355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Морис Клайн » Математика. Утрата определенности. » Текст книги (страница 10)
Математика. Утрата определенности.
  • Текст добавлен: 31 октября 2016, 02:56

Текст книги "Математика. Утрата определенности."


Автор книги: Морис Клайн


Жанр:

   

Математика


сообщить о нарушении

Текущая страница: 10 (всего у книги 38 страниц)

В вопросе об истинности всей математики в целом некоторые математики встали на сторону Гаусса. Они считали, что истина кроется в числах, составляющих основу арифметики, алгебры, дифференциального и интегрального исчисления, а также высших разделов математического анализа. Карлу Густаву Якоби (1804-1850) принадлежит высказывание: «Бог всегда арифметизует». {55}55
  Типичная для 2-й половины XX в. «арифметизация математики», попытка построить все математические дисциплины на, казалось бы, незыблемом фундаменте арифметики, обычно связывается с главой берлинской математической школы Карлом Вейерштрассом (1815-1897) и другими берлинскими математиками [Леопольдом Кронекером (1823-1891), Георгом Фробениусом (1849-1917), Эрнстом Куммером (1810-1893) и др.].


[Закрыть]
В отличие от Платона Якоби не считал, что бог вечно геометризует.

То, что математикам удалось отвести смертельную опасность, приняв за абсолютную истину разделы математики, основанные на понятии числа, по-видимому, имело в середине XIX в. несравненно более далеко идущие последствия и было более жизненно важным для науки, чем существование нескольких геометрий. К сожалению, математике предстояло пережить новые потрясения. И чтобы разобраться в их истоках, нам придется вернуться немного назад.

Понятие вектораматематики широко использовали начиная с XVI в. {56}56
  И даже ранее: векторный характер перемещений, скоростей, сил был по существу знаком еще античным ученым; само это представление, как и «правило параллелограмма» сложения векторов, сложилось еще в школе Аристотеля; широко использовал это представление и Архимед.


[Закрыть]
Вектор, обычно изображаемый в виде направленного отрезка, обладает направлением и величиной (рис. 4.5). Он используется для описания таких физических величин, как сила, скорость и другие, которые характеризуются величиной и направлением. Векторы, лежащие в одной плоскости, можно комбинировать геометрически, производя над ними обычные операции сложения и вычитания и получая некий результирующий вектор.

Рис. 4.5.Вектор.

В том же XVI в. в математике появились комплексные числа, т.е. числа вида а + bi, где i = √−1, а аи b– вещественные числа. Даже математики считали комплексные числа весьма загадочными. Поэтому, когда около 1800 г. несколько математиков [Каспар Вессель (1745-1818), Жан Робер Арган (1786-1822) и Гаусс] поняли, что комплексным числам можно сопоставить направленные отрезки на плоскости (рис. 4.6), их открытие стало подлинной сенсацией. Эти математики сразу же осознали, что комплексные числа можно использовать не только для представления векторов на плоскости, но и для выполнения операций сложения, вычитания, умножения и деления векторов.

Рис. 4.6.Геометрическое представление комплексных чисел.

Иначе говоря, комплексные числа позволяют представить векторную алгебру, подобно тому как целые и дробные числа позволяют представить, например, коммерческую сделку. Следовательно, вместо того чтобы производить операции над векторами геометрически, их можно осуществлять алгебраически. Так, сложение двух векторов  OAи  OB(рис. 4.7) по правилу параллелограмма приводит к сумме, или результирующему вектору ОС.Ту же операцию можно выполнить алгебраически, представив вектор  OAкомплексным числом 3 + 2i,а вектор  OB– комплексным числом 2 + 4i.Сумма этих комплексных чисел (комплексное число 5 + 6i) соответствует результирующему вектору ОС.

Рис. 4.7.Сложение комплексных чисел по правилу параллелограмма.

К 30-м годам XIX в. идея использования комплексных чисел для представления векторов на плоскости и выполнения операций над ними получила достаточно широкое распространение. Но если на тело действуют несколько сил, то эти силы и представляющие их векторы не обязательно должны лежать в одной и той же плоскости – и даже обычно не лежат в ней. Условимся для удобства называть обычные вещественные числа одномерными, а комплексные – двумерными.Тогда для представления пространственных векторов и выполнения операций над ними было бы естественно ввести «трехмерные» числа. Как и в случае комплексных чисел, допустимые операции над трехмерными числами должны были бы включать сложение, вычитание, умножение и деление. Для того, чтобы над этими числами можно было беспрепятственно и эффективно производить алгебраические операции, они должны обладать обычными свойствами вещественных и комплексных чисел. Так, математики принялись за поиски «трехмерных комплексных чисел».

Над решением этой проблемы бились многие. Полезный пространственный аналог комплексных чисел предложил в 1843 г. Уильям Роуан Гамильтон. Пятнадцать лет он непрестанно размышлял над этой проблемой. Умножение всех известных к тому времени чисел обладало свойством коммутативности,т.е. всегда было ab = ba, —и Гамильтон вполне естественно полагал, что трехмерные, или трехкомпонентные, числа также должны обладать этим свойством, равно как и другими свойствами вещественных и комплексных чисел. Гамильтону удалось добиться успеха лишь ценой двух компромиссов: во-первых, его новые числа обладали четырьмя компонентами, а не тремя, как ему первоначально хотелось, и, во-вторых, ему пришлось пожертвовать свойством коммутативности умножения (сохранив, однако, ассоциативность:для любых трех кватернионов p, qи rвсегда (pq)r = p(qr)). Оба необычных свойства введенных Гамильтоном чисел произвели подлинный переворот в алгебре. Гамильтон назвал найденные им новые числа кватернионами.

Если комплексное число представимо в виде а + bi, где i = √−1, то кватернион – это число, представимое в виде

a + bi + cj + dk,

где i, jи kобладают таким же свойством, как и √−1, т.е.

i 2 = j 2= k 2= −1.

Два кватерниона равны в том и только том случае, если попарно равны коэффициенты a, b, cи  dв представлениях этих чисел. При сложении двух кватернионов суммы соответствующих коэффициентов образуют новые коэффициенты. Таким образом, сумма двух кватернионов сама также является кватернионом. Чтобы определить умножение кватернионов, Гамильтону пришлось задать произведения  iи j, iи kjи k.Гамильтон исходил из того, что произведение кватернионов должно быть кватернионом и что кватернионы должны сохранять как можно больше свойств вещественных и комплексных чисел. Достичь желаемого ему удалось, приняв правила умножения:

jk = i, kj = −i,

ki = j, ik = −j,

ij = k, ji = −k.

Эти правила означают, что умножение кватернионов не коммутативно, т.е. если pи q– кватернионы, то pqне равно qp.Выполнимо и деление одного кватерниона на другой. Но поскольку умножение кватернионов не коммутативно, то разделить кватернион pна кватернион qозначает найти либо такой кватернион r,что р = qr,либо такой кватернион r,что p = rq.Частное  r вэтих двух случаях не обязательно должно быть одним и тем же; поэтому их и записывают по-разному: в первом случае пишут r = q −1p,a во втором – pq −1. Хотя кватернионы не получили столь широкого применения, как рассчитывал Гамильтон, ему удалось с их помощью решить немало физических и геометрических задач.

Введение кватернионов явилось еще одним потрясением для математики. Налицо был пример физически полезной алгебры, не обладающей фундаментальным свойством всех известных ранее чисел – здесь не выполнялось правило ab = ba.

Вскоре после того, как Гамильтон создал свои кватернионы, математики, работавшие в других областях, ввели еще более необычные алгебры. Знаменитый алгебраист и геометр Артур Кэли (1821-1895) ввел матрицы– квадратные или прямоугольные таблицы чисел. Над матрицами также можно было производить обычные алгебраические операции, но умножение матриц, как и кватернионов, не было коммутативным. Кроме того, произведение двух матриц могло равняться нулю, даже если оба сомножителя были отличны от нуля. Кватернионы и матрицы ознаменовали начало появления нескончаемой вереницы новых алгебр со все более необычными свойствами. Несколько таких алгебр создал Герман Гюнтер Грассман (1809-1877). По своей общности они превосходили кватернионы Гамильтона. К сожалению, Грассман всю жизнь оставался преподавателем средней школы, и прошло немало лет, прежде чем его работа привлекла заслуженное внимание. Как бы то ни было, Грассман пополнил множество так называемых гиперчисел(или, как сегодня чаще говорят, гиперкомплексных чисел {57}57
  В наши дни термин «гиперкомплексные числа» все более вытесняется (странным) термином алгебра:под этим словом понимают как целую ветвь математики, так и, в более узком смысле, совокупность гиперкомплексных чисел определенного рода.


[Закрыть]
) новыми полезными разновидностями.

Создание новых алгебр для тех или иных специальных целей само по себе не ставило под сомнение истинность обычной арифметики и ее приложений в алгебре и математическом анализе. Кроме того, обычные вещественные и комплексные числа использовались для совершенно разных целей, и их применимость нигде не вызывала сомнений. Тем не менее сам факт появления на сцене новых алгебр заставил усомниться в истинности привычной арифметики и алгебры, подобно тому как люди, узнав об обычаях неизвестной ранее цивилизации, начинают по-новому смотреть на свои собственные обычаи.

Наиболее сильной критике истинность арифметики подверглась со стороны Германа Гельмгольца (1821-1894), выдающегося физиолога, физика и математика. В своей книге «Счет и измерение» (1887) Гельмгольц провозгласил основной проблемой арифметики, обоснование ее автоматическойприменимости к физическим явлениям. По мнению Гельмгольца, единственным критерием применимости законов арифметики мог быть опыт. Утверждать априори, что законы арифметики применимы в любой данной ситуации, невозможно.

По поводу применимости законов арифметики Гельмгольц высказал немало ценных замечаний. Само понятие числа заимствовано из опыта. Некоторые конкретные опыты приводят к обычным типам чисел: целым, дробным, иррациональным – и к свойствам этих чисел. Однако обычные числа применимы лишь именно к этим опытам. Мы сознаем, что существуют виртуально эквивалентные объекты, и тем самым сознаем, что можем говорить, например, о двух коровах. Но чтобы выражения подобного рода сохраняли силу, рассматриваемые объекты не должны исчезать, сливаться или претерпевать деление. Одна дождевая капля, если ее слить с другой дождевой каплей, вовсе не образует двух дождевых капель. Даже понятие равенства неприменимо автоматически к каждому опыту. Кажется несомненным, что если объект  aравен объекту c,а объект bравен объекту c,то объект  aдолжен быть равен объекту b.Но два звука могут казаться по высоте такими же, как третий звук, и все же мы в состоянии отличать на слух первые два звука. Следовательно, два объекта, порознь равные третьему, не обязательно должны быть равны между собой. Аналогично цвет  aможет казаться таким же, как цвет b,а цвет  b– таким же, как цвет c,и все же цвет  aиногда удается отличить от цвета c.

Много других примеров можно привести в подтверждение того, что наивное применение арифметики иногда давало нелепые результаты. Так, смешав два равных объема воды – один при температуре 40°C, другой при температуре 50°C, – мы не получим удвоенного объема при температуре 90°. Путем наложения двух гармонических тонов – одного с частотой 100 Гц, другого с частотой 200 Гц – мы не получим гармонический тон с частотой 300 Гц. В действительности составной тон будет иметь частоту 100 Гц. Соединив в электрической цепи параллельно два резистора с сопротивлениями R 1и R 2, мы получим сопротивление величиной R 1R 2/ (R 1 + R 2), a не сопротивление R 1 + R 2.Как в шутку заметил некогда Анри Лебег (1875-1941), поместив в клетку льва и кролика, мы не обнаружим в ней позднее двух животных.

Из химии известно, что, смешивая водород и кислород, можно получить воду. Но если взять два объема водорода и один объем кислорода, то мы получим не три, а два объема водяного пара. Аналогично из одного объема азота и трех объемов водорода мы получим два объема аммиака. Физическое объяснение этой удивительной арифметики ныне известно. По закону Авогадро, в равных объемах любого газа при одинаковой температуре и одинаковом давлении содержится равное число частиц.Например, если в данном объеме кислорода содержится 10 молекул, то при той же температуре и том же давлении в равном объеме водорода содержится также 10 молекул. Следовательно, удвоенный объем водорода содержит 20 молекул. Известно, что молекулы кислорода и водорода двухатомны. Каждая из 20 двухатомных молекулводорода, соединяясь с одним атомом кислорода, образует молекулу воды. Так как всего имеется 10 молекул кислорода, то образуется 20 молекул воды, т.е. два, а не три объема. Таким образом, обычная арифметика не дает правильного описания того, что происходит при смешении газов, если подсчет производить по объемам.

Обычная арифметика не позволяет правильно описать и то, что происходит при смешении некоторых жидкостей. Если кварту джина смешать с квартой вермута, то получится чуть меньше двух кварт смеси. Смешав 1 л спирта с 1 л воды, мы получим 1,8 л спиртового раствора. То же справедливо и для большинства жидкостей, в состав которых входит спирт. Взяв столовую ложку, воды и столовую ложку соли, мы не получим две столовые ложки крепкого раствора соли. При смешивании некоторых химических веществ происходит взрыв – объем смеси заведомо не равен сумме объемов исходных веществ.

Для описания многих физических ситуаций неприменимы не только свойства целых чисел – на практике нередко приходится прибегать к совсем иной арифметике дробных чисел. Рассмотрим, например, футбол, столь любимый миллионами болельщиков во всем мире.

Предположим, что в одной игре нападающий трижды пробил по воротам противника, а в другой игре – четыре раза. Сколько раз всего он бил по воротам противника? Подсчитать нетрудно: всего он бил по воротам противника 7 раз. Предположим, что в первой игре наш нападающий забил 2 гола, а во второй – 3 гола. Сколько голов он забил за две игры? И на этот раз ответ получить легко: за две игры он забил 2 + 3 = 5 голов. Но и болельщиков, и самого игрока обычно интересует средняя результативность,т.е. отношение числа забитых голов к числу ударов по воротам противника. В первой игре это отношение было равно 2/3, во второй – 3/4. Предположим, что нападающий или болельщик хочет по этим данным вычислить среднюю результативность за две игры. Некоторые полагают, что для этого необходимо лишь сложить оба отношения по обычным правилам сложения дробей, т.е. составить сумму:

2/3 + 3/4 = 17/12.

Но полученный таким образом результат явно лишен всякого смысла: ни один нападающий за 12 ударов по воротам противника не может забить 17 голов! Ясно, что обычные правила сложения дробей непригодны для подсчета средней результативности: средняя результативность за две игры не совпадает с суммой средних результативностей, вычисленных для каждой из игр в отдельности. Каким же образом, зная результативность нападающего в каждой из двух игр в отдельности, правильно вычислить среднюю результативность за две игры? Для этого необходимо воспользоваться новым правилом сложения дробей. Мы знаем, что результативность нападающего по двум играм составляет 5/7, а в первой и во второй играх равна соответственно 2/3 и 3/4. Нетрудно видеть, что, сложив отдельно числители и знаменатели слагаемых, мы получим новую дробь, дающую правильный ответ:

2/3  3/4 = 5/7.

(знак плюс,который мы не случайно обвели кружком, означает здесь, что числители и знаменатели суммируются отдельно).

Предложенное нами правило «сложения» дробей оказывается полезным и в других ситуациях. Продавец, ведущий учет эффективности своей торговли, может заметить, например, что в первый день покупки сделали 3 из 5 посетителей, а во второй день – 4 из 7. Чтобы вычислить эффективность торговли за два дня, т.е. найти отношение числа покупок к общему числу посетителей, продавец должен сложить 3/5 и 4/7 по тому же правилу, по которому нападающий вычислял свою результативность за две игры. За два дня покупки сделали 7 посетителей из 12, а 7/12 = 3/5 + 4/7, где знак плюс означает сложение отдельно числителей и отдельно знаменателей.

Еще чаще встречается другое применение нового правила сложения дробей. Предположим, что автомобиль проезжает 50 км за 2 ч и 100 км за 3 ч. С какой средней скоростью автомобиль покрывает оба отрезка пути? Можно было бы рассуждать так: расстояние 150 км автомобиль проезжает за 5 ч, поэтому его средняя скорость составляет 30 км/ч. Но часто бывает удобнее вычислять средние скорости всего пробега по средним скоростям на отдельных участках маршрута. Средняя скорость на первом участке равна (50/2) км/ч, а на втором – (100/3) км/ч. Сложив отдельно числители и знаменатели этих дробей, мы получим правильную среднюю скорость всего пробега.

В обычной арифметике 4/6 = 2/3. Но при сложении двух дробей по новому правилу, например при вычислении 2/3 + 3/5, дробь 2/3 не следует заменять дробью 4/6, так как ответ в одном случае равен 5/8, а в другом – 7/11, и эти два ответа оказываются различными. Кроме того, в обычной арифметике такие дроби, как 5/1 и 7/1, ведут себя также, как целые числа 5 и 7. Но если мы вздумаем сложить 5/1 и 7/1 как дроби, по правилам новой арифметики, то вместо 12/1 получим 12/2.

Приведенные примеры такой «футбольной арифметики» свидетельствуют об одном: вводя операции, отличные от привычных, мы тем не менее можем прийти к арифметике, применимой к реальному миру. Математике известны и многие другие арифметики. Однако ни один здравомыслящий математик не станет изобретать арифметику «просто так», для собственного удовольствия. Каждая арифметика предназначена для описания некоторого класса явлений физического мира. Производимые над числами операции выбираются с таким расчетом, чтобы они соответствовали выбранному классу явлений, подобно тому как в приведенных примерах необычное сложение дробей позволяло вычислять среднюю результативность, эффективность и скорость. Новая арифметика должна облегчать исследование реально происходящего. Только опыт может сказать нам, в каких случаях обычная арифметика применима к тому или иному физическому явлению. Следовательно, мы не можем рассматривать арифметику как свод истин, с необходимостью применимых для описания любых физических явлений. Разумеется, это же относится и к «продолжениям» арифметики – алгебре и математическому анализу. Их также нельзя считать сводом непреложных истин (см., например, [30]).

Итак, математикам не оставалось ничего иного, как прийти к печальному заключению о том, что в математике нет абсолютной истины, т.е. что математика не содержит внутри себя все законы реального мира. Аксиомы основных структур арифметики и геометрии порождены опытом, и поэтому применимость структур арифметики ограничена. Вопрос о том, где именно они применимы, может быть решен только на опыте. Попытка древнегреческих мыслителей обеспечить истинность математики, принимая за исходные самоочевидные истины и используя только дедуктивные доказательства, провалилась.

Для многих мыслящих математиков сознание того, что математика не является более сводом незыблемых истин, было невыносимым, и они не могли смириться с этим. Казалось, сам бог ниспослал им в наказание несколько геометрий и несколько алгебр, подобно тому как он, смешав языки, покарал строителей Вавилонской башни. Такие математики наотрез отказывались принимать новые творения своих собратьев по профессии.

Уильям Р. Гамильтон, несомненно, один из самих выдающихся математиков XIX в., выразил (1837) свое неприятие неевклидовой геометрии следующим образом:

Ни один честный и здравомыслящий человек не может усомниться в истинности главных свойств параллельныхв том виде, как они били изложены в «Началах» Евклида две тысячи лет назад, хотя вполне мог бы желать увидеть их изложенными более просто и ясно. Геометрия Евклида не содержит неясностей, не приводит мысли в замешательство и не оставляет разуму сколько-нибудь веских оснований для сомнения, хотя острый ум извлечет для себя пользу, пытаясь улучшить общий план доказательства.

Артур Кэли, выступая в 1883 г. с речью перед Британской ассоциацией содействия развитию наук, сказал:

По моему мнению, двенадцатая аксиома Евклида [называемая также пятым постулатом, или аксиомой о параллельных] в форме Плейфера не требует доказательства, но является составной частью нашего представления о пространстве, физическом пространстве нашего опыта, с которым каждый знакомится на своем опыте, – представления, лежащего в основе всего нашего опыта… Утверждения геометрии не являются лишь приближенно истинными. Они остаются абсолютно истинными в отношении той евклидовой геометрии, которая так долго считалась физическим пространством нашего опыта.

Ту же точку зрения высказывал и Феликс Клейн (1849-1925), один из крупнейших математиков нашего времени. Хотя Кэли и Клейн сами работали в области неевклидовых геометрий, они рассматривали их как новообразования, возникающие при искусственном введении в добрую старую евклидову геометрию новых метрик – функций, определяющих расстояние между точками. Оба отказывались признать, что неевклидова геометрия столь же фундаментальна и применима к внешнему миру, как и евклидова. Разумеется, во времена, когда теория относительности еще не была создана, позиция Кэли и Клейна была вполне обоснованной.

Верил в истинность математики и Бертран Рассел, хотя он и понимал эту истинность в несколько ограниченном смысле. В 1890 г. он предпринял попытку проанализировать вопрос о том, какие свойства пространства необходимы и могут быть приняты до опыта, т.е., если бы любое из этих априорных свойств мы стали бы отрицать, то опыт утратил бы смысл. В своей работе «Очерк оснований геометрии» ( Essay of the Foundations of Geometry, 1897) Рассел признал, что геометрия Евклида не является априорным знанием. В этой же книге он пришел к заключению, что из всех геометрий априорность присуща лишь проективной геометрии {58}58
  Проективная геометрия занимается изучением свойств, общих для всех фигур, получающихся при проектировании одной фигуры на различные плоскости. Так, если держать круг перед ярким фонарем, то он будет отбрасывать тень на экран или на стену. Форма тени будет изменяться в зависимости от наклона круга. Тем не менее окружность и контуры теней (эллипсы, гиперболы, параболы) обладают общими геометрическими свойствами.


[Закрыть]
– заключение вполне понятное, если принять во внимание то значение, которое придавали проективной геометрии на рубеже XIX-XX вв. К проективной геометрии в качестве априорных истин Рассел добавил аксиомы, общие для евклидовой и всех неевклидовых геометрий. Эти аксиомы относились к однородности пространства, конечномерности и к понятию расстояния, позволяющему производить измерения. Рассел также указал на то, что количественным соображениям должны предшествовать чисто качественные, и использовал этот тезис для подкрепления приоритета проективной геометрии.

Что касается метрических геометрий, к числу которых относятся евклидова и несколько неевклидовых геометрий, то они могут быть получены из проективной геометрии, если подходящим образом определить расстояние между точками. Поэтому Рассел считал их создание чисто техническим достижением, не имеющим философского значения. Во всяком случае, специфические теоремы метрических геометрий, с точки зрения Рассела, не являются априорными истинами. Что же касается нескольких основных метрических геометрий, то Рассел, расходясь во мнениях с Кэли и Клейном, считал, что все они логически одинаково обоснованы. Поскольку априорными свойствами из всех метрических геометрий обладают только евклидова, гиперболическая, эллиптическая и удвоенная эллиптическая геометрии, то Рассел заключил, что ими исчерпываются все возможные метрические геометрии и что евклидова геометрия – единственная из всех геометрий, применимая к физическому миру. Все остальные геометрии имеют философское значение, так как доказывают возможность существования других геометрических систем, отличных от разработанной древними греками. Оглядываясь назад, мы ясно видим, что широко распространенное пристрастие к евклидовой геометрии уступает у Рассела место пристрастию к проективной геометрии. Много лет спустя, Рассел признал «Очерк» юношески незрелым произведением, более не выдерживающим критики. Как мы увидим в дальнейшем (гл. X), Рассел вместе с другими философами выдвинул новую основу для установления истины в математике.

Настойчивость, проявленная математиками в поиске каких-либо абсолютных истин, вполне понятна. После многих столетий блистательных успехов математики в описании и предсказании физических явлений природы мысль о необходимости признать ее не коллекцией алмазов, а собранием искусственных камней была тяжела для каждого, а особенно для тех, кто был ослеплен гордостью за свои собственные достижения. Однако постепенно математики свыклись с тем, что аксиомы и теоремы их науки утратили статус истин о физическом мире. Некоторые области опыта подсказывали выбор специальных систем аксиом – для таких областей эти аксиомы и логические следствия из них были применимы достаточно точно, что позволило считать их полезным описанием действительного. Но расширение такой области может пагубно сказаться на применимости аксиом и теорем. Что касается изучения физического мира, то математика не предлагает ничего, кроме теорий, или моделей. Всякий раз когда накопленный нами опыт или специальный эксперимент показывает, что новая теория дает более точное описание реальности, чем старая, старую теорию вполне допустимо заменить новой. Отношение математики к физическому миру прекрасно выразил в 1921 г. Эйнштейн:

Если теоремы математики прилагаются к отражению реального мира, они не точны; они точны до тех пор, пока не ссылаются на действительность… Однако, с другой стороны, верно и то, что математика вообще и геометрия в частности обязаны своим происхождением необходимости узнать что-либо о поведении реально существующих объектов.

([31], с. 83-84.)

Бог отвернулся от математиков, и им не оставалось ничего другого, как принять человека. Именно это они и сделали. Они продолжали развивать математику и заниматься поиском законов природы, теперь уже зная, что их открытия не составляют часть божественного плана, а являются творениями людей. Одержанные в прошлом победы помогли им вновь обрести уверенность в своих силах, а нескончаемая череда новых успехов вознаграждала их усилия. Жизнь математики спасли чудодейственное «снадобье», ею же самой составленное: колоссальные достижения в небесной механике, акустике, гидродинамике, оптике, теории электромагнитного поля {59}59
  Математический вариант теории электромагнитного поля был создан Дж.К. Максвеллом, который, по выражению Р. Милликена, «облек плебейски обнаженные представления Фарадея в аристократические одежды математики». [Создатель описательной теории электромагнетизма, самоучка М. Фарадей, весьма далекий от математики, был, кстати сказать, одним из немногих физиков, кто сразу же высоко оценил первые публикации Максвелла.]


[Закрыть]
 и инженерном деле – и невероятная точность предсказаний. Наука, которая хотя и сражалась под победоносным знаменем истины, но одерживала свои победы с помощью загадочной «внутренней силы» (гл. XV), должна быть наделена скрытой мощью, чтобы не сказать магией. Развитие математики и применение ее результатов к естествознанию происходило теперь более быстрыми темпами, чем прежде.

Осознание того, что математика не является сводом абсолютных истин, эхом отозвалось на многих областях человеческой деятельности. Начнем с естествознания. Со времен Галилея физики понимали, что в основе фундаментальных законов естествознания в отличие от математики должен лежать эксперимент, хотя ранее они на протяжении двух столетий считали, что открываемые ими законы заложены в плане мироздания. Но к началу XIX в. физики пришли к заключению, что никакие естественнонаучные теории также не являются абсолютными истинами. Если даже математика имеет свои начала в человеческом опыте и не может более отстаивать свою истину, рассуждали естествоиспытатели, то, поскольку мы используем аксиомы и теоремы математики, наши собственные теории уязвимы в еще большей степени. Законы природы открывает человек. Мы, а не господь бог, устанавливаем законы природы. Закон природы описывает человек, а не предписывает бог.

Отзвуки постигшего математику бедствия докатились до всех областей культуры. Вера в достижимость мнимых истин в математике и математической физике порождала надежду на то, что истина достижима и во всех остальных областях знания. Эти надежды выразил в 1637 г. Декарт в своем «Рассуждении о методе»:

Те длинные цепи выводов, сплошь простых и легких, которыми обычно пользуются геометры, чтобы дойти до своих наиболее трудных доказательств, дали мне повод представить себе, что и все вещи, которые могут стать предметом знания людей, находятся между собой в такой же последовательности. Таким образом, если остерегаться принимать за истинное что-либо, что таковым не является, и всегда соблюдать порядок, в каком следует выводить одно из другого, то не может существовать истин ни столь отдаленных, чтобы они были недостижимы, ни столь сокровенных, чтобы нельзя было их раскрыть.

([14], с. 23.)

Декарт написал эти строки в те времена, когда успехи математического метода были еще сравнительно невелики. К середине XVIII в. эти успехи стали столь многочисленны и весомы, что ведущие мыслители обрели уверенность в необходимости применения рационального и математического подхода всюду, где необходимо достичь истины. Имея в виду свой век, Д'Аламбер писал:

… Некая экзальтация идей, вызываемая в нас зрелищем Вселенной… плодотворно сказалась на умах. Разливаясь повсюду, подобно реке, смывшей плотины, это плодотворное влияние насильственно увлекало на своем пути все, что сколько-нибудь мешало ему… От принципов теологии до оснований религиозных откровений, от метафизики до вопросов вкуса, от музыки до морали, от схоластических диспутов теологов до торговли, от законов князей до законов простого народа, от законов природы до законов наций… – все подверглось обсуждению, было проанализировано или по крайней мере отмечено.

Уверенность в том, что истины удастся обнаружить во всех областях человеческого знания, была до основания подорвана, когда выяснилось, что абсолютной истины нет даже в математике. Возможно, что надежда и даже вера в возможность достижения абсолютного знания в вопросах политики, этики, религии, экономики и многих других областях еще теплилась в умах людей, однако самая прочная опора подобных надежд была утрачена. Математика явила миру доказательство того, что человек может постигать истины – но она же и опровергла данное ею доказательство. Неевклидова геометрия и кватернионы, ознаменовавшие триумф человеческого разума, привели к бедствию, постигшему духовный мир человека.

По выражению знаменитого психолога Уильяма Джеймса (1842-1910), «духовная жизнь человека почти целиком заключается в замене концептуальным порядком той упорядоченности ощущений, в которых первоначально запечатляется его опыт». Но концептуальный порядок далеко не отражает упорядоченность восприятий.

С утратой истины разум человека утратил точку опоры, свою систему отсчета. «Гордость человеческого разума», падая, увлекла за собой здание истины. Урок этого состоял в следующем: никогда нельзя утверждать догматически даже то, в чем мы неколебимо уверены. Именно то, в чем мы наиболее уверены, должно вызывать наибольшие сомнения, ибо здесь проявляются не только наши достижения, но и наша ограниченность, пределы наших возможностей. Историю всеобщей убежденности в истинности математики можно закончить, процитировав «Размышления о бессмертии» Уордсворта. В середине XVIII в. математики могли сказать о своих творениях:

 
Наш бог – наш дом,
И от него мы низойдем
В сиянье славы.
 

В середине XIX в. математикам не оставалось ничего другого, как с горечью признать:

 
Куда б я ни пришел,
Одну картину зрю:
Прочь навсегда исчезнувшую славу.
 

Но история не дает повода к унынию. Как сказал о математике гениальный Эварист Галуа (1811-1832) «[эта] наука – творение человеческого разума, предназначенное не столько для знания, сколько для познания, для поиска, а не для отыскания истины». Возможно, в самой природе истины заложена способность ускользать от преследования или, говоря словами римского философа Луция Сенеки, «природа не сразу открывает свои тайны».


    Ваша оценка произведения:

Популярные книги за неделю