследования, вызванные необходимостью поиска новых источников сырья и золота, способствовали распространению знаний о неведомых ранее странах и обычаях, бросавших своего рода вызов средневековой европейской культуре. В эпоху Реформации были отвергнуты многие католические доктрины, что усилило споры и даже скептицизм в отношении не только католицизма, но и протестантизма. Значение, которое пуритане придавали труду и полезности знаний, внедрение пороха, поставившее перед европейцами новые задачи военного характера (например, изучение траекторий пушечных ядер {15}15
  Аристотель, c его чисто умозрительным подходом к физическим задачам, склонен был считать, что тяжелое тело, брошенное под углом к земной поверхности, движется по «простейшим линиям», т.е. описывает отрезок прямой, переходящий затем в дугу окружности; ясно, что столь грубое приближение к реальности никак не могло быть достаточным для артиллерийской практики.


[Закрыть]
), проблемы, связанные с плаванием в открытом море за тысячи миль от берега, – все это создавало благоприятную атмосферу для исследования природы. Изобретение книгопечатания способствовало распространению знаний, за чем, однако, неусыпно следила церковь. И хотя специалисты расходятся во мнениях относительно того, в какой мере те или другие силы повлияли на изучение природы, для наших целей достаточно отметить одновременное влияние многих факторов и тот общепризнанный факт, что научные знания и стремления к их приобретению стали отличительной чертой современной европейской цивилизации.

В целом европейцы далеко не сразу откликнулись на новые веяния. В эпоху Возрождения для европейцев было более характерно изучение сочинений греческих авторов, чем следование греческим идеалам (см., например, [10]). Но к началу XVI в. провозглашеннные греками цели научного исследования – изучение явлений природы на рациональной основе и поиск лежащего в их основе общего математического плана – проникли в умы европейцев. И тут европейцы столкнулись с серьезной проблемой: поставленные греками цели находились в противоречии с господствовавшей тогда в Европе культурной традицией. В то время как греки верили в математические принципы, лежащие в основе природы, в природу, неизменно и неукоснительно следующую некоторому идеальному плану, мыслители позднего средневековья приписывали и сотворение «плана», и все происходящее в природе христианскому богу. Он был творцом и создателем – и все в природе неукоснительно следовало его плану. Вселенная была творением бога и беспрекословно подчинялась его воле. Математики и представители естественных наук в эпоху Возрождения и на протяжении нескольких последующих столетий были правоверными христианами и полностью принимали эту доктрину. Но греческое учение о математическихпринципах устройства Вселенной противоречило догматам католической церкви. Каким же образом можно было примирить попытки понять Вселенную, сотворенную богом, с поисками математических законов мироздания? Примирить, казалось бы, непримиримое можно было, только создав новую доктрину, согласно которой христианский бог при сотворении Вселенной руководствовался математическими принципами. Так католическая доктрина, провозглашавшая первостепенной обязанностью постижение божьей воли и его творений, обрела форму поиска математического плана, по которому бог создал Вселенную. И действительно, как мы вскоре убедимся, работы математиков в XVI-XVII вв. и на протяжении большей части XVIII в. носили характер религиозного поиска. Открытие математических законов природы было своего рода откровением, являвшим людям славу и величие божьего творения. Математическое знание (истина о замысле творца) было священным, как любая строка Библии. Разумеется, человек не мог надеяться постичь божественный план с такой же полнотой и ясностью, как сам господь бог, но человек мог по крайней мере со всей кротостью и смирением приблизиться к пониманию замысла творца и, следовательно, к пониманию созданного им мира.

Можно пойти дальше и утверждать, что математики того времени были уверены в существовании математических законов, лежащих в основе явлений природы, и настойчиво искали эти законы, будучи a prioriубеждены в осмысленности своих поисков: ведь бог, создавая Вселенную, не мог не запечатлеть в ней математические законы. Каждое открытие закона природы провозглашалось еще одним подтверждением не столько мудрости исследователя, совершившего открытие, сколько божьей милости. Такие взгляды и убеждения математиков и естествоиспытателей являлись отражением всей интеллектуальной атмосферы, типичной для Европы эпохи Возрождения. Незадолго до того вновь открытые сочинения греческих авторов чем-то противоречили христианской культуре, пропитанной глубокой набожностью; однако духовные вожди эпохи Возрождения, взращенные в христианской традиции и одновременно испытавшие на себе притягательную силу греческой культуры, сумели соединить эти два течения, казалось бы противоречащие одно другому.

Наиболее ярким примером происходившего в Европе слияния греческого учения о «математизированной» Вселенной с характерной для эпохи Возрождения верой в божественное ее происхождение являются труды Николая Коперника и Иоганна Кеплера. Вплоть до XVI в. единственной надежной и практически применимой астрономической теорией была геоцентрическая системаГиппарха и Птолемея. Она была принята профессиональными астрономами и использовалась при составлении календарей и в навигационных расчетах. К работе над созданием новой астрономической теории приступил Коперник (1473-1543). Астрономию он изучал в Болонском университете, куда поступил в 1497 г. В 1512 г. Коперник приступил к исполнению обязанностей каноника Фромборкского собора в Вармии. Положение члена капитула оставляло Копернику немалый досуг для астрономических наблюдений и обдумывания будущей теории. После многолетних размышлений и наблюдений Коперник создал новую теорию движения планет, изложив ее в своем классическом труде «Об обращениях небесных сфер» [11]. Первый вариант рукописи Коперник закончил еще в 1507 г., но медлил с публикацией, опасаясь противодействия со стороны церкви. Книга Коперника вышла из печати в 1543 г. – в год его смерти.

В те времена, когда Коперник принялся размышлять на астрономические темы, теория Птолемея претерпела некоторые усовершенствования. К эпициклам, введенным Птолемеем, добавились новые эпициклы, которые понадобились для того, чтобы привести теорию в соответствие с новыми астрономическими данными, собранными главным образом арабами. Во времена Коперника для описания движений Солнца, Луны и пяти известных в тот период планет птолемеевой теории требовалось уже семьдесят семь кругов. Многие астрономы, как о том упоминает Коперник в предисловии к своему сочинению, стали считать теорию Птолемея чрезмерно сложной.

Изучение достижений греческих ученых привело Коперника к убеждению в существовании единого математического плана, по которому построена Вселенная и который обеспечивает ее гармонию. Эстетические соображения требовали наличия более изящной теории, чем то сложное нагромождение эпициклов, которое содержалось в позднем варианте теории Птолемея. Из прочитанных книг Коперник узнал, что некоторые греческие авторы, главным образом Аристарх Самосский (III в. до н.э.) {16}16
  Позицию Аристарха в этом вопросе разделял и столь глубоко ценимый всеми учеными эпохи Возрождения Архимед Сиракузский.


[Закрыть]
, высказывали предположение, что Солнце покоится, а Земля обращается вокруг него и одновременно поворачивается вокруг своей оси, и он решил выяснить, к чему может привести подобная гипотеза.

Поворотный момент в размышлениях Коперника наступил тогда, когда он воспользовался для описания движений небесных тел птолемеевой схемой деферента и эпицикла (гл. I), с тем, однако, существенным различием, что в центре каждого деферента находилось Солнце.Земля также стала одной из планет, которая, вращаясь вокруг своей оси, движется по эпициклу. Такое видоизменение позволило Копернику значительно упростить всю схему. В предложенной им гелиоцентрической системе оказалось возможным уменьшить общее число кругов (деферентов и эпициклов) до тридцати четырех вместо семидесяти семи кругов геоцентрической теории.

Еще более замечательное упрощение ввел Иоганн Кеплер (1571-1630) – одна из самых удивительных фигур в истории науки. Жизнь Кеплера омрачалась множеством личных несчастий и трудностей, вызванных религиозными и политическими событиями. В 1600 г. ему посчастливилось стать ассистентом знаменитого астронома Тихо Браге, производившего многочисленные астрономические наблюдения и систематизировавшего полученные результаты, – это была первая крупная попытка такого рода со времен античности. Наблюдения Тихо Браге и небольшое число наблюдений, произведенных самим Кеплером, оказались для последнего бесценными. После смерти Браге в 1601 г. Кеплер стал его преемником на посту придворного математика австрийского императора Рудольфа II.

Научные рассуждения Кеплера поражают необузданной фантазией. Подобно Копернику, Кеплер был склонен к мистике и разделял убеждение в том, что мир создан богом в соответствии с простым и исполненным красоты математическим планом. В своем сочинении «Космографическая тайна» (1596) Кеплер утверждал ([12], с. 176), что «сущность трех вещей… а именно: число, размеры и движения небесных орбит» – заключена в гармонии замысла, которым всеблагой и всемогущий бог руководствовался при сотворении мира. Мысль о гармонии мира стала у Кеплера доминантой. Но Кеплер был наделен всеми качествами, которыми, по нашим критериям, должен обладать ученый. Он умел, если было нужно, обуздывать свою неуемную фантазию, подчиняя ее холодному рационализму. Хотя его богатое воображение живо откликалось на любые новые теоретические концепции, обладающие эстетической привлекательностью, Кеплер сознавал, что теория должна находиться в согласии с наблюдениями, а к концу жизни с еще большей отчетливостью понял, что эмпирические данные могут подсказать исследователю фундаментальные принципы науки. Кеплер безжалостно отбрасывал самые привлекательные и многообещающие математические гипотезы, если оказывалось, что они не согласуются с наблюдениями, и именно это невероятное упорство в неприятии даже самых незначительных расхождений между теорией и наблюдениями, с которыми легко смирился бы любой другой ученый того времени, позволило Кеплеру стать творцом новых научных идей, решительно порывающих с многовековой традицией. К тому же Кеплер обладал скромностью, терпением и энергией, т.е. всеми теми качествами, которые позволяют великим людям выполнять возложенную на них нелегкую миссию.

Предпринятый Кеплером поиск математических законов природы, в существовании которых он был глубоко убежден, поначалу складывался неудачно: не один год ушел на проверку неверных гипотез. В предисловии к «Космографической тайне» Кеплер так формулирует программу своего сочинения:

Я вознамерился доказать, что всеблагой и всемогущий бог при сотворении нашего движущегося мира и при расположении небесных орбит избрал за основу пять правильных тел, которые со времен Пифагора и Платона и до наших дней снискали столь громкую славу, выбрал число и пропорции небесных орбит, а также отношения между движениями в соответствии с природой правильных тел. {17}17
  Имеются в виду так называемые платоновы тела– правильные тетраэдр, гексаэдр (куб), октаэдр, икосаэдр и додекаэдр.  – Ред.


[Закрыть]

([12], с. 176.) 

Однако попытка раскрыть «тайну мироздания» на этой основе оказалась безуспешной: выводы теории, построенной на свойствах пяти правильных тел, расходились с результатами наблюдений, и, перепробовав множество вариантов в надежде спасти полюбившуюся ему идею, Кеплер был вынужден отказаться от намеченного подхода.

Зато необычайным успехом увенчались более поздние попытки Кеплера найти в природе гармонические математические отношения. Наиболее известные и значительные из полученных им результатов известны ныне под названием три закона Кеплера(законы движения планет). Первые два закона были опубликованы Кеплером в сочинении, вышедшем в 1609 г. под весьма длинным названием, так что обычно при ссылках на эту работу приводят либо начало названия – «Новая астрономия», либо его заключительную часть – «Комментарии о движении планеты Марс». Особенно замечателен первый закон Кеплера, ибо, сформулировав его, Кеплер порвал с двухтысячелетней традицией, согласно которой небесные тела должны обязательно двигаться по кругам или сферам. Кеплер отказался от деферента и нескольких эпициклов, к которым прибегали при описании движения любой планеты и Птолемей, и Коперник, и показал, что для описания движения планеты достаточно указать один-единственный эллипс. Первый закон Кеплера гласит: каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце(рис. 2.1). Другой фокус любой эллиптической орбиты представляет собой «пустую» математическую точку, в которой ничего не находится. Первый закон Кеплера имеет первостепенное значение, поскольку позволяет легко и просто представить орбиты планет. Разумеется, Кеплер, как и Коперник, добавляет, что, описывая свою эллиптическую траекторию, Земля одновременно вращается и вокруг своей оси.

Рис. 2.1.Первый закон Кеплера. Планеты движутся по эллипсам, в одном из фокусов которого находится Солнце.

Но чтобы быть полезной, астрономии следует идти гораздо дальше: она должна уметь предсказывать положения планет. Если мы обнаружим, что какая-то планета в момент наблюдения находится, скажем, в точке  P(рис. 2.1), то нам может понадобиться узнать, когда она будет находиться в каком-либо другом положении, например в точке солнцестояния или равноденствия. А чтобы ответить на этот вопрос, необходимо знать, с какой скоростью планета движется по своей траектории.

Пытаясь найти скорость планеты, Кеплер сделал еще один решающий шаг. Коперник и греческие мыслители считали скорости планет постоянными. Планета у них двигалась по эпициклу равномерно, проходя равные дуги окружности за равные промежутки времени, а центр каждого эпицикла перемещался с постоянной скоростью по другому эпициклу или по деференту. Из наблюдений Кеплер знал, что планета движется по эллиптической орбите с изменяющейся скоростью, и в результате долгих и трудных поисков нашел правильный закон изменения скоростей. Кеплер открыл, что если планета, двигаясь по орбите, перемещается из точки P вточку Q(рис. 2.2), например, за один месяц, то на перемещение из точки P'в точку Q'ей также потребуется один месяц при условии, что площадь сектора PSQ равна площади сектора P'SQ'.Так как точка Pрасположена ближе к Солнцу, чем точка P',то дуга PQдолжна быть длиннее дуги P'Q',если площади секторов PSQи P'SQ'равны. Следовательно, планеты движутся по орбитам с переменной скоростью: чем ближе к Солнцу, тем быстрее.

Рис. 2.2.Второй закон Кеплера: если  дуги PQи P'Q'орбиты планета проходит за одно и то же время, то площади секторов PSQи P'SQ'равны.

Открыв второй закон (равенства секториальных скоростей), Кеплер был необычайно рад. Хотя пользоваться вторым законом не так просто, как законом постоянства скоростей, совершенное открытие подкрепило глубочайшую убежденность Кеплера в том, что господь бог, создавая Вселенную, руководствовался математическими принципами. Бог действовал чуть более изощренно, чем предполагали предшественники Кеплера, но теперь со всей очевидностью было установлено, что скорости движения планет по орбитам подчиняются математическому закону.

Но еще одна важная проблема по-прежнему оставалась нерешенной: по какому закону изменяются расстояния, отделяющие планеты от Солнца? Проблема осложнялась тем, что расстояние от планеты до Солнца не постоянно. И Кеплер принялся за поиск нового принципа, учитывающего зависимость расстояния от времени. По его глубокому убеждению бог сотворил мир не только на основе математических принципов, но и гармонично, причем слово «гармония» Кеплер понимал в самом прямом смысле. Так, он верил в существование музыки сфер, образующей гармонические созвучия, которые, хотя и невоспринимаемы на слух, но тем не менее их можно обнаружить при надлежащем «переводе» особенностей движения планет на ноты. Следуя этой путеводной идее и основываясь на поистине удивительной комбинации аргументов музыкального и математического характера, Кеплер устанавливает, что если  T– период обращения планеты вокруг Солнца, a D– среднее расстояние от планеты до Солнца, то T 2= kD 3,где k– постоянная, одинаковая для всех планет. Это утверждение и есть третий закон Кеплера для движения планет, торжественно провозглашенный им в сочинении «Гармония мира» (1619).

Сформулировав третий закон, Кеплер разражается ликующим хвалебным гимном богу-творцу:

«Вы, Солнце, Луна и планеты, восславьте его на своем неизъяснимом языке! Вы, небесные гармонии и все, кто постигает разумом его чудесные творения, воздайте ему хвалу! И ты, душа моя, восхвали создателя! Им все сотворено, и в нем все существует. Все лучшее из того, что мы знаем, заключено в нем и в нашей жалкой науке».

О том, с какой силой Коперник и Кеплер верили, что бог сотворил мир гармоничным и простым, можно судить по тем возражениям, с которыми им приходилось сталкиваться. Даже по теории Птолемея все остальные планеты, кроме Земли, находились в движении, и это объяснялось особо легкой и потому легко приводимой в движение субстанцией, из которой якобы сотворены планеты. Но что могло привести в движение тяжелую Землю? Ни Коперник, ни Кеплер не могли ответить на этот вопрос. Не принимая идею о суточном вращении Земли вокруг собственной оси, противники ее ссылались на такой, казалось бы, очевидный факт: тела не могли бы удержаться на поверхности вращающейся Земли и, сорвавшись с нее, улетели бы в космическое пространство, подобно тому как срываются предметы с вращающейся платформы. Против столь «неопровержимого» аргумента невозможно было возразить! Весьма неубедительным был ответ Коперника и на другой довод против суточного вращения Земли: вращающаяся Земля должна просто-напросто разлететься на части. На это Коперник возражал, что вращение Земли естественно и потому не может разрушить нашу планету. Должно быть, ощущая шаткость этого аргумента, Коперник, переходя в «контрнаступление», спрашивал, почему в таком случае небо не разлетается на части в результате очень быстрого суточного вращения, предусматриваемого геоцентрической теорией. Еще один довод против суточного вращения Земли состоял в следующем: если бы Земля вращалась с запада на восток, то любой предмет, подброшенный в воздух, отклонялся бы к западу, так как Земля под ним успевала бы поворачиваться. А если бы Земля к тому же обращалась вокруг Солнца, то более легкие предметы на Земле отставали бы от более тяжелых, поскольку скорости падающих предметов, как утверждали греки и продолжали считать ученые эпохи Возрождения, пропорциональны их весу. На это Коперник возражал, что воздух обладает земной природой и поэтому движется в полном соответствии с движением Земли. Суть всех этих возражений против суточного вращения Земли и ее обращения вокруг Солнца сводилась к тому, что движение Земли не вписывалось в рамки общепринятой во времена Коперника и Кеплера теории движения, предложенной еще Аристотелем.

Ряд научных возражений против гелиоцентрической теории выдвигала и сама астрономия. Наиболее серьезное возражение вызывало то, что в гелиоцентрической теории звезды считались неподвижными. Но за полгода Земля перемещалась в пространстве на расстояние около 300 млн. км. Следовательно, если наблюдатель заметит направление на какую-нибудь звезду, то спустя полгода он должен обнаружить, что это направление изменилось. Во времена же Коперника и Кеплера такого рода изменения в направлениях на звезды обнаружены не были. На это возражение Коперник отвечал, что звезды расположены слишком далеко от Земли и поэтому направления на звезды изменяются незначительно. Его ответ не удовлетворил критиков, заметивших, что если бы звезды были так далеки, как утверждает Коперник, то их нельзя было бы наблюдать. Тем не менее ответ Коперника был правильным. Направление на ближайшую звезду изменяется за полгода всего лишь на 0,31", и впервые это было обнаружено в 1838 г. немецким астрономом Фридрихом Вильгельмом Бесселем, имевшим в своем распоряжении хороший телескоп.

Сторонники геоцентрической теории спрашивали также, почему мы не ощущаем движения Земли, если та обращается вокруг Солнца со скоростью около 30 км/с, а скорость вращения вокруг собственной оси достигает на экваторе величины около 0,8 км/с? К тому же наши глаза убеждают нас в том, что Солнце обращается вокруг Земли. Для современников Кеплера ссылка на то, что мы не ощущаем движения с огромными скоростями, в котором сами участвуем, если верить новой астрономии, была неоспоримым контрдоводом. Все научные возражения против движения Земли были достаточно весомыми – от них нельзя было отмахнуться, как от брюзжания упрямцев, не желающих признать очевидную истину.

Коперник и Кеплер были людьми глубоко религиозными, и все же они оба дерзнули отказаться от одной из основных догм христианства: человек есть центр Вселенной и средоточие всех помыслов божьих. Гелиоцентрическая теория, поместив в центре Вселенной Солнце, подорвала столь успокоительную догму церкви. Человек стал одним из множества «странников», влекомых Землей в холодных небесных просторах. Утверждение церковников о том, будто человек рожден для того, чтобы прожить славную жизнь и обрести райское блаженство после смерти, стало казаться весьма сомнительным. Утратило правдоподобие и утверждение о том, будто человек является объектом особого внимания со стороны господа бога. Коперник подорвал тезис о том, будто бы Земля является центром Вселенной, указав, что размеры Вселенной огромны и поэтому бессмысленно говорить о каком бы то ни было центре Вселенной. Но в глазах его современников это рассуждение вовсе не выглядело убедительным.

И все же у Коперника и Кеплера был аргумент, перевешивавший все возражения против гелиоцентрической системы мира: им удалось построить более простую в математическом отношении, более гармоничную и эстетически более привлекательную теорию. Но если новая теория превосходит в математическом отношении старую, то для всякого, кто считал, что бог сотворил мир, используя при этом лучшую из теорий, любые сомнения в правильности гелиоцентрической теории должны были отпасть.

И в сочинении Коперника «О обращениях небесных сфер», и в многочисленных трудах Кеплера имеется немало высказываний, убедительно свидетельствующих, что Коперник и Кеплер были уверены в правильности построенной ими теории. Например, у Кеплера мы находим следующий отзыв о построенной им теории движения планет по эллиптическим орбитам: «Я клятвенно подтверждаю ее правильность и созерцаю ее красоту с неизъяснимым, переполняющим душу восторгом». Само название кеплеровского сочинения 1619 г. – «Гармония мира» и бесконечные дифирамбы богу, исполненные восхищения перед величием божественного математического плана, отражают убежденность Кеплера в правильности найденного им закона.


    Ваша оценка произведения:

Популярные книги за неделю