355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Морис Клайн » Математика. Утрата определенности. » Текст книги (страница 23)
Математика. Утрата определенности.
  • Текст добавлен: 31 октября 2016, 02:56

Текст книги "Математика. Утрата определенности."


Автор книги: Морис Клайн


Жанр:

   

Математика


сообщить о нарушении

Текущая страница: 23 (всего у книги 38 страниц)

Наиболее важное отношениемежду высказываниями – отношение следования, или импликация, означающая, что из истинности одного элементарного высказывания вытекает истинность другого. {112}112
  Здесь терминология (и символика) авторов «Оснований математики» несколько расходится с принятой в нашей литературе. Следует различать (бинарное) отношение следованиямежду высказываниями, которое может иметь или не иметь место (в абстрактной форме – подмножество декартова квадрата Ρ×Ρ, где Ρ– множество высказываний; отношение «из pследует q» записывают как p   q, но иногда и наоборот – как p  q), и импликацию– (бинарную) операцию алгебры высказываний, сопоставляющую двум высказываниям pи qтретье высказывание p  q, которое, как и любое, высказывание, может быть истинным или ложным; при этом истинность импликации p qравносильна тому, что (в обозначениях Рассела – Уайтхеда) p   q.


[Закрыть]
В работе Рассела и Уайтхеда импликация обозначается символом ; при этом под записью (импликацией)  p   qpвлечет q» или «из  pследует q») они понимают примерно то же, что Фреге понимал под материальной импликацией (гл. VIII): утверждение « pвлечет q» (из  pследует q) означает, что если  pистинно, то и  qобязано быть истинным, а если  pложно, то  qможет быть истинно или ложно, т.е. из ложного высказывания следует все что угодно. Такое понятие следования (импликации) высказываний, по крайней мере в некоторых случаях, представляется вполне естественным. Например, если верно, что  a– четное число, то и число 2aдолжно быть четным. Но если не верно, что  a– четное число, то 2aможет быть как четным, так и нечетным (в случае, если  aне целое, скажем дробное, число). Иначе говоря, если высказывание « a– четное число» ложно, то из него может следовать любое заключение.

Разумеется, для того чтобы выводить логические теоремы,необходимо перечислить аксиомылогики. Приведем примеры нескольких таких аксиом:

A)Любое следствие истинного элементарного высказывания {113}113
  Под «истинным элементарным высказыванием» здесь понимается то, что у нас часто называют «тождественно истинным высказыванием», т.е. такое высказывание, которое ни в каком случае не может быть ложным.


[Закрыть]
является истинным.

B)Если истинно высказывание «истинно  pили q», то  pистинно.

C)Если  qистинно, то « pили q» истинно.

D)Высказывание « pили q» влечет за собой высказывание « qили p».

E)Из « pили ( qили r)», следует « qили ( pили r)».

Сформулировав аксиомы, Рассел и Уайтхед приступили к выводу теорем логики. Обычные правила силлогистики Аристотеля (см., например, [58] и [59]) вошли в систему «Оснований математики» как теоремы.

Чтобы лучше понять, каким образом логика была формализована и сделана дедуктивной, рассмотрим несколько первых теорем из «Оснований математики» Рассела и Уайтхеда. Одна из теорем утверждает: если из предположения об истинности высказывания pследует, что pложно, то pложно. Это не что иное, как принцип reductio ad absurdum(приведения к абсурду, основа доказательства от противного). Другая теорема гласит: если  rследует из q,то при условии, что qследует из p, rследует из p.(Это один из силлогизмов Аристотеля.) Основная теорема начальной части «Оснований математики» – принцип исключенного третьего: если p– любое высказывание, то pлибо истинно, либо ложно.

Построив логику высказываний, авторы приступили к пропозициональным функциям. Последние представляют собой классы, или множества: вместо того чтобы называть элементы класса «поштучно», пропозициональная функция указывает их отличительное свойство. Например, пропозициональная функция « xкрасный» задает множество всех красных предметов. Такой способ задания класса позволяет определять бесконечные множества с такой же легкостью, как и конечные. Определение класса по отличительному признаку называется интенсиональным(или дискретным) в отличие от экстенсиональных (прямых)определений, перечисляющих элементы множества.

Рассел и Уайтхед, разумеется, стремились избежать парадоксов, возникающих в тех случаях, когда определяемое множество содержит само себя в качестве элемента. Эту проблему они разрешили, введя требование: «То, что содержит все элементы множества, не должно быть элементом того же множества». Чтобы удовлетворить этому требованию, Рассел и Уайтхед ввели теорию типов.

Хотя сама теория типов довольно сложна, в основе ее лежит простая идея. Индивидуумы, например Джон или какая-то вполне конкретная книга, имеют тип 0. Любое утверждение о свойстве индивидуума имеет тип 1. Всякое утверждение о свойстве свойства индивидуума имеет тип 2 и т.д. Каждое утверждение принадлежит более высокому типу, чем те, о которых в нем что-то утверждается. На языке теории множеств суть теории типов можно было бы сформулировать так: индивидуальные объекты принадлежат типу 0, множество индивидуальных объектов – типу 1, множество множеств индивидуумов – типу 2 и т.д. Так, если  aпринадлежит b,то bдолжно быть более высокого типа, чем a.Кроме того, нельзя говорить о множестве, принадлежащем самому себе. При переходе к пропозициональным функциям теория типов становится несколько сложнее. Ни один из аргументов пропозициональной функции (ни одно из значений входящих в нее переменных) не должен определяться через саму функцию. Если это требование соблюдено, то функция считается принадлежащей к более высокому типу, чем входящие в нее переменные. Рассмотрев на основе теории типов все известные парадоксы, Рассел и Уайтхед показали, что теория типов позволяет их избегать.

Это несомненное достоинство теории типов (то, что она позволяет избегать противоречий) станет более наглядным, если воспользоваться следующим нематематическим примером. Рассмотрим парадокс, связанный с высказыванием «Из всех правил есть исключения» (гл. IX). Это высказывание относится ко всякого рода конкретным правилам, например к правилу «Во всех книгах имеются опечатки». При обычной интерпретации высказывание «Из всех правил есть исключения» применимо и к самому высказыванию, вследствие чего возникает противоречие. Но в теории типов общее правило принадлежит к более высокому типу, и все, что в нем утверждается о конкретных правилах, к нему самому неприменимо. Следовательно, из общего правила исключений может не быть.

Аналогичным образом гетерологический парадокс (слово называется гетерологическим, если оно неприменимо к самому себе) есть не что иное, как определение всех гетерологических слов, и поэтому принадлежит к более высокому типу, чем любое гетерологическое слово. Следовательно, вопрос о том, гетерологично ли само прилагательное «гетерологический», попросту неправомерен.

В рамках теории типов находит свое решение и парадокс лжеца. Рассел излагает это решение следующим образом. Высказывание «Я лгу» означает «Существует утверждение, которое я высказываю, и оно ложно», или «Я высказываю утверждение p,и pложно». Если  pпринадлежит к n-му типу, то утверждение относительно pпринадлежит к более высокому типу. Следовательно, если утверждение относительно pистинно, то само  pложно, и если утверждение относительно pложно, то  pистинно. Никакого противоречия не возникает. Аналогичным образом теория типов разрешает и парадокс Ришара: суть решения сводится к тому, что высказывание более высокого типа содержит некое утверждение о высказывании более низкого типа.

Ясно, что теория типов предполагает тщательную классификацию высказываний по типам. Но если попытаться положить теорию типов в основу строгого обоснования математики, то все построения становятся чрезвычайно сложными. Например, в «Основаниях математики» Рассела и Уайтхеда два предмета  aи bсчитаются равными, если любое высказывание или любая пропозициональная функция, применимые к  a(или истинные для a), применимы к bи наоборот. Но различные высказывания принадлежат, вообще говоря, к различным типам. Следовательно, понятие равенства становится необычайно сложным. Аналогичные трудности возникают и в связи с понятием числа: так как иррациональные числа определяются через рациональные, а рациональные – через положительные целые числа, то иррациональные числа принадлежат к более высокому типу, чем рациональные, а те в свою очередь – к более высокому типу, чем целые числа. Система вещественных чисел оказывается состоящей из чисел различных типов. Следовательно, вместо того чтобы сформулировать одну теорему для всех вещественных чисел, мы должны формулировать теоремы для каждого типа в отдельности, поскольку теорема, применимая к одному типу, автоматически на другой тип не переносится.

Теория типов вносит осложнение и в понятие наименьшей верхней границы ограниченного множества вещественных чисел (гл. IX). Наименьшая верхняя граница, по определению, есть минимальная из всех верхних границ. Мы видим, что в определении наименьшей верхней границы фигурирует множество вещественных чисел, и поэтому наименьшая верхняя граница должна принадлежать к более высокому типу, чем вещественные числа, а значит, сама она вещественным числом не является.

Чтобы избежать подобных осложнений, Рассел и Уайтхед ввели весьма тонкую аксиому сводимости(или аксиому редукции).Аксиома сводимости для высказываний гласит: любое высказывание более высокого типа эквивалентно одному из высказываний первого типа. Аксиома сводимости для пропозициональных функций утверждает, что любая функция одного переменного или двух переменных эквивалентна некоторой функции типа 1 от того же числа переменных, к какому бы типу ни принадлежали переменные.Аксиома сводимости была необходима Расселу и Уайтхеду и для обоснования используемой в их «Основаниях математики» математической индукции.

Рассмотрев пропозициональные функции, авторы переходят к теории отношений. Отношения представимы с помощью пропозициональных функций двух или большего числа переменных. Так, пропозициональная функция « xлюбит y» выражает отношение. После теории отношений Рассел и Уайтхед излагают явную теорию классов, или множеств, определяемых с помощью пропозициональных функций. Теперь уже все готово к введению понятия натурального (целого положительного) числа.

Определение натурального числа представляет значительный интерес. Оно зависит от введенного ранее отношения взаимно-однозначного соответствия между классами. Два класса называются эквивалентными,если между ними можно установить взаимно-однозначное соответствие. Все эквивалентные классы обладают одним общим свойством – числом, отвечающим этим классам (т.е. числом их элементов). Но возможно, что эквивалентные классы обладают и более чем одним общим свойством. Рассел и Уайтхед обошли эту трудность так же, как Фреге, – определив отвечающее классу число как класс всех классов, эквивалентных данному классу.Например, число 3 – это класс всех классов, содержащих по 3 элемента. Все такие классы обозначаются символом {x, у, z},где xyz.Поскольку определение числа предполагает понятие взаимно-однозначного соответствия (обратите внимание на выражение «однозначное»!), может показаться, что здесь мы попадаем в порочный круг. Но отношение между элементами является взаимно-однозначным, если из того, что xи x'находятся в рассматриваемом отношении к y,следует, что, xи x'совпадают, а из того, что xнаходится в этом отношении и к у,и к у',вытекает, что совпадают  yи у'.Следовательно, несмотря на употребленное в названии этого понятия выражение, реально взаимно-однозначное соответствие не определяется без апелляции к числу 1.

Имея натуральные числа, можно построить системы вещественных и комплексных чисел, теорию функций и весь математический анализ. Используя координаты и уравнения кривых, можно через арифметику ввести геометрию. Но для этого Расселу и Уайтхеду понадобились две дополнительные аксиомы. Программа состояла в том, чтобы сначала определить (с помощью пропозициональных функций) натуральные числа, а затем последовательно ввести более сложные рациональные и иррациональные числа. Чтобы включить в эту схему трансфинитные числа, Рассел и Уайтхед ввели аксиому существования бесконечных классов (классов, надлежащим образом определенных с точки зрения логики) и аксиому выбора (гл. IX), необходимую для теории типов.

Такова была грандиозная программа логистической школы. Долго рассказывать о том, что значила эта программа для самой логики, – мы ограничимся здесь лишь беглым перечислением основных пунктов программы. Для математики же (и это необходимо подчеркнуть особо) логистическая программа сводилась к тезису о построении (или возможности построения) всей математической науки на фундаменте логики. Математика становилась не более чем естественным продолжением логических законов и предмета логики.

Логистический подход к математике подвергся резкой критике. Сильные возражения вызвала аксиома сводимости, которая многим математикам казалась совершенно произвольной. Некоторые считали ее счастливой случайностью, а не логической необходимостью. Френк Пламптон Рамсей, сочувственно относившийся к логицизму, так охарактеризовал аксиому сводимости: «Такой аксиоме не место в математике, и все, что не может быть доказано без нее, вообще не должно считаться доказанным». Другие ученые называли аксиому сводимости «жертвоприношением, в котором роль жертвы отведена разуму». Безоговорочно отвергал аксиому сводимости Герман Вейль. Иные критики утверждали, что она снова вводит в обращение непредикативные определения. Наиболее важными были вопросы о том, является ли аксиома сводимости аксиомой логики и, следовательно, подкрепляет ли она тезис о том, что математика выводима из логики.

Пуанкаре заявил в 1909 г., что аксиома сводимости более спорна и менее ясна, чем доказываемый с ее помощью принцип математической индукции. Аксиома сводимости, по его словам, представляет собой замаскированную форму математической индукции. Итак, с одной стороны, математическая индукция – это составная часть математики, а с другой стороны, она оказывается необходимой для обоснования математики. Следовательно, мы не можем доказать непротиворечивость математики.

В первом издании «Оснований математики» (1910) Рассел и Уайтхед обосновывали аксиому сводимости ссылкой на то, что она необходима для доказательства некоторых результатов. Аксиома их явно беспокоила. В защиту ее они приводили следующие доводы:

Что же касается аксиомы сводимости, то она убедительно подкрепляется интуитивными соображениями, так как и допускаемые ею рассуждения, и результаты, к которым она приводит, во всяком случае выглядят правильными. Но хотя маловероятно, чтобы эта аксиома оказалась ложной, она вполне может оказаться выводимой из некоторых других, более фундаментальных и более очевидных аксиом.

В последующие годы применение аксиомы сводимости вызывало у Рассела все большую озабоченность. Во «Введении в математическую философию» (1919) Рассел был вынужден признать:

Счисто логической точки зрения я не вижу оснований считать аксиому сводимости необходимой, т.е. тем, о чем принято говорить, что оно истинно во всех возможных мирах. Следовательно, включение этой аксиомы в систему логики является дефектом, даже если аксиома эмпирически правильна.

Во втором издании «Оснований математики» (1926) Рассел сформулировал аксиому сводимости иначе. Но и в новой формулировке она порождала немало трудностей: запрет на бесконечности высоких порядков, вынужденный отказ от теоремы о наименьшей верхней границе, трудности при использовании математической индукции. Во втором издании «Оснований математики» Рассел так же, как и в первом, выразил надежду вывести аксиому сводимости из более наглядных аксиом и снова назвал ее логическим дефектом. По словам авторов «Оснований математики», «эта аксиома имеет чисто прагматическое обоснование. Она приводит к желаемым и ни к каким другим результатам. В то же время ясно, что она не принадлежит к такого рода аксиомам, на которые можно спокойно положиться». Рассел и Уайтхед понимали, что ссылка на правильность выводов, получаемых с помощью аксиомы сводимости, не является убедительным аргументом. Были предприняты различные попытки свести математику к логике без столь спорной аксиомы, но никому в этом отношении не удалось продвинуться сколько-нибудь далеко, а некоторые попытки подверглись суровой критике, так как они основывались на неверных доказательствах.

Другое направление в критике логистической школы было связано с аксиомой бесконечности. По общему убеждению, структура всей арифметики существенно зависела от этой аксиомы, в то время как не было ни малейших оснований считать ее истинной и, что еще хуже, не было способа, позволившего бы установить, истинна ли она или нет. Оставался открытым и вопрос о том, является ли эта аксиома аксиомой логики.

Справедливости ради заметим, что Рассел и Уайтхед испытывали сомнения относительно того, включать или не включать аксиому бесконечности в число аксиом логики. Их беспокоило, что содержание аксиомы выглядит «фактообразно». Сомнения возникали не только по поводу принадлежности аксиомы к логике, но и относительно ее истинности. Согласно одной из интерпретаций термина «индивидуум», предложенной Расселом и Уайтхедом, под «индивидуумами» понимались мельчайшие частицы, или элементы, составляющие Вселенную. Создавалось впечатление, что, хотя аксиома бесконечности сформулирована на языке логики, она по существу сводится к вопросу о том, конечно или бесконечно число мельчайших частиц во Вселенной, т.е. к вопросу, ответ на который может дать только физика, но никак не математика и не логика. Но если мы хотим рассматривать бесконечные множества или показать, что математические теоремы, при выводе которых была использована аксиома бесконечности, принадлежат к числу теорем логики, то нам, по-видимому, не остается ничего другого, как считать аксиому бесконечности аксиомой логики. Короче говоря, если мы хотим «свести» математику к логике, то логика, очевидно, должна включать в себя аксиому бесконечности.

Рассел и Уайтхед использовали также аксиому выбора (гл. IX), которую они называли мультипликативной аксиомой: если задан класс непересекающихся (взаимно исключающих) классов, ни один из которых не является нулевым (или пустым), то существует класс, содержащий ровно по одному элементу из каждого класса и не содержащий других элементов. Как мы знаем, аксиома выбора породила больше дискуссий и споров, чем любая другая аксиома, за исключением, может быть, аксиомы Евклида о параллельных. Аксиома выбора вызывала сомнения и у Рассела и Уайтхеда, которые так и не смогли убедить самих себя признать ее логической истиной наравне с другими аксиомами логики. Тем не менее если мы хотим свести к логике те разделы классической математики, для построения которых необходима аксиома выбора, то эту аксиому, вероятно, также необходимо счесть составной частью логики.

Использование этих трех аксиом (сводимости, бесконечности и выбора) поставило под сомнение основной тезис логицизма о возможности вывести всю математику из логики. Где провести границу между логикой и математикой? Сторонники логистического тезиса утверждали, что логика, используемая Расселом и Уайтхедом, была «чистой», или «очищенной». Другие, памятуя о трех спорных аксиомах, ставили под сомнение «чистоту» этой логики. Тем самым они отрицали, что вся математика или даже какая-то важная часть ее может быть сведена к логике. Некоторые математики и логики были склонны расширить термин «логика» так, чтобы он охватывал аксиомы сводимости, бесконечности и выбора.

Рассел, отстаивавший логистический тезис, по-прежнему защищал все, что было сделано им и Уайтхедом в первом издании «Оснований математики». В работе «Введение в математическую философию» ([79]*, 1919) он приводил следующие доводы:

При доказательстве этого тождества [математики и логики] все упирается в детали; начав с посылок, относящихся, по всеобщему признанию, к логике, и придя с помощью дедукции к результатам, заведомо принадлежащим математике, мы обнаружим, что нигде не возможно провести четкую границу, слева от которой находилась бы логика, а справа – математика. Если кто-нибудь вздумает отвергать тождество логики и математики, то мы можем оспорить его мнение, попросив указать то место в цепи определений и дедуктивных выводов «Оснований математики», где, по его мнению, заканчивается логика и начинается математика, и тогда сразу станет ясно, что любой ответ совершенно произволен.

Разногласия по поводу теории Кантора и аксиом выбора и бесконечности достигли в начале XX в. столь большой остроты, что Рассел и Уайтхед не стали включать две последние аксиомы в число аксиом своей системы, хотя и использовали их (во втором издании, 1926) при доказательстве некоторых теорем, каждый раз особо оговаривая, что вывод теорем опирается на «посторонние» аксиомы. Но аксиомы выбора и бесконечности оказались необходимыми для вывода значительной части классической математики. Во втором издании своих «Принципов математики» ([81]*, 1937) Расселу пришлось пойти на еще большие уступки. По его собственному признанию, «весь вопрос о том, что считать принципами логики, становится в значительной степени произвольным». Аксиомы бесконечности и выбора «можно доказывать или опровергать, лишь исходя из эмпирических данных». Тем не менее Рассел продолжал настаивать на единстве логики и математики.

Но и подобные признания не смогли заставить критику умолкнуть. В своей книге «Философия математики и естественных наук» ([93]*, 1949) Герман Вейль писал о том, что Рассел и Уайтхед возвели математику на основе

…не просто логики, а своего рода рая для логиков, мира, снабженною всем необходимым «инвентарем» весьма сложной структуры… Кто из здравомыслящих людей осмелится утверждать, что верит в этот трансцендентальный мир?.. Эта сложная структура требует от нас не меньшей веры, чем учения отцов церкви или средневековых философов-схоластов.

Критика логицизма имела и другой характер. Хотя в трех томах «Оснований математики» Рассела и Уайтхеда не нашлось места для последовательного построения геометрии, ни у кого не вызывало сомнений, что такое построение вполне осуществимо, если воспользоваться, как об этом уже говорилось, аналитической геометрией. Тем не менее иные критики утверждали, что авторы, сведя к логике систему аксиом целых чисел, тем самым свели к логике арифметику, алгебру и математический анализ, но не свели к логике «неарифметические» разделы математики, например геометрию, топологию и абстрактную алгебру. Такого мнения придерживался, в частности, логик Карл Гемпель, считавший, что хотя в случае арифметики неопределяемым, или первичным, понятиям оказалось возможным придать обычный смысл с помощью «чисто логических понятий», «аналогичная процедура неприменима к тем математическим дисциплинам, которые обязаны своим появлением на свет не арифметике». Коллега Гемпеля Уиллард Ван Орман Куайн, по мнению которого «вся математика сводится к логике», считал, что для геометрии существует «готовый метод, позволяющий свести ее к логике» и что топология и абстрактная алгебра «укладываются в общую структуру логики». Сам Рассел сомневался, что всю геометрию удастся вывести только из логики.

Философы также подвергли логистическое направление серьезной критике, суть которой сводилась к следующему. Если основной тезис логицизма верен, то вся математика является чисто формальной, логико-дедуктивной наукой, теоремы которой следуют из законов мышления. Казалось необъяснимым, каким образом с помощью дедуктивного вывода одни лишь законы мышления могут привести к описанию неисчерпаемого разнообразия явлений природы, к различным применениям чисел, геометрии пространства, акустике, электромагнетизму и механике. Именно так и следует понимать критическое замечание Вейля: «Из ничего и следует ничто».

Пуанкаре, со взглядами которого мы познакомимся подробнее в дальнейшем, также критически относился к тому, что считал бесплодными манипуляциями логическими символами. В работе «Наука и метод» (1906), опубликованной в то время, когда Рассел и Гильберт уже успели неоднократно изложить свои программы, Пуанкаре утверждал по поводу логицизма:

Эта наука [математика] не имеет единственной целью вечное созерцание своего собственного пупа; она приближается к природе, и раньше или позже она придет с ней в соприкосновение; в этот момент необходимо будет отбросить чисто словесные определения, которыми нельзя будет довольствоваться.

([1], с. 393.)

В той же книге (с. 397) Пуанкаре говорил:

Как бы там ни было, логистика должна быть переделана, и неизвестно, что в ней может быть спасено. Бесполезно прибавлять, что на карту поставлены только канторизм и логистика. Истинные математические науки, т.е. те, которые чему-нибудь служат, могут продолжать свое развитие только согласно свойственным им принципам, не заботясь о тех бурях, которые бушуют вне их; они будут шаг за шагом делать свои завоевания, которые являются окончательными и от которых им никогда не будет нужды отказываться.

Другое серьезное критическое замечание по поводу логистической программы состояло в том, что в процессе развития математики новые понятия, как выводимые, так и не выводимые непосредственно из опыта, формируются на основе чувственной или образной интуиции. Впрочем, как же иначе может возникать новое знание? Между тем в «Основаниях математики» все понятия сводятся к логическим. Формализация не дает сколько-нибудь реального представления о математике: это лишь шелуха, а не зерно. Высказывание Рассела: «Математика – такой предмет, в котором мы никогда не знаем ни того, о чем говорим, ни насколько верно то, что мы говорим» – вполне может быть адресовано логицизму.

На вопросы о том, каким образом могут входить в математику новые идеи и как математика может описывать реальный мир, если ее содержание целиком выводимо из логики, ответить нелегко, и Рассел и Уайтхед не дали на них никакого ответа. Один из возможных ответов состоял в том, что логицизм не ставит своей задачей объяснить, почему математика применима к реальному миру. На это можно было бы возразить, что математика применима к наиболее фундаментальным физическим принципам. По отношению к реальности их можно рассматривать как логические посылки. Математические методы позволяют извлекать из этих посылок такие заключения, как, например, pV = const(закон Бойля – Мариотта) или F = ma(второй закон Ньютона). Но эти заключения применимы к реальному миру. Возникает проблема соответствия реального мира «математической вселенной», базирующейся не на эмпирических фактах, а на дедуктивных выводах. {114}114
  По этому поводу см. статьи выдающихся физиков, лауреатов Нобелевской премии Е.П. Вигнера [96]*, Ч. Янга [60] и В. Гейзенберга [61]; цитируемые в гл. XV высказывания А. Эйнштейна и названные там его статьи, а также [4].


[Закрыть]
К этому вопросу мы вернемся в дальнейшем (гл. XV).

Рассел продолжал размышлять над логистической программой и после выхода в свет второго издания «Оснований математики». В книге «Мое философское развитие» (1959) он признавал, что эта программа заключалась в постепенном отходе от «евклидианства» в сочетании с намерением по возможности сохранить максимум определенности. Критика логистической философии, несомненно, сказалась на позиции, занятой Расселом в конце 20-х годов XX в. Приступая к работе над «Основаниями математики» в самом начале XX в., Рассел считал аксиомы логики истинами. В издании «Принципов математики» 1937 г. он отказался от таких взглядов. Теперь уже Рассел не был убежден, что принципы логики являются априорными истинами. Следовательно, выводимую из логики математику также нельзя считать априори истинной.

Но если аксиомы логики не принадлежат к числу истин, то логицизм оставляет без ответа фундаментальный вопрос о непротиворечивости математики. Еще в большей степени непротиворечивость ставится под угрозу сомнительной аксиомой сводимости. Использование аксиомы сводимости в первом и во втором изданиях «Оснований математики» Рассел оправдывал неубедительной ссылкой на то, что, во-первых, «из нее следует много высказываний, истинность которых почти не вызывает сомнений», и, во-вторых, «если бы эта аксиома была ложной, не существовало бы столь же правдоподобного объяснения, почему истинны выведенные из нее высказывания и почему из нее не следует ни одного высказывания, которое было бы ложным». Принятая в «Основаниях математики» (и во многих других логических системах) материальная импликация может быть истинной, даже если ее первый член ложен. Следовательно, если бы в число аксиом входило ложное высказывание pи импликация «если p,то q» была бы истинной, то и высказывание qмогло бы быть истинным. Поэтому ссылка на то, что из аксиомы сводимости следуют высказывания, истинность которых не вызывает сомнений, не достигает цели, так как в логической системе «Оснований математики» любое «бесспорно истинное» высказывание вполне может следовать из ложной аксиомы. {115}115
  Разумеется, из (ложной!) «аксиомы» 2×2 = 100 следует (истинная!) теорема «2×2 – четное число» (как, впрочем, и теорема «2×2 – нечетное число», если только следование предложений понимать в соответствии с определением материальной импликации).


[Закрыть]

Работу Рассела и Уайтхеда критиковали и по многим другим причинам, которые мы не затрагивали. Как обнаружилось в дальнейшем, иерархия типов оказалась разумной и полезной, но, по-видимому, все же не полностью соответствующей своему назначению. Типы были введены как предохранительная мера против антиномий, и они действительно помогли разрешить антиномии теории множеств и логики. Однако не исключено, что возникнут новые антиномии, против которых иерархия типов окажется бессильной.

Тем не менее некоторые выдающиеся логики и математики, например Уиллард Ван Орман Куайн и Алонсо Черч, по-прежнему выступают в защиту логицизма, хотя в его современном состоянии относятся к нему критически. Многие авторы трудятся над восполнением тех или иных изъянов логицизма. Некоторые логики и математики, разделяющие не все тезисы логицизма, настаивают на том, что логика и, следовательно, математика аналитичны, т.е. представляют собой обобщенные варианты того, что утверждается в аксиомах. Итак, у логической программы имеются убежденные сторонники, стремящиеся ликвидировать причины возражений и сделать менее громоздкими некоторые построения. Другие ученые склонны видеть в логицизме несбыточную мечту. Находятся и такие, которые, как мы увидим, выступают с резкой критикой, считая логицизм абсолютно ложной концепцией математики. В целом, если учесть спорные аксиомы и длительное, сложное развитие, нельзя не признать, что у критиков были все основания утверждать, что логицизм выводит заранее известные заключения из необоснованных посылок.

Своим фундаментальным трудом Рассел и Уайтхед способствовали прогрессу еще одного направления математической мысли. Математизация логики началась в конце XIX в. (гл. VIII). Рассел и Уайтхед осуществили всю аксиоматизацию в чисто символическом виде, тем самым значительно продвинув развитие математической логики.

По-видимому, последнее слово о логицизме было сказано Расселом в его книге «Портреты по памяти» (1958):

Я жаждал определенности примерно так же, как иные жаждут обрести религиозную веру. Я полагал, что найти определенность более вероятно в математике, чем где-либо еще. Выяснилось, однако, что математические доказательства, на принятие которых мной мои учителя возлагали такие надежды, изобилуют грубыми логическими ошибками и что определенность, если и кроется в математике, то заведомо в какой-нибудь новой области, обоснованной более надежно, чем традиционные области с их, казалось бы, незыблемыми истинами. В процессе работы у меня из головы не выходила басня о слоне и черепахе: воздвигнув слона, на котором мог бы покоиться математический мир, я обнаружил, что этот слон шатается, – тогда и мне пришлось создать черепаху, которая не давала бы слону упасть. Но и черепаха оказалась ничуть не более надежной, чем слон, – и через каких-нибудь двадцать лет напряженных усилий и поисков я пришел к выводу, что не могу сделать ничего более, дабы придать математическому знанию неоспоримый характер.

В книге «Мое философское развитие» (1959) Рассел признавался: «Восхитительная определенность, которую я всегда надеялся найти в математике, затерялась в путанице понятий и выводов… Это оказался поистине запутанный лабиринт, выхода из которого не было видно». Трагедия постигла не только Рассела.


    Ваша оценка произведения:

Популярные книги за неделю