Текст книги "Математика. Утрата определенности."
Автор книги: Морис Клайн
Жанр:
Математика
сообщить о нарушении
Текущая страница: 19 (всего у книги 38 страниц)
Непротиворечивость неевклидовых геометрий была доказана в предположении, что евклидова геометрия непротиворечива. У математиков 70-80-х годов прошлого века непротиворечивость евклидовой геометрии сомнений не вызывала. Несмотря на работы Гаусса, Лобачевского, Бойаи и Римана, евклидову геометрию продолжали считать естественной и непременной геометрией реального мира, а сама мысль о том, что геометрия реального мира может быть внутренне противоречивой, казалась нелепой. Тем не менее непротиворечивость евклидовой геометрии не была доказана логически.
Многие математики, относившиеся к неевклидовой геометрии почти презрительно, с удовлетворением восприняли доказательства непротиворечивости ее различных вариантов совсем по другой причине: дело в том, что хотя неевклидовы геометрии обретали смысл, но, как следовало из приведенных доказательств, лишь как модели, которые строились в рамках евклидовой геометрии. Это позволяло принять их как геометрии, реализуемые на тех или иных поверхностях, а не как геометрии, применимые к физическому миру, где прямые понимались в обычном смысле. Разумеется, подобный подход полностью противоречил взглядам Гаусса, Лобачевского и Римана (а в несколько ином смысле – и Бойаи).
Нерешенной оставалась лишь одна фундаментальная проблема, связанная с наведением строгости в математике: в основаниях евклидовой геометрии обнаружились изъяны. Однако в отличие от математического анализа природа геометрии и ее понятий была ясна. Установить неопределяемые термины, уточнить определения, восполнить недостающие аксиомы и завершить доказательства было сравнительно простой задачей. Она была решена независимо Морицем Пашем (1843-1930), Джузеппе Веронезе (1854-1917) и Марио Пиери (1860-1904). Давид Гильберт (1862-1943), по достоинству оценивший вклад Паша, предложил свой вариант аксиоматического построения евклидовой геометрии, который наиболее широко используется в наши дни. На едином дыхании он заложил основания неевклидовой геометрии Ламберта, Гаусса, Лобачевского и Бойаи, а также других геометрий, созданных в XIX в., главным образом проективной геометрии. {93}93
Первым автором, полностью решившим задачу обоснования евклидовой геометрии, был, по-видимому, итальянец М. Пиери, ученик Дж. Пеано. Несколько позже в том же 1899 г. появились в значительной степени основанные на более ранних исследованиях Паша «Основания геометрии» Д. Гильберта, где производилось тщательное выделение отдельных групп аксиом, описывающих то или иное из неопределяемых отношений между основными элементами (точками, прямыми и плоскостями): принадлежность (точки, прямой или плоскости); понятие «между» и т.д. В настоящее время имеется много разных систем обоснования евклидовой геометрии (см., например, [49]).
[Закрыть]
Так, к началу XX в. математическая строгость восторжествовала в арифметике, алгебре, математическом анализе (начала которого базировались на аксиомах для целых чисел) и геометрии (на основе аксиом для точек, прямых и других геометрических объектов). Многих математиков соблазняла возможность пойти еще дальше и достроить на понятии числа всю геометрию – план, осуществимый с помощью аналитической геометрии. Сама геометрия как таковая по-прежнему не вызывала у них доверия. У математиков еще не изгладился из памяти один из уроков, преподанных им неевклидовой геометрией, которая выявила серьезные изъяны в евклидовой геометрии, считавшейся до сих пор образцом математической строгости. Однако к началу XX в. программа сведения всей геометрии к числу не была выполнена. Тем не менее большинство математиков того времени говорили об арифметизации геометрии, хотя правильнее было бы говорить об арифметизации математического анализа. Так, на II Международном конгрессе математиков, состоявшемся В 1900 г. в Париже, Пуанкаре утверждал: «На сегодняшний день в математическом анализе остались только целые числа, а также конечные и бесконечные системы целых чисел, связанных между собой системой отношений равенства или неравенства. Математика, можно сказать, арифметизована». Паскалю принадлежит следующее высказывание: «Tout ce qui passe la Géométrie nous passe» (все, что выходит за рамки Геометрии, выходит за рамки нашего понимания). В начале XX в. математики предпочитали говорить иначе: «Tout ce qui passe l'Arithmétique nous passe» (все, что выходит за рамки Арифметики, выходит за рамки нашего понимания).
Движения, первоначально ставившие перед собой довольно ограниченные цели, по мере своего разрастания нередко начинают охватывать гораздо более широкий круг проблем, чем ранее предполагалось. Критическое движение в области оснований математики со временем сделало мишенью своих атак и логику – законы мышления, используемые в математических доказательствах при переходе от одного заключения к другому.
Начало логике как науке было положено сочинением Аристотеля «Органон» (Инструмент [мышления], около 300 г. до н.э.) [см. прим. {38}к гл. IV]. По признанию Аристотеля, он выделил законы мышления, используемые математиками, абстрагировал их от частностей и обнаружил, что эти законы обладают универсальной применимостью. Так, один из фундаментальных законов аристотелевой логики, закон исключенного третьего,гласит: всякое имеющее смысл высказывание либо истинно, либо ложно. Закон исключенного третьего Аристотель мог абстрагировать, например, из такого математического утверждения, как «всякое целое число либо четно, либо нечетно». Логика Аристотеля в основном представляла собой силлогистику – набор правил о выводе новых утверждений из уже известных.
На протяжении более чем двух тысячелетий логика Аристотеля не вызывала возражений у мыслителей, в частности у математиков. Правда, Декарт, подвергавший сомнению любые убеждения и учения, задал вопрос: откуда нам известно, что законы логики правильны? И сам же ответил на него: господь бог не стал бы вводить нас в заблуждение. Так Декарт обосновал для себя всеобщую убежденность в правильности законов логики.
Декарт и Лейбниц надеялись, что им удастся расширить логику до универсальной науки о мышлении, применимой ко всем областям человеческого разума, – построить своего рода универсальное исчисление мышления. Они намеревались уточнить и облегчить применение законов мышления введением буквенной символики, подобной алгебраической. О математическом методе Декарт отзывался так: «Это более мощный инструмент познания, чем все остальные, что дала нам человеческая деятельность, ибо он служит источником всего остального».
По замыслам Лейбница, имевшим несколько более конкретный характер, чем планы Декарта, для построения универсальной логики необходимы три основных элемента. Первый элемент – универсальный научный язык (characteristica universalis),частично или полностью символический и применимый ко всем истинам, выводимым посредством рассуждений. Вторая составная часть – исчерпывающий набор логических форм мышления (calculus ratiocinator),позволяющих осуществить любой дедуктивный вывод из начальных принципов. Третий элемент – набор основных понятий (ars сотbinatoria),через которые определяются все остальные понятия, своего рода алфавит мышления, позволяющий сопоставить символ каждой простой идее. Комбинируя символы и производя над ними различные операции, мы получаем возможность выражать и преобразовывать более сложные понятия.
К числу фундаментальных принципов следует отнести, например, закон тождества: Aесть A(и Aне есть «не A»). Из таких законов можно было бы вывести все мыслимые истины, включая математические. Кроме того, существуют фактические истины, но они в значительной мере опираются на так называемый принцип достаточного основания, состоящий в том, что эти истины могут быть именно такими, а не какими-либо иными. Лейбниц был основоположником символической логики, однако его работы в этой области оставались неизвестными до 1901 г.
Ни Декарту, ни Лейбницу не удалось развить последовательно символическое исчисление логики. Они создали лишь отдельные фрагменты. {94}94
Принадлежащие Лейбницу фрагменты «логического исчисления» были разработаны достаточно глубоко; однако они не удовлетворяли Лейбница, поскольку были весьма далеки от поставленной им (и, видимо, неразрешимой) задачи «свести любое рассуждение к вычислению», создать такое положение, при котором, по утопическим мечтам Лейбница, один из спорящих всегда смог бы сказать другому: «Вы утверждаете одно, я – другое; ну что же, проверим, кто из нас прав: вычислим, милостивый государь».
[Закрыть]Вплоть до XIX в. логика Аристотеля сохраняла свои позиции. В 1797 г. Кант во втором издании «Критики чистого разума» назвал логику «замкнутым и полным учением». Хотя до начала XX в. большинство математиков в своих рассуждениях продолжали следовать неформальным, изложенным лишь словесно, а не символически, принципам аристотелевой логики, они пользовались и другими схемами рассуждений, не исследованными Аристотелем. Не вдаваясь в анализ используемых логических принципов, математики пребывали в уверенности, что их рассуждения не выходят за рамки адекватной дедуктивной логики. В действительности же они использовали интуитивно вполне разумные, но не сформулированные явно логические принципы.
В то время как внимание большинства математиков было сосредоточено на обосновании собственно математики, менее многочисленная группа занялась критическим пересмотром логики. Выдающихся успехов в этом направлении добился профессор математики Куинз-колледжа в Корке (Ирландия) Джордж Буль (1815-1864). {95}95
Дж. Буль родился в очень бедной семье мелкого торговца, в силу чего он сумел окончить лишь несколько начальных классов школы для бедных, которые, разумеется, ничего не дали ему в области математики. Все свои знания Буль приобрел путем самообразования. Стремясь разобраться в математике глубже, Буль обратился к трудам классиков науки; тогда и родились у него первые самостоятельные идеи, которые он изложил в статьях, направленных в «Кембриджский математический журнал». К счастью, редактору журнала, представителю «кембриджской группы» математиков Д. Грегори, поиски Буля оказались достаточно близкими. Именно с помощью «кембриджцев» Булю удалось в конце жизни стать профессором математики во вновь открытом католическом колледже (университете) в Корке. Характерно, что первая развернутая система формальной (символической) логики принадлежит самоучке Булю – не закончив даже средней школы, он тем самым не был связан путами традиционных взглядов и установок, смог взглянуть на математику свежим взглядом и оценить ее логический статут с той ясностью и полнотой, которая позволила Б. Расселу позже сказать: «Чистую математику открыл Буль в сочинении, которое называлось «Законы мысли».
[Закрыть]
В своей работе Буль, несомненно, вдохновлялся примером общей (или абстрактной) алгебры, основы которой были заложены кембриджской группой – Пикоком, Грегори и де Морганом (гл. VII). Хотя использованный этими авторами принцип перманентности форм в действительности не мог служить обоснованием алгебраических операций, производимых над буквенными коэффициентами с вещественными или комплексными значениями, Пикок, Грегори и де Морган косвенно способствовали возникновению нового взгляда на алгебру как на науку о символах и операциях, которые могут иметь любую природу и представлять любые объекты. Работа Гамильтона о кватернионах (1843) показала, что возможны другие алгебры, отличные от привычной алгебры вещественных и комплексных чисел. Обобщение алгебраических рассуждений в форме так называемой алгебры операторовпредложил в 1844 г. Буль. Его также беспокоила мысль о том, что алгебра не обязательно должна заниматься рассмотрением одних лишь чисел и что законы алгебры не обязательно должны совпадать с законами арифметики вещественных и комплексных чисел. Упомянув об этом в начале своей работы «Математический анализ логики» (1847), Буль вскоре развил алгебру логики. Шедевром по праву считается работа Буля «Исследование законов мышления» (1854). Основная идея Буля, менее претенциозная, чем идея Лейбница об универсальной алгебре, и более близкая по духу лейбницевскому calculus ratiocinator(логическая форма мышления), состояла в том, что существующие законы мышления представимы в символическом виде, позволяющем придать более точный смысл обычным логическим рассуждениям и упростить их применение. В своей книге Буль так сформулировал программу построения алгебры логики:
В предлагаемом вниманию читателей трактате мы намереваемся исследовать фундаментальные законы тех операций разума, посредством которых осуществляется мышление, дабы выразить их на символическом языке исчисления и на этой основе построить науку логики и ее метод.
Кроме того, Буля интересовали некоторые конкретные приложения логики, в частности к законам вероятности.
Буквенная символика обладает многими преимуществами. В ходе рассуждений тому или иному выражению иногда по ошибке можно придать смысл, отличный от первоначального, или употребить неправильное дедуктивное умозаключение. Так, при обсуждении света как оптического явления употребление выражения «повидать свет» может быть истолковано неверно (так как в обычной бытовой лексике оно означает «побывать во многих странах мира»). Но если свет как физическое явление обозначить, например, буквой l, то при любых преобразованиях буквенных выражений, содержащих l, эта буква будет означать только свет как физическое явление и ничего другого. Кроме того, все доказательства сводятся к преобразованию одних наборов символов в другие по заранее заданным правилам, заменяющим словесные формулировки законов логики. Правила преобразований выражают правильные законы логики в сжатом, четком и легко применимом виде.
Чтобы по достоинству оценить булеву алгебру логики, упомянем лишь некоторые из ее идей. Пусть символы xи yозначают классы объектов, например класс собак и класс рыжих животных. Тогда xyозначает класс объектов, принадлежащих одновременно классу xи классу y.Если xи yимеют предложенную нами интерпретацию, то xyозначает класс рыжих собак. Равенство xy = yxверно при любых xи y.Если z– класс белых объектов и если x = y,то zx = zy.Кроме того, из самого смысла «произведения» xyследует, что xx = x.
Символ x + y означает класс объектов, принадлежащих либо классу x, либо классу y, либо классам x и y одновременно.(Это более поздняя модификация логических построений Буля, предложенная Уильямом Стенли Джевонсом (1835-1882). {96}96
У самого Буля сумма x + yобозначала класс объектов, принадлежащих либо x,либо y,но не xи yодновременно; сегодня в этом случае говорят не о сумме, а о «симметричной разности» xи yи пишут xΔy.
[Закрыть]) Так, если x– класс мужчин, а y– класс избирателей, то x + y– класс мужчин и избирателей (включающий в себя помимо избирателей-мужчин также и избирателей-женщин). Нетрудно доказать, что если, скажем, z– класс людей старше 35 лет, то
z( x+ y) = zx+ zy.
Если x– некоторый класс объектов, то 1 − x(или −x) – множество всех объектов, не принадлежащихклассу x.Так, если 1 – множество всех объектов, x– множество собак, то 1 − x(или −x) – множество всех объектов, не являющихся собаками. Соответственно −(−x)означает множество собак. Равенство
x+ (1 − x) = 1
означает, что все объекты либо относятся к собакам, либо нет. А это есть не что иное, как закон исключенного третьегодля классов. Буль показал, как с помощью таких чисто алгебраических операций проводить рассуждения в самых различных областях.
Буль заложил также основы исчисления высказываний, хотя начало этой области логики восходит к стоикам (IV в. до н.э.). В интерпретации этого исчисления p,например, означает «Джон – человек». Утверждать pозначает утверждать, что высказывание «Джон – человек» истинно. Тогда 1 − p(или −p) означает, что высказывание «Джон – человек» не истинно. Аналогично высказывание −(−p)означает: «Неверно, что Джон не человек», т.е. «Джон – человек». Закон исключенного третьего для высказываний, гласящий, что любое высказывание либо истинно, либо ложно, Буль записывал в виде p + (−p) = 1,где 1 соответствует истине. Произведение pqистинно, когда истинны оба высказывания pи q, а сумма p + q истинна, если истинно либо p,либо q(либо истинны оба высказывания).
Другое новшество было внесено де Морганом. В своем главном труде «Формальная логика» (1847) де Морган высказал идею о том, что логика должна заниматься изучением отношений в общем виде. Так, аристотелева логика занималась изучением отношения «быть» ( xесть y). Классический пример: «Все люди смертны». Но аристотелева логика, по словам де Моргана, не в состоянии вывести из утверждения «Лошадь – животное» утверждение «Голова лошади – голова животного»: для этого необходимо ввести дополнительную посылку о том, что у всех животных есть головы. В сочинениях Аристотеля также есть фрагменты, посвященные логике отношений, хотя писал он о них довольно невразумительно и сжато. Кроме того, многие труды Аристотеля и обобщения, сделанные средневековыми учеными, были безвозвратно утеряны к XVII в. В необходимости логики отношений убедиться нетрудно. Так, следующее рассуждение, построенное только на отношении «быть», как легко видеть, ложно:
A есть p;
B есть p.
Следовательно, Аи Всуть p.
Действительно, рассуждение
Джон – брат,
Питер – брат;
следовательно, Джон и Питер братья (каждый доводится братом другому)
вполне может привести к неправильному заключению, если понятие «брат» расширить, включив в него и двоюродного брата. Аристотелевой логике не удалось построить логику отношений. На этот ее недостаток обращал внимание еще Лейбниц.
Отношения далеко не всегда удается перевести на язык субъекта и предиката, когда предикат лишь утверждает, что субъект принадлежит к задаваемому предикатом классу. Часто бывает необходимо рассматривать и такие утверждения, как «2 меньше 3» или «Точка Qлежит между точками Pи R». Для подобных высказываний также необходимо определять, что означает их отрицание, т.е. обратное утверждение, сложное высказывание, составленное из нескольких таких высказываний, и т.д.
Логика отношений была развита в серии статей, опубликованных в 1870-1893 гг. Чарлзом Сандерсом Пирсом (1839-1914), и систематизирована Эрнстом Шредером (1841-1902). Пирс ввел специальную символику для обозначения высказываний, выражающих отношения. Так, символ l ijозначает, что iлюбит j. Построенная Пирсом алгебра была сложной и малополезной. Позднее мы увидим, как рассматривает отношения современная математическая логика.
Пирс внес в науку логики еще одно важное дополнение, которое лишь слегка затронул Буль; он подчеркнул важность пропозициональных функций (функций-высказываний). Подобно тому как в математике мы рассматриваем функции, например y = 2x,отличая их от утверждений о конкретных числовых равенствах типа 10 = 2∙5, так высказывание «Джон – человек» вполне конкретно, а высказывание « x– человек» означает пропозициональную функцию, зависящую от переменной x.Пропозициональные функции могут зависеть от двух и большего числа переменных: такова, например, функция « xлюбит y». Результаты Пирса позволили распространить логику и на пропозициональные функции.
Пирс ввел в логику и так называемые кванторы.Обычный язык неоднозначен по отношению к кванторам. В двух высказываниях:
Американец возглавлял войну за независимость;
Американец верит в демократию
субъект «американец» используется в двух различных смыслах: в первом высказывании речь идет о вполне конкретном лице – Джордже Вашингтоне, во втором – о любом американце. Обычно неоднозначность можно уменьшить, сославшись на контекст, в котором используется предложение, но в строгом логическом мышлении такая неоднозначность недопустима. Смысл высказывания должен быть ясен без всяких ссылок на контекст. Кванторы позволяют достичь однозначности высказываний. Мы можем утверждать, что какая-то пропозициональная функция истинна для всех индивидуумов из определенного класса, например для всех граждан США. В этом случае высказывание «Для всех x, x– люди» означает «Все граждане США – люди». Слова «для всех x» – квантор. Но мы можем также утверждать: существует по крайней мере один x,такой, что x– человек из США. В этом случае квантор – это слова «существует по крайней мере один x,такой, что». Каждый из этих типов кванторов имеет специальное обозначение: в первом случае x(квантор общности), во втором x(квантор существования).
Включение в логику отношений пропозициональных функций и кванторов позволило существенно расширить ее. Охватив те типы рассуждений, которые используются в математике, логика стала более полной.
Последний шаг в математизации логики в XIX в. был сделан профессором математики Йенского университета Готлобом Фреге (1848-1925). Его перу принадлежит несколько фундаментальных трудов: «Исчисление понятий» (1879), «Основания арифметики» (1884) и «Основные законы арифметики» (т. I – 1893, т. II – 1903). Восприняв идеи логики высказываний, логики отношений, пропозициональные функции и кванторы, Фреге внес свой вклад в развитие математической логики. Он ввел различие между простым утверждением высказывания и утверждением, что данное высказывание истинно. В последнем случае Фреге ставил перед высказыванием знак |—. Фреге проводил также различие между объектом xи множеством {x},содержащим только x,между элементом, принадлежащим множеству, и включением одного множества в другое.
Фреге формализовал более широкое понятие импликации – так называемую материальную импликацию,хотя следы этого понятия в неформализованной, словесной форме можно проследить вплоть до Филона из Мегары (около III в. до н.э.). {97}97
Выше уже указывалось, что логические сочинения Аристотеля (аристотелева силлогистика) формализовали в основном логическое отношение (не операцию, а именно отношение) следования; у Аристотеля можно найти также отчетливые фрагменты учения о кванторах. Полагают, что элементы логического исчисления – разумеется, не без влияния Аристотеля – были созданы в несколько более поздних стоической и мегарской школах, от которых до нас, однако, не дошли сколько-нибудь существенные письменные памятники мысли.
[Закрыть]Логика имеет дело с рассуждениями относительно высказываний и пропозициональных функций, и весьма важная роль в этих рассуждениях отводится импликации. Так, если мы знаем, что Джон мудр и что мудрые люди живут долго, то с помощью импликации заключаем, что Джон будет жить долго.
Материальная импликация несколько отличается от обычно используемой импликации. Когда мы говорим, например, «Если пойдет дождь, то я отправлюсь в кино», между двумя высказываниями «Пойдет дождь» и «Я отправлюсь в кино» существует не просто какое-то отношение, а именно импликация: если антецедент (высказывание, стоящее в условном высказывании между «если» и «то») истинен, то из него с необходимостью следует консеквент (высказывание, стоящее в условном высказывании после «то»). Но в материальной импликации антецедентом pи консеквентом qмогут быть любые высказывания. Между ними не обязательно должна существовать причинно-следственная связь и даже вообще какое бы то ни было отношение. Так, ничто не мешает нам рассматривать материальную импликацию «Если x– нечетное число, то я пойду в кино». Эта импликация ложна только в том случае, если x– нечетное число, а я все равно не отправлюсь в кино.
На более формальном языке это означает, что если p и q– высказывания и pистинно, то из истинности импликации «Если p,то q» («из pследует q», или « pвлечет за собой q») мы вправе заключить, что qтакже истинно. Если же pложно, то независимо от того, ложно или истинно q,материальная импликация «Если p,то q» считается истинной. И только в том случае, если pистинно, a qложно, импликация считается ложной. Понятие материальной импликации расширяет привычное употребление связки «если …, то …». Но такое расширение не приводит к каким-либо затруднениям, так как обычно мы используем импликацию «если p, то q», только когда знаем, что pистинно. Кроме того, материальная импликация в какой-то мере согласуется с тем смыслом, который мы обычно вкладываем в условные высказывания «Если …, то …». Рассмотрим предложение «Если Гарольд получит сегодня жалованье, то он купит продукты». Здесь p —высказывание «Гарольд получит сегодня жалованье», q– высказывание «Он купит продукты». Но Гарольд может купить продукты, даже если он не получит сегодня жалованье. Следовательно, импликацию «Если p,то q»мы можем считать истинной и в том случае, когда pложно, a qистинно. Другим, возможно еще лучшим, примером разумности такого решения может служить условное предложение «Если бы дерево было металлом, то дерево было бы ковким». Мы знаем, что оба высказывания (и антецедент, и консеквент) ложны, тем не менее вся импликация в целом истинна. Следовательно, если pложно и qложно, то импликацию «Если p,то q»также надлежит считать истинной. Понятие материальной импликации находит важное применение, позволяя судить об истинности qпо истинности pи импликации «Если p,то q». Обобщение на случай, когда pложно, удобно для математической логики и представляется наиболее разумным из всех вариантов.
Поскольку если pложно, то qследует из pнезависимо от того, истинно ли qили ложно, в случае материальной импликации из ложного высказывания может следовать что угодно – консеквент может быть любым. Упреки тех, кто видит в этом неисправимый «порок» материальной импликации, можно было бы отвергнуть, сославшись на то, что в непротиворечивой системе математики и логики не должно быть ложных высказываний. Тем не менее возражения против понятия материальной импликации все же выдвигались. Так, Пуанкаре иронически заметил: «Но кто исправлял плохую кандидатскую математическую работу, тот мог заметить, насколько правильно смотрит на дело Рассел. Кандидат часто много трудится для того, чтобы найти первое ложное уравнение; но лишь только он его получил, для него уже не представляет никакого труда сделать из него самые неожиданные выводы, из которых иные могут оказаться и точными» ([1], с. 379). Но, несмотря на все попытки усовершенствовать понятие импликации, именно материальная импликация стала стандартным понятием, по крайней мере в математической логике, используемой как основа всей современной математики.
Фреге внес в развитие логики еще один вклад, важность которого была по достоинству оценена много позднее. В логике известно много принципиальных схем рассуждений. Их можно сравнить с многочисленными утверждениями евклидовой геометрии о треугольниках, прямоугольниках, окружностях и других фигурах. В результате пересмотра других областей математики, произведенного в конце XIX в., многие утверждения геометрии были выведены из небольшого числа основных утверждений – аксиом. То же самое Фреге сделал в логике. Его обозначения и аксиомы были достаточно сложными, и мы ограничимся лишь словесным описанием предложенного Фреге аксиоматического подхода к логике (см. также гл. X). Вряд ли кто-нибудь усомнится принять за аксиому утверждение «Если p,то pили q», так как высказывание « pили q» истинно, если истинно по крайней мере одно из входящих в него высказываний, pили q, а если pистинно, то одно из высказываний, pили q,заведомо истинно.
Можно принять также за аксиому, что если какое-то высказывание (или комбинация высказываний) Aистинно и если из Aследует B,где B– другое высказывание (или комбинация высказываний), то Bистинно. Эта аксиома, называемая правилом вывода, позволяет нам выводить новые высказывания и утверждать, что они истинны.
Из приведенных аксиом мы можем, например, вывести
p истинно или pложно,
т.е. закон исключенного третьего.
Можно также вывести закон противоречия, словесная формулировка которого гласит: не верно, что pи не pоба истинны (истинным может быть только одно из двух высказываний: либо p,либо не p). Закон противоречия часто используется в математике в так называемых доказательствах от противного. В доказательствах такого рода мы, предположив, что pистинно, заключаем, что pложно. Но тогда pи не pистинны одновременно, что невозможно. Следовательно, pложно. Иногда доказательство от противного проводится несколько иначе. Предположив, что pистинно, мы доказываем, что из pследует q.Но о высказывании qизвестно, что оно ложно. Следовательно, по одному из законов логики должно быть ложным и p.Многие другие законы логики, широко используемые в математических доказательствах, также выводимы из аксиом. Начало дедуктивному построению логики было положено Фреге в его работе «Исчисление понятий» и продолжено им в «Основных законах арифметики».
Фреге поставил перед собой и более претенциозную задачу, о которой пойдет речь в дальнейшем (гл. X). Пока же, не вдаваясь в подробности, заметим, что Фреге стремился своими трудами по логике заложить новую основу арифметики, алгебры и математического анализа – более строгую, чем удалось создать за последние десятилетия XIX в., ознаменовавшиеся критическим движением в области оснований математики.
Значительную роль в использовании математической логики для достижения большей математической строгости сыграл Джузеппе Пеано. Занимаясь преподаванием математики, Пеано, как до него Дедекинд, обнаружил недостаточность строгости существовавших до него доказательств и посвятил всю свою жизнь усовершенствованию оснований математики. Символику математической логики Пеано применил для записи не только законов логики, но и математических аксиом, а также для вывода теорем из аксиом с помощью преобразования по правилам математической логики комбинаций символов, выражающих аксиомы. Пеано открыто и со всей определенностью говорил о необходимости отказаться от интуитивных представлений. Достичь намеченной цели можно было, лишь используя буквенную символику, так как при этом интерпретация символов не влияла на математическое доказательство. Символика позволяла избежать обращения к интуитивным ассоциациям, связанным с обычными словами.
Для обозначения понятий, кванторов и таких связок, как «и», «или» и «не», Пеано ввел собственные символы. Его символическая логика была весьма рудиментарной, но тем не менее Пеано оказал огромное влияние на развитие работ по основаниям математики. Он был основателем и главным редактором журнала Revista di Matematica(1891-1906) и пятитомного «Формуляра математики» (1894-1908). Именно в «Формуляре» Пеано впервые опубликовал уже упоминавшуюся нами аксиоматику целых чисел. Пеано основал школу математических логиков, в то время как работы Пирса и Фреге, по существу, оставались незамеченными, пока Бертран Рассел не «открыл» в 1901 г. труды Фреге. О работах Пеано Рассел узнал в 1900 г. и считал символику Пеано более удачной, чем символика Фреге.
От Буля до Шредера, Пирса и Фреге все нововведения в логике сводились к применению математического метода: символики и дедуктивного вывода логических законов из логических аксиом. Вся эта работа по созданию формальной или символической логики была благосклонно встречена логиками и математиками, так как использование символики позволило избегать психологических, теоретико-познавательных и метафизических смысловых неоднозначностей и ассоциаций.
Систему логики, включающую пропозициональные функции, отношения типа «xлюбит у»или «точка Aлежит между точками Bи C», ныне принято называть исчислением предикатов первой ступени. Хотя, по мнению некоторых логиков, такое исчисление охватывает не все типы рассуждений, используемых в математике, например оно не включает математическую индукцию, современные логики отдают предпочтение именно этой логической системе. {98}98
По мнению некоторых логиков, чтобы охватить все типы рассуждений, используемых в математике, потребовалось бы ввести так называемое исчисление предикатов второй ступени, в котором кванторы применяются к предикатам. Так, чтобы выразить отношение равенства x = y,мы должны были бы утверждать дополнительно применимость к yвсех предикатов, применимых к x,и для этого ввести квантор предикатов либо словесно («для всех предикатов»), либо с помощью символов x = y ↔ (F)(F(x) ↔ F(y)).
[Закрыть]
Распространение логики на все типы рассуждений, используемых в математике, придание утверждениям большей точности за счет проведения различия между высказываниями и пропозициональными функциями, введение кванторов, несомненно, способствовали повышению математической строгости, к которой так стремились математики XIX в. Аксиоматизация логики полностью отвечала духу времени.
Имея в виду наш последующий анализ логической структуры математики, подчеркнем, что как в самой математике, так и в алгебре установление высоких стандартов строгости стало возможным благодаря аксиоматическому подходу, впервые использованному Евклидом. Движение за аксиоматизацию в XIX в. позволило выяснить некоторые особенности аксиоматического подхода. Рассмотрим их подробнее.
Одна из особенностей аксиоматического подхода – необходимость неопределяемых понятий. Математика строится независимо от остальных областей человеческого знания, поэтому одно математическое понятие приходится определять через другие. Но тогда возникла бы бесконечная цепочка определений. Выход из создавшегося затруднения состоит в том, что основные понятия должны быть неопределяемыми. Но как пользоваться неопределяемыми понятиями? Откуда мы знаем, что о них можно утверждать? Ответ на этот вопрос и дает аксиоматика; аксиомы содержат утверждения о неопределяемых (и определяемых) понятиях. Следовательно, аксиомы говорят нам, что можно утверждать о неопределяемых понятиях. Так, если точка и прямая неопределяемы, то аксиома о том, что две точки задают прямую и притом только одну, и аксиома о том, что три точки задают плоскость и притом только одну, служат теми утверждениями, которые мы можем использовать при выводе новых утверждений о точке, прямой и плоскости. Хотя Аристотель в «Органоне», Паскаль в «Трактате о геометрическом духе» и Лейбниц в «Монадологии» подчеркивали необходимость неопределяемых понятий, математики по непонятным причинам прошли мимо этих предупреждений и продолжали давать определения, не имевшие смысла. Еще в начале XIX в. Жозеф Диас Жергонн (1771-1859) высказал со всей определенностью важную мысль: аксиомы говорят нам все, что мы можем утверждать о неопределяемых понятиях, т.е. как бы содержат неявные определения таких понятий. Но математики всерьез восприняли эту идею лишь после того, как в 1882 г. Мориц Паш вновь подтвердил необходимость неопределяемых понятий.