Текст книги "Математика. Утрата определенности."
Автор книги: Морис Клайн
Жанр:
Математика
сообщить о нарушении
Текущая страница: 13 (всего у книги 38 страниц)
Работа величайшего из математиков XVIII в. Леонарда Эйлера «Полное введение в алгебру» (1770) по праву принадлежит к числу самых значительных трудов по алгебре. В этой работе Эйлер обосновал эквивалентность операций вычитания величины −bи прибавления величины b,сославшись на то, что «погасить долг означает поднести дар». Равенство (−1) ∙(−1) = +1 Эйлер доказал следующим образом. Произведение (−1) ∙(−1), рассуждал он, может быть равно либо −1, либо +1, а поскольку ему удалось доказать, что 1 ∙(−1) = −1, то для произведения (−1) ∙(−1) остается единственное возможное значение, а именно +1. В XVIII в. авторы даже наиболее выдающихся работ по алгебре не различали знак «минус» как символ операции вычитания и знак «минус» как символ отрицательного числа (например, −2).
На протяжении XVIII в. против отрицательных чисел выдвигалось немало возражений. Английский математик, член совета Кларе-колледжа в Кембридже и член Королевского общества, Фрэнсис Мазер (1731-1824) был автором солидных работ по математике и фундаментального трактата по страхованию жизни. В 1759 г. он опубликовал «Рассуждение о применении в алгебре знака минус». Мазер показал, как избежать отрицательных чисел (исключение составляли лишь числа, получаемые в том случае, когда из меньшего числа необходимо вычесть большее), и в частности отрицательных корней уравнения. Он произвел тщательную классификацию квадратных уравнений: уравнения с отрицательными корнями Мазер рассматривал отдельно, а сами отрицательные корни рекомендовал отбрасывать. Аналогичным образом он поступал и с кубическими уравнениями. Об отрицательных корнях Мазер говорил:
… Насколько я могу судить, они служат лишь для того, чтобы внести замешательство во всю теорию уравнений и сделать смутным и загадочным то, что по самой своей природе особенно ясно и просто… Чрезвычайно желательно поэтому не допускать отрицательные корни в алгебру, а если таковые все же возникнут, неукоснительно изгонять их. Имеются веские основания полагать, что если бы нам удалось избавиться от отрицательных корней, то тем самым были бы сняты возражения, выдвигаемые многими учеными и остроумными мужами против алгебраических вычислений как слишком сложных и наделенных почти непостижимыми для разума понятиями. Алгебра, или всеобщая арифметика, по самой своей природе, несомненно, является наукой не менее простой, ясной и пригодной для доказательства, чем геометрия.
Еще более ожесточенными были споры о смысле комплексныхчисел и применении этих чисел. И без того трудное положение осложнилось здесь тем, что некоторые математики стали рассматривать логарифмы отрицательных чисел (а также комплексных чисел), которые также должны были являться комплексными числами.
С 1712 г. развернулась острая дискуссия о смысле комплексных чисел, и в частности о логарифмах отрицательных и комплексных чисел, в которой участвовали своими статьями и письмами Лейбниц, Эйлер и Иоганн Бернулли. Лейбниц и Бернулли воспользовались для обозначения комплексных чисел термином «мнимые», предложенным Декартом, понимая под мнимыми величинами (к ним они относили и отрицательные числа) числа, которые не существуют. Тем не менее и Лейбниц, и Бернулли, словно по волшебству, с немалой пользой применяли «несуществующие» числа в анализе, получая с их помощью, например, совершенно правильные формулы интегрирования: промежуточные выкладки, казалось бы, не имели смысла, но окончательный результат был верен.
Лейбниц заявлял, что логарифмы отрицательных чисел не существуют, и в доказательство приводил различные аргументы. Иоганн Бернулли считал, что log a= log( −a) ,и в подтверждение также ссылался на различные доводы. Одно из «доказательств» опиралось на хорошо известные свойства логарифмов положительных чисел:
log( −a) = 1/ 2 ∙log( −a) 2= 1/ 2 ∙log a 2= log a.
Другой аргумент, взятый Бернулли из математического анализа, приводил к тому же выводу. Переписка между Лейбницем и Иоганном Бернулли о логарифмах отрицательных чисел была весьма обширной, но – увы! – большинство утверждений, на которых настаивали обе стороны, были неверными.
К правильному решению проблемы пришел Эйлер. Свой результат он изложил в работе «Исследования о мнимых корнях уравнений» (1751). Окончательный ответ, правильный по существу, но полученный с помощью неправильных рассуждений, применим ко всем комплексным числам, в том числе и к вещественным числам (если y = 0,то комплексное число x + iyобращается в вещественное число x); он имеет следующий вид:
log( x + iy) = log(ρe iφ) = log ρ + i(φ + 2 nπ) {74}74
Эйлер использует здесь так называемую тригонометрическую,или полярную,форму комплексного числа; здесь ρ = √(x 2+ y 2), φ– угол, образуемый с положительным направлением оси xотрезком, проведенным из начала координат в точку x + iy(при y = 0,угол φтакже равен 0). При этом x + iy = ρ(cos φ+ ίsin φ) = ρe iφ.
[Закрыть],
где n– произвольное целое число. Однако современники Эйлера не поняли и не оценили эту его замечательную работу.
О своих результатах Эйлер сообщил в письме Д'Аламберу от 15 апреля 1747 г., где обратил внимание на то, что даже у любого положительного вещественного числа существует бесконечно много логарифмов. Лишь один из них является вещественным числом, и именно его мы обычно используем в своих вычислениях с вещественными числами. Ни обширная переписка, ни работа Эйлера не убедили Д'Аламбера, и в своей заметке «О логарифмах отрицательных величин» он выдвинул всевозможные метафизические, аналитические и геометрические аргументы против существования таких логарифмов. Д'Аламбер преуспел в своем намерении: ему удалось основательно запутать и без того сложную проблему. Свои расхождения с Эйлером Д'Аламбер пытался скрыть, утверждая, будто речь идет лишь о различиях в формулировках, а не о принципиальных разногласиях по существу вопроса.
Все участники острой полемики, развернувшейся вокруг проблемы расширения понятия числа, мыслили непоследовательно. В первой половине XVIII в. было принято считать, что некоторые операции над комплексными числами, например операция возведения комплексного числа в комплексную степень, могут привести к числам совершенно новой природы. Подобным представлениям положил конец Д'Аламбер, доказавший в своей работе «Размышления об общей причине ветров» (1747), что все операции, производимые над комплексными числами, порождают только комплексные числа. Доказательство Д'Аламбера было усовершенствовано Эйлером и Лагранжем, но решающий шаг здесь сделал именно Д'Аламбер. По-видимому, Д'Аламбер сознавал непоследовательность и даже противоречивость собственных представлений о комплексных числах. Во всяком случае, в «Энциклопедии», для которой он написал много математических статей, о комплексных числах ни разу не упоминается. {73}73
Характерно, что при всей глубине и тонкости мысли, отражением которых явились статьи «Предел» и «Дифференциал» в знаменитой «Энциклопедии» (по существу впервые обосновавшие математический анализ почти на уровне построений Огюстена Коши) или статья «Размерность» (впервые провозгласившая, что мы живем в четырехмерном мире: три измерения – пространственные, четвертое – временное), к вопросу о введении в математику отрицательных чисел Д'Аламбер подходил с большой робостью, а комплексные числа вообще полностью игнорировал.
[Закрыть]
Не было полной ясности в вопросах, связанных с комплексными числами, и у Эйлера. В своей «Алгебре» (1770), лучшем учебном курсе XVIII в. по этой дисциплине, Эйлер утверждал:
Квадратные корни из отрицательных чисел не равны нулю, не меньше нуля и не больше нуля. Отсюда ясно, что квадратные корни из отрицательных чисел не могут находиться среди возможных [действительных, вещественных] чисел. Следовательно, нам не остается ничего другого, как признать их невозможными числами. Это приводит нас к понятию чисел, по своей природе невозможных и обычно называемых мнимыми или воображаемыми, потому что они существуют только в воображении.
Производя операции над комплексными числами, Эйлер порой и ошибался. Так, в его «Алгебре» фигурирует равенство √ −1 ∙√ −4 = √4 = 2, выписанное по аналогии с тождеством √a∙√b=√ab,справедливым для положительных aи b,т.е. для вещественных корней.
Называя комплексные числа невозможными, Эйлер в то же время отмечал их полезность. В частности, он считал комплексные числа полезными по той причине, что они якобы позволяют отличать задачи, имеющие решения, от задач, не имеющих решения. Так, если бы нам понадобилось разложить число 12 на две части, произведение которых должно было бы равняться 40 (намек на задачу Кардано), то мы обнаружили бы, что эти части равны соответственно 6 + √−4 и 6 − √−4, т.е., согласно Эйлеру, узнали бы, что задача неразрешима.
Несмотря на множество принципиальных возражений против комплексных чисел, на протяжении XVIII в. их широко использовали, свободно применяя к ним правила арифметических действий над вещественными числами. Так математики получали практические навыки в обращении с комплексными числами. В тех случаях, когда комплексные числа применялись лишь на промежуточных стадиях математических доказательств, полученные с их помощью окончательные результаты всегда оказывались верными, что не могло не произвести благоприятного впечатления. Тем не менее математиков не оставляли сомнения в правильности такого рода доказательств, а иногда даже и получаемых с их помощью результатов.
Общее отношение математиков к узакониванию научного статуса тех разновидностей чисел (иррациональных, отрицательных и комплексных), которые доставляли им столько хлопот, отчетливо выразил Д'Аламбер в своей статье об отрицательных числах, написанной для «Энциклопедии». В целом эта статья была написана недостаточно ясно и завершалась следующим признанием: «Алгебраические правила действий над отрицательными числами ныне общеприняты, и все признают их точными независимо от того, что бы мы ни думали о природе этих чисел».
За многие века, на протяжении которых европейские математики упорно пытались понять природу различных типов чисел, на передний план выступила еще одна фундаментальная логическая задача – задача обоснования алгебры. Первой работой, существенно упорядочившей новые результаты, было «Великое искусство» Дж. Кардано. В этой книге Кардано показал, как решать кубические уравнения (например, x 3+ 3x 2+ 6x = 10) и уравнения четвертой степени (типа х 4+ 3x 3+ 6x 2+ 7x + 5 = 0). Примерно за сто лет арсенал алгебры пополнился многими важными результатами, часть которых была известна еще арабским математикам: методом математической индукции, биномиальной теоремой и приближенными методами вычисления корней уравнений разных степеней. Основной вклад в сокровищницу алгебры внесли Виет, Гарриот, Жирар, Ферма, Декарт и Ньютон. Но все эти новые результаты фактически не были доказаны. Правда, Кардано, а позднее Бомбелли и Виет привели в обоснование своих методов решения кубических уравнений и уравнений четвертой степени кое-какие геометрические соображения, но, поскольку эти математики игнорировали отрицательные и комплексные корни, приведенные ими соображения заведомо не могли рассматриваться как доказательства. Кроме того, появление уравнений высших степеней, например четвертой и пятой, означало, что геометрия, ограниченная в те времена трехмерным пространством, не могла служить основой доказательств. Результаты, полученные другими авторами, чаще всего оказывались всего лишь более или менее удачными догадками, подсказанными конкретными примерами.
Шаг в правильном направлении сделал Виет. Со времен Древнего Египта и Вавилона и вплоть до появления работы Виета математики решали уравнения первой степени, квадратные, кубические и уравнения четвертой степени, ограничиваясь всякий раз лишь какими-либо конкретными числовыми значениями коэффициентов. При подобном подходе уравнения 3x 2+ 5x + 6 = 0и 4x 2+ 7x + 8 = 0считались различными, хотя было ясно, что оба уравнения решаются одним и тем же методом. Кроме того, ученые стремились избежать отрицательных чисел; поэтому такое, например, уравнение, как x 2− 7x + 8 = 0, принято было записывать в виде x 2+ 8 = 7x.Возникало множество типов уравнений одной и той же степени, каждый из которых приходилось рассматривать в отдельности. Главный вклад Виета в развитие алгебры состоял в введении буквенных коэффициентов.
По образованию и роду занятий Виет был юристом; математика же была для него «хобби», которому он посвящал свободное от работы время, печатая и рассылая свои работы за собственный счет. Отдельные математики использовали буквенные обозначения и до Виета, но делали это лишь от случая к случаю. Виет был первым, кто продуманно ввел буквенные обозначения и систематически их использовал. Основное новшество состояло в том, что буквами обозначались не только неизвестные или степени неизвестных, но, как правило, и коэффициенты уравнений. Такой подход позволял единообразно рассматривать все квадратные уравнения, записав их (в современных обозначениях) в виде ax 2 + bx + c = 0,где буквенные коэффициенты a, bи cмогут означать любые числа, а x—неизвестную величину (или неизвестные величины), значения которой требуется найти.
Виет назвал свою новую алгебру logistica speciosa(исчисление типов), противопоставляя ее тому, что он назвал logistica numerosa(исчисление чисел). Он хорошо понимал, что изучение квадратного уравнения общего вида ax 2 + bx + c = 0эквивалентно изучению всего класса квадратных уравнений. Проводя в своем сочинении «Введение в аналитическое искусство» ( In artem analyticam isagoge,1591) различие между logistica numerosaи logistica speciosa,Виет обозначил границу между арифметикой и алгеброй. По его словам, алгебра – это метод, позволяющий производить действия над типами или видами, т.е. logistica speciosa;арифметика же и теория решений уравнений с конкретными числовыми коэффициентами образуют logistica numerosa.Тем самым Виет возвел алгебру на более высокий уровень, превратив ее в науку об общих типах форм и уравнений: ведь результат, полученный в общем случае, охватывает бесконечно много частных случаев.
Основное достоинство предложенных Виетом буквенных обозначений для классов чисел состояло в том, что, доказав правильность метода решения уравнения ax 2 + bx + c = 0,математики могли с полным основанием применять тот же метод к решению бесконечно большого числа конкретных уравнений, например уравнения 3x 2 + 7x + 5 = 0.Можно сказать, что основной вклад Виета в развитие алгебры состоит в придании общности алгебраическим доказательствам. Но чтобы производить какие-то операции над a, bи c,где a, bи c– любые вещественные или комплексные числа, необходимо быть уверенным в применимости этих операций ко всем вещественным и комплексным числам. А поскольку не только операции не были логически обоснованы, но даже определения различных типов чисел были достаточно расплывчаты, обоснование операций, производимых над буквами a, bи cв общем виде, заведомо были недостижимой целью. Сам Виет отвергал отрицательные и комплексные числа; поэтому общность, которой он достиг в logistica speciosa,была довольно ограниченной.
Ход мысли Виета непостижим, если даже не иррационален. С одной стороны, Виет внес весьма существенный вклад, введя буквенные коэффициенты, и полностью сознавал важность этого шага, открывшего возможность получать общие доказательства. Вместе с тем Виет не признавал отрицательных чисел и отказывался придавать отрицательные значения буквенным коэффициентам – поистине и лучшие умы человечества могут страдать ограниченностью! Между тем правила действий над отрицательными числами существовали уже порядка 800 лет и всегда приводили к правильным результатам. Виет не мог игнорировать эти правила, которыми исчерпывалось почти все, чем располагала в его время алгебра. Но отрицательным числам недоставало наглядности и физического смысла, которыми обладали положительные числа. Лишь в 1657 г. Иоганн Худде (1633-1704) расширил область допустимых значений буквенных коэффициентов так, что она стала охватывать как отрицательные, так и положительные числа. Впоследствии его примеру последовало большинство математиков.
Во времена Виета (в конце XVI в.) алгебра была лишь скромным придатком геометрии. Алгебраисты занимались решением либо одного уравнения с одним неизвестным, либо решением двух уравнений с двумя неизвестными – задачи такого рода возникали в связи с практическими проблемами геометрии или торговли. Могущество алгебры оставалось скрытым вплоть до XVII в. Решающий шаг был сделан Рене Декартом и Пьером де Ферма, создавшими аналитическую геометрию (которую следовало бы называть алгебраической геометрией, если бы ныне этот термин не приобрел совсем другого смысла {75}75
Впрочем, многие современные математики, скажем Жан Дьедонне (род. в 1906 г.), возражают и против традиционного употребления термина аналитическая геометрия,придавая ему смысл, логически вытекающий из современного понимания термина алгебраическая геометрия(алгебраическая и аналитическая геометрия по Дьедонне – это учение об алгебраических, соответственно аналитических многообразиях в многомерном пространстве); поэтому созданную Декартом и Ферма область математики следовало бы, пожалуй, называть координатной геометрией.
[Закрыть]). Основная идея новой науки состояла в том, что если на плоскости задать систему координат, то каждой кривой можно сопоставить ее уравнение. Например, уравнение х 2+ y 2= 25соответствует окружности радиуса 5 с центром в начале координат. Использование уравнений позволяет доказывать всевозможные свойства кривой гораздо проще, чем чисто геометрические (или синтетические) методы античных математиков.
Но в 1637 г., когда Декарт опубликовал свою «Геометрию», ни он сам, ни Ферма в работе 1629 г. (опубликованной посмертно) не были подготовлены к тому, чтобы принять отрицательные числа. Им обоим была ясна идея алгебраического подхода к геометрии, но ни тот, ни другой еще не представляли, сколь широки возможности такого подхода. Отрицательные числа были введены в аналитическую геометрию потомками Декарта и Ферма, и она стала играть весьма важную роль в главных событиях, происходивших в математическом анализе и в геометрии.
Представление функций алгебраическими формулами было вторым новшеством, выдвинувшим алгебру на первый план. Как известно (гл. II), идею описания движений с помощью формул выдвинул Галилей. Так, тело, брошенное вверх со скоростью 30 м/с, через tс будет находиться над поверхностью Земли на высоте h,определяемой формулой h = 30t − 4,9t 2м. Из этой формулы с помощью чисто алгебраических средств можно извлечь неисчерпаемое количество сведений о движении: например, установить максимальную высоту подъема; время, необходимое для подъема на максимальную высоту; время, необходимое для падения с максимальной высоты на землю. Вскоре математики сознали могущество алгебры, которая занялагосподствующее положение в математике, оттеснив геометрию на второй план.
Безграничное применение алгебры вызвало множество протестов. Философ Томас Гоббс был в математике величиной далеко не первого порядка, тем не менее именно он выразил мнение многих математиков, выступив с протестом против «несметного полчища тех, кто применяет алгебру к геометрии». Гоббс утверждал, что алгебраисты ошибочно подменяют геометрию символами, и отозвался о книге Джона Валлиса по аналитической геометрии конических сечений как о «гнусной книге», покрытой «паршой символов». Против применения алгебры выступали многие видные математики, в том числе Блез Паскаль и Исаак Барроу; при этом они ссылались на то, что алгебра логически не обоснована, и по той же причине настаивали на чисто геометрических методах и доказательствах. Кое-кто из математиков полагал, будто отступление на позиции геометрии позволит логически обосновать алгебру (как мы уже отмечали, подобная позиция была ошибочной).
Но большинство математиков свободно применяли алгебру в чисто утилитарных целях. Ценность алгебры состояла в том, что она равно хорошо (как и геометрия) позволяла решать все те задачи, с которыми сталкивались математики, а превосходство алгебры даже при рассмотрении чисто геометрических проблем было столь очевидно, что математики бесстрашно погрузились в ее воды.
В отличие от Декарта, считавшего алгебру служанкой геометрии, Джон Валлис и Ньютон полностью сознавали силу алгебраических методов. И все же математики весьма неохотно отказались от геометрических подходов. По свидетельству Генри Пембертона, выпустившего третье издание ньютоновских «Начал», Ньютон не только постоянно выражал свое восхищение древнегреческой геометрией, но и сетовал на себя за то, что не следовал примеру античных математиков в большей мере. В письме к Дэвиду Грегори (1661-1708), племяннику Джеймса Грегори (1638-1675), Ньютон заметил: «Алгебра – это анализ для неумех в математике». Но в своей «Всеобщей арифметике» (1707) он приложил максимум усилий, чтобы убедительно показать превосходство алгебры. Арифметику и алгебру Ньютон излагал как основу математики, обращаясь к геометрии лишь в тех случаях, когда ему требовалось доказать то или иное утверждение. Тем не менее в целом «Всеобщая арифметика» была не более чем набором правил. Утверждения о числах или алгебраических методах лишь изредка подкреплялись доказательствами или интуитивными соображениями. По мнению Ньютона, буквы в алгебраических выражениях означают числа, а в достоверности арифметики никто не может усомниться.
Лейбниц также отметил все возрастающую главенствующую роль алгебры и по достоинству оценил эффективность алгебраических методов. По поводу замечаний некоторых математиков о том, что алгебраические утверждения не подкреплены доказательствами, Лейбниц счел нужным заявить: «Геометрам нередко удается несколькими словами выразить то, что требует громоздких рассуждений в анализе… применимость алгебры не вызывает сомнений, но с доказательностью у нее не все благополучно». Работу в современной ему алгебре Лейбниц назвал «смесью удачи и счастливого случая». Однако Леонард Эйлер в своем «Введении в анализ бесконечно малых» (1748) открыто и безоговорочно провозгласил превосходство алгебры над геометрическими методами греков. К середине XVIII в. сдержанное отношение к применению алгебры было окончательно преодолено. К тому времени алгебра напоминала раскидистое дерево с множеством ветвей, но почти полностью лишенное корней.
Развитие числовых систем и алгебры разительно отличается от развития геометрии. К III в. до н.э. геометрия имела уже дедуктивный характер. Немногие обнаружившиеся в ней пробелы и изъяны, как мы увидим в дальнейшем, оказались легко поправимыми. Что же касается арифметики и алгебры, то они никогда не были логически обоснованы. Казалось бы, отсутствие логического обоснования должно вызывать тревогу у всех математиков. Как могли европейцы, до тонкости изучившие дедуктивную геометрию греков, принять и применять различные типы чисел и алгебру, никогда не имевшие логического обоснования?
Можно назвать несколько причин. Основой принятия целых чисел и дробей, несомненно, был накопленный опыт. Когда же числовая система пополнилась новыми типами чисел, правила арифметических действий, принятые на эмпирической основе для положительных целых чисел и дробей, были распространены на новые элементы, а в случае затруднений на выручку безотказно приходило геометрическое мышление. Буквенные символы лишь заменяли числа – и поэтому с ними можно было обращаться так же, как с числами. Более сложные алгебраические методы казалисьобоснованными либо с помощью геометрических соображений типа тех, которые в свое время использовал Кардано, либо – в отдельных частных случаях – с помощью одной лишь индукции. Разумеется, ни тот, ни другой подход не был логически удовлетворительным. Геометрия даже в тех случаях, когда к ней обращались, не позволяла логически обосновать введение отрицательных, иррациональных и комплексных чисел. По очевидным причинам решение уравнения четвертой степени невозможно обосновать геометрически.
Кроме того, сначала, особенно в XVI-XVII вв., алгебру не считали независимой областью математики, которая нуждалась в особом логическом обосновании. Алгебру принято было рассматривать как метод анализа геометрических задач. Многие из тех, кто широко использовал алгебру, прежде всего Декарт, считали ее не более чем методом анализа. Название сочинений Кардано «Великое искусство» и Виета «Введение в аналитическое искусство» свидетельствуют о том, что их авторы использовали слово «искусство» в смысле, встречавшемся иногда и в наши дни, – как некую противоположность науке. Название «аналитическая геометрия», закрепившееся за координатной геометрией Декарта, подтверждает отношение к алгебре как к методу анализа. Еще в 1704 г. Эдмонд Галлей в статье, опубликованной в журнале Philosophical Transactions of the Royal Society,говорил об алгебре как об аналитическом искусстве. Но аналитическая геометрия Декарта стала, по-видимому, тем решающим доводом, который убедил математиков в могуществе алгебры.
Наконец, нельзя не упомянуть и о том, что использование для обработки результатов научных исследований отрицательных и иррациональных чисел, а также алгебры приводило к превосходному согласию с результатами наблюдений и экспериментов. Какие бы сомнения ни испытывали математики, применяя отрицательные числа в естественнонаучных исследованиях, все сомнения следовало отбросить, как только окончательный результат оказывался физически правильным: ведь математики заботились главным образом о естественнонаучных приложениях – и все, что доказывало свою полезность на деле, принималось без особого разбора. Запросы естествознания ставились превыше логической обоснованности. Сомнения в правильности алгебры были просто-напросто отметены, подобно тому как ненасытные промышленники зачастую отметали этические принципы; математики стали применять новую алгебру с радостью и уверенностью в своей правоте. Впоследствии математики шаг за шагом превратили алгебру в независимую науку, охватывающую и числа, и геометрию и позволяющую «доказывать» новые результаты. Так, Валлис утверждал, что алгебраические методы ничуть не менее законны, чем геометрические.
К концу XVII в. математики осознали, что арифметика и алгебра независимы от геометрии. Почему же математики не предприняли попыток логически обосновать и то, и другое? Почему, имея перед собой высокий образец дедуктивного изложения геометрии, воплощенный в «Началах» Евклида, математики не попытались изложить аналогичным образом арифметику и алгебру? Ответ состоит в том, что геометрические понятия, аксиомы и теоремы интуитивно воспринимаются намного легче, чем понятия арифметики и алгебры. Наглядные образы, «картинки» (в случае геометрии – чертежи), облегчают математику понимание той или иной структуры. Понятия же иррационального, отрицательного или комплексного числа отличаются большей тонкостью, и даже «картинки», которые появились здесь позднее, не позволяют прочувствовать логическую организацию самих чисел или буквенных выражений, оперирующих с числами. Проблема поиска логического обоснования числовой системы и алгебры была трудной, гораздо более трудной, чем могли себе представить математики XVII в. В дальнейшем (гл. VIII) нам еще представится случай вернуться к этой проблеме. К счастью, в вопросах логического обоснования арифметики и алгебры математики оказались скорее легковерными и даже наивными, чем излишне педантичными, – к счастью, ибо формализации и логическому обоснованию должен предшествовать период созидания, не стесняемого никакими ограничениями, а величайший период созидания в математике уже приближался.