355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Морис Клайн » Математика. Утрата определенности. » Текст книги (страница 24)
Математика. Утрата определенности.
  • Текст добавлен: 31 октября 2016, 02:56

Текст книги "Математика. Утрата определенности."


Автор книги: Морис Клайн


Жанр:

   

Математика


сообщить о нарушении

Текущая страница: 24 (всего у книги 38 страниц)

Еще в то время, когда логицизм переживал период становления, группа математиков, называвших себя интуиционистами,предложила совершенно иной подход к математике, диаметрально противоположный логицизму. Один из интереснейших парадоксов в истории математики состоял в том, что в то время как логицисты в поисках надежных оснований математики все более полагались на изощренную логику, их основные соперники отворачивались от логики и даже в каком-то отношении отказались от нее (ср., впрочем, ниже). Но цель, которую преследовали логицисты и интуиционисты, была единой. В конце XIX в. математика утратила свои претензии на истинность как выражение законов, присущих структуре реального мира. Логики, главным образом Фреге и Рассел, первоначально считали, что логика является сводом незыблемых истин и поэтому основанная на логике математика также будет собранием истин; однако впоследствии они отошли от исходной позиции к логическим принципам, имевшим лишь прагматическое обоснование. Интуиционисты также пытались обосновать истинность собственно математики, ссылаясь непосредственно на человеческий разум. Выводы из логических принципов интуиционисты считали менее надежными, чем непосредственно интуитивные соображения. Открытие парадоксов не только укрепило недоверие к логическим принципам, но и ускорило процесс формулировки основных представлений интуиционизма.

Интуиционизм в широком смысле слова восходит по крайней мере к Декарту и Паскалю. Так, в «Правилах для руководства ума» Декарта говорится следующее: {116}116
  По поводу современных взглядов на роль интуиции и дедукции в понимании мира см., например [32], а также [62].


[Закрыть]

Для того, чтобы в дальнейшем не подвергать себя подобному заблуждению, мы рассмотрим здесь все те действия нашего интеллекта, посредством которых мы можем придти к познанию вещей, не боясь никаких ошибок. Возможны только два таких действия, а именно: интуиция и дедукция.

Под интуицией я разумею не веру в шаткое свидетельство чувств и не обманчивое суждение беспорядочного воображения, но понятие ясного и внимательного ума, настолько простое и отчетливое, что оно не оставляет никакого сомнения в том, что мы мыслим, или, что одно и то же, прочное понятие ясного и внимательного ума, порождаемое лишь естественным светом разума и благодаря своей простоте более достоверное, чем сама дедукция, хотя последняя и не может быть плохо построена человеком, как я уже говорил выше.

Так например, всякий может интуитивно постичь умом, что он существует, что он мыслит, что треугольник ограничивается только тремя линиями, что шар имеет только одну поверхность, и подобные этим истины, гораздо более многочисленные, чем это замечает большинство людей вследствие того, что не считает достойными внимания такие простые вещи.

Может возникнуть сомнение, для чего мы добавляем к интуиции еще и этот другой способ познания, заключающийся в дедукции, посредством которой мы познаем все, что необходимо выводится из чего-либо достоверно известного. Это нужно было сделать потому, что есть много вещей, которые хотя и не являются самоочевидными, но доступны достоверному познанию, если только они выводятся из верных и понятных принципов путем последовательного и нигде не прерывающегося движения мысли при зоркой интуиции каждого отдельного положения. Подобно этому мы узнаем, что последнее кольцо длинной цепи соединено с первым, хотя мы и не можем охватить одним взглядом все находящиеся между ними кольца, которые обусловливают это соединение, лишь бы мы последовательно проследили их и вспомнили, что каждое из них, от первого до последнего, соединено с соседним. Итак, мы различаем здесь интуицию ума от правильной дедукции в том отношении, что под дедукцией подразумевается именно движение или последовательность, чего нет в интуиции; кроме того, дедукция не нуждается в наличной очевидности, как интуиция, но скорее как бы заимствует свою достоверность у памяти. Отсюда следует, что положения, непосредственно вытекающие из первого принципа, можно сказать, познаются как интуитивным, так и дедуктивным путем, в зависимости от способа их рассмотрения, сами же принципы – только интуитивным, как и, наоборот, отдаленные их следствия – только дедуктивным путем.

([15], с. 57-60.)

Паскаль также глубоко верил в интуицию и в своих математических работах опирался в основном на интуицию. Он предвидел важные результаты, высказывал великолепные догадки и находил изящные, неожиданные решения. С годами Паскаль стал отдавать интуиции явное предпочтение как источнику истины. Некоторые из его высказываний на эту тему получили широкую известность: «У сердца – свои причины, о которых не знает разум»; «Логика – медленный и мучительный метод, позволяющий тем, кто не знает истины, открывать ее»; «Смири гордыню, бессильный разум».

Многие положения интуиционизма были предвосхищены Иммануилом Кантом. Будучи прежде всего философом, Кант тем не менее в 1755-1770 гг. преподавал математику и физику в Кёнигсбергском университете. Он считал, что свои ощущения мы получаем из предполагаемого внешнего мира, однако эти ощущения (или восприятия) не дают существенного знания. Все восприятия включают в качестве необходимого звена взаимодействие между тем, кто воспринимает, и воспринимаемым объектом. Разум организует восприятия, и эти организации являются интуитивными представлениями о пространстве и времени. Пространство и время не существуют сами по себе, а являются творениями нашего разума. Разум применяет свое понимание пространства и времени к данным опыта, которые лишь пробуждают разум. Знание может начинаться с опыта, но в действительности не опыт является источником знания. Знание берется из разума. Математика дает нам блестящий пример того, как далеко мы можем продвинуться в априорном (истинном) знании независимо от опыта. Математические теоремы Кант относит к разряду так называемых синтетических суждений,т.е. суждений, доставляющих нам новое знание и тем отличающихся от аналитических сужденийтипа, например, предложения «Все тела протяженны», не содержащих ничего нового, так как в силу самой природы тел протяженность является их неотъемлемым свойством (примером синтетического суждения может служить, скажем, утверждение о том, что отрезок прямой есть кратчайшее расстояние между двумя точками).

Хотя Кант заблуждался, приписывая евклидовой геометрии априорный синтетический характер, аналогичное заблуждение разделяли почти все философы и математики того времени. Эта ошибка дискредитировала философию Канта в глазах философов и математиков последующих поколений. Однако проведенный Кантом анализ времени как одной из форм интуиции и его общий тезис о том, что разум служит источником основных истин, имели непреходящее значение.

Если бы математики были лучше знакомы со взглядами таких мыслителей, как Декарт, Паскаль и Кант, то интуиционистское направление в основаниях математики, считавшееся, по крайней мере в первые годы после его возникновения, весьма радикальным, шокировало бы их гораздо меньше. Но, разумеется, ни Декарт, ни Паскаль, ни Кант не имели в виду интуиционистский подход ко всей математике. Как направление в основаниях математики интуиционизм – порождение нашей эпохи.

Непосредственным предшественником современного интуиционизма был Леопольд Кронекер. Широко известно его высказывание: «Господь бог создал целые числа; все остальное – дело рук человеческих». Сложную логическую концепцию целого числа Кантора и Дедекинда, базирующуюся на теоретико-множественной основе, Кронекер считал менее надежной, чем непосредственное принятие целых чисел. По мнению Кронекера, целые числа интуитивно понятны и не нуждаются в более строгом обосновании. {117}117
  Предложенное (почти одновременно и, по видимому, независимо) Р. Дедекиндом и Дж. Пеано аксиоматическое описание целых (или целых положительных – натуральных) чисел хронологически почти совпало со смертью Кронекера (основополагающая работа Пеано вышла в свет в год смерти Кронекера); поэтому он уже не мог высказать свое мнение по поводу этой новой теории.


[Закрыть]
Все остальные математические понятия следовало строить так, чтобы их смысл был интуитивно понятен. Кронекер выступал за построение системы вещественных чисел на основе целых чисел и методов, позволяющих не только доказывать общие теоремы существования, но и вычислять значения соответствующих чисел. Так, Кронекер считал вполне приемлемыми иррациональные числа, являющиеся корнями многочленов, лишь в том случае, если соответствующие корни могут быть вычислены с любой степенью точности.

Кантор доказал, что существуют трансцендентные иррациональные числа, не являющиеся корнями никаких алгебраических уравнений [с целыми коэффициентами] {118}118
  Предшествующее Кантору доказательство существования трансцендентных чисел принадлежит французскому математику Жозефу Лиувиллю (1809-1882), построившему конкретные примеры таких чисел (1851); Кантор же доказал, что в определенном смысле «почти все» вещественные числа являются трансцендентными (причем его доказательство было существенно «неконструктивным», т.е. не позволяло указать ни одного такого числа).


[Закрыть]
, и в 1882 г. Фердинанд Линдеман (1852-1939) доказал, что π– трансцендентное число. По поводу этой работы Кронекер заявил Линдеману: «Что толку от вашей прекрасной работы о числе π? Стоит ли браться за исследование подобных проблем, если подобные иррациональные числа вообще не существуют?» Возражение Кронекера относилось не вообще к иррациональным числам, а к доказательствам, не позволяющим вычислять те числа, о которых идет речь. Предложенное Линдеманом доказательство трансцендентности числа πне было конструктивным. С помощью разложения в ряд значение πможно было вычислить с любой степенью точности – но Кронекер считал неприемлемым само использование такого (бесконечного!) ряда.

Бесконечные множества и трансфинитные числа Кронекер полностью отвергал, так как считал возможным иметь дело только с потенциальной бесконечностью. С точки зрения Кронекера, все, что сделал в этой области Кантор, было не математикой, а мистикой. Классический анализ Кронекер назвал игрой в слова. Он мог бы с успехом добавить, что если у бога есть несколько математик, то ему следовало бы оставить их при себе. Однако Кронекер лишь высказывал подобные взгляды, но не развивал их. Возможно, он и сам относился к своим столь радикальным воззрениям не слишком серьезно.

Борель, Бэр и Лебег, с чьими возражениями против аксиомы выбора мы уже познакомились, были «полуинтуиционистами». Основание всей математики они усматривали в системе вещественных чисел. Подробное изложение их взглядов представляет лишь исторический интерес, так как и эти математики, в полемике которых речь шла о специальных вопросах, последовательной философии не создали. Пуанкаре, как и Кронекер, считал, что не следует давать определения целым числам или выводить их свойства на аксиоматической основе. Наша интуиция предшествует такому выводу. Пуанкаре также считал, что математическая индукция является общим принципом, допускающим получение новых результатов. При всей своей кажущейся интуитивности метод математической индукции к логике, по его мнению, не сводится.

Сущность метода математической индукции, каким его видел Пуанкаре, заслуживает изучения, поскольку она и поныне вызывает споры. Следуя методу математической индукции, тот, кто хочет доказать, например, что при всех целых положительных nимеет место равенство

1 + 2 + 3 + … + nn( n+ 1)/2 (1)

должен сначала установить, что оно выполняется при  n = 1,а затем доказать, что если оно выполняется при каком-то целом n = k,то выполняется и при следующем значении n = k + 1.Следовательно, считал Пуанкаре, метод математической индукции апеллирует к бесконечномумножеству аргументов: мы утверждаем, что так как равенство (1) выполняется при n = 1, то оно выполняется и при  n = 2,а так как оно выполняется при n = 2,то оно выполняется и при n = 3и т.д. при всех положительных целых n.Но ни один логический принцип не охватывает бесконечно много аргументов. Следовательно, метод математической индукции не следует из логических принципов. Тем самым, по мнению Пуанкаре, непротиворечивость математики не может быть доказана сведением математики к логике, как предлагали логицисты.

По поводу бесконечных множеств Пуанкаре утверждал: «Актуальной бесконечности не существует. То, что мы называем бесконечностью, представляет собой неограниченную возможность создания новых объектов независимо от того, сколько объектов уже существует».

Пуанкаре резко отрицательно относился к громоздким обозначениям логицистов, и в его «Науке и методе» по поводу логицизма отчетливо звучат саркастические ноты. Так, говоря о подходе к понятию целого числа, избранном Бурали-Форти в работе 1897 г., где число 1 определяется с помощью сложного лабиринта буквенных символов, Пуанкаре замечает:

Это определение в высшей степени подходит для того, чтобы дать представление о числе 1 тем лицам, которые никогда о нем ничего не слышали!.. Я слишком мало понимаю приверженцев Пеано, чтобы рискнуть его [определение числа 1] критиковать; но я опасаюсь, что это определение заключает petitio principii[логическую ошибку «предвосхищение основания»], так как я вижу цифру 1 в левой части и изображенное буквами слово «один» (Un) – в правой части равенства.

([1], с. 377.)

Затем Пуанкаре обращается к определению нуля, предложенному одним из первых сторонников логицизма Луи Кутюра (1868-1914). Нуль, по Кутюра, – это «число элементов нулевого класса. А что такое нулевой класс? Это класс, который не содержит никакого элемента» ([1], с. 377). Далее Кутюра «усовершенствует» свое определение, переводя его на язык символических обозначений. Пуанкаре дает обратный перевод: «Нуль есть число предметов, удовлетворяющих такому условию, которое никогда не выполняется. Но так как «никогда» означает «ни в одном случае», то я не вижу значительного успеха в этой замене» ([1], с. 377).

Пуанкаре критикует далее предложенное Кутюра определение числа 1: «Один, утверждает Кутюра, в сущности есть число элементов класса, два любых элемента коего тождественны… Боюсь, что если спросить у Кутюра, что такое «два», то он должен будет в ответ воспользоваться словом «один» ([1], с. 377-378). {119}119
  По поводу полемики между Пуанкаре и Кутюра см. [63].


[Закрыть]

Предшественники интуиционизма Кронекер, Борель, Лебег, Пуанкаре и Бэр – созвездие блистательных имен! – высказывали критические замечания по поводу стандартных математических рассуждений и логического подхода, но их собственный вклад в развитие интуиционизма был фрагментарным и случайным. Их идеи вошли в окончательную версию, разработанную голландским математиком, основоположником философии интуиционизма Лейтценом Эгбертом Яном Брауэром (1881-1966). Изложение философии интуиционизма Брауэр начал в своей докторской диссертации «Об основаниях математики» (1907). Обобщенный вариант своих взглядов Брауэр изложил в серии статей, опубликованных, начиная с 1918 г., в различных журналах.

Интуиционистская позиция Брауэра в математике проистекает из его общефилософских взглядов. Математика, считает Брауэр, – это человеческая деятельность, которая начинается и протекает в разуме человека. Вне человеческого разума математика не существует. Следовательно, заключает Брауэр, математика не зависит от реального мира. Разум непосредственно постигает основные, ясные и понятные, интуитивные представления. Они являются не чувственными или эмпирическими, а непосредственно данными, достоверными представлениями о некоторых математических понятиях. К таким понятиям относятся целые числа. Фундаментальное интуитивное представление – постижение различных событий в хронологической последовательности. «Математика возникает тогда, когда сущность двойки [числа «два»], возникающая вследствие хода времени, абстрагируется от всего частного. Остающаяся пустая форма общего содержания всех двоек становится исходным интуитивным представлением математики и, повторяемая неограниченно, создает новые математические сущности». Под неограниченным повторением Брауэр понимает образование последовательных натуральных чисел. Идею о том, что понятие целого числа является производным от интуитивного представления о времени, высказывали также И. Кант, Уильям Р. Гамильтон (в статье «Алгебра как наука о времени») и философ Артур Шопенгауэр.

Математическое мышление, по Брауэру, представляет собой процесс мысленного построения, создающего свой собственный мир, не зависящий от опыта и ограниченный лишь тем, что в основе его должна лежать фундаментальная математическая интуиция. Это фундаментальное интуитивное понятие следует представлять себе не как нечто сходное по природе с неопределяемыми понятиями, встречающимися в аксиоматических теориях. Наоборот, через него должны постигаться разумом все неопределяемые идеи, используемые в различных математических системах, если они действительно призваны служить математическому мышлению. Кроме того, математика по своей природе синтетична. Она занимается составлением истин, а не выводит их из логики.

Брауэр был убежден в том, что «в этом конструктивном процессе, ограниченном непременной обязанностью отмечать по мере возникновения новых идей и повышения культуры мышления, какие тезисы приемлемы для интуиции, самоочевидны для разума, а какие неприемлемы, – единственное возможное основание, которое стремится обрести математика». Интуиция (а не опыт или логика) определяет, согласно Брауэру, правильность и приемлемость идей. Следует помнить, подчеркивал он, что это отнюдь не отрицает той исторической роли, которую сыграл опыт.

Помимо натуральных чисел Брауэр считал интуитивно ясными сложение, умножение и математическую индукцию. Кроме того, получив натуральные числа 1, 2, 3, …, разум, используя возможность неограниченного повторения «пустой формы» – шаги от  nк  n + 1, – создает бесконечные множества. Однако такие множества лишь потенциально бесконечны в том смысле, что к любому заданному конечному множеству чисел всегда можно прибавить еще большее число. Брауэр отвергал актуально бесконечные множества Кантора, все элементы которых были представлены «в готовом виде», и тем самым отрицал теорию трансфинитных чисел, аксиому выбора Цермело и те разделы анализа, которые используют актуально бесконечные множества. В докладе, прочитанном в 1912 г., Брауэр признал ординальные числа вплоть до ω и счетные множества. Он также допускал существование иррациональных чисел, определяемых последовательностями рациональных чисел без какого бы то ни было закона образования последовательности – «последовательностями свободного выбора». Сколь ни расплывчато это определение, оно все же делало возможным появление несчетного множества вещественных чисел. В то же время геометрия включает понятие пространства и поэтому в отличие от понятия числа не полностью контролируется нашим разумом. Синтетическая геометрия относится к физическим наукам.

В связи с интуиционистским понятием бесконечного множества интуиционист Вейль {120}120
  Интуиционистскую платформу Вейля достаточно выразительно характеризует сборник его более ранних статей [64].


[Закрыть]
писал в статье 1946 г.:

Последовательность чисел, которые, возрастая, превосходят любой достигнутый ими предел… есть многообразие возможностей, открывающихся перед бесконечностью; она навсегда остается в стадии сотворения, но не переходит в замкнутый мир вещей, существующих в себе. Источник наших трудностей, в том числе и антиномий [парадоксов], более фундаментален по своей природе, чем указанный принципом порочного круга Рассела, и состоит в том, что мы одно слепо превратили в другое. Брауэр открыл нам глаза и показал, как далеко классическая математика, питаемая верой в абсолют, превосходящий все человеческие возможности реализации, выходит за рамки утверждений, которые могут претендовать на реальный смысл и истинность, основанную на опыте.

Брауэр подверг критическому анализу отношение математики к языку. Математика – полностью автономный, находящий основание в самом себе вид человеческой деятельности. Она не зависит от языка. Слова или словесные связки используются в математике только для передачи истин. Математические идеи уходят своими корнями в человеческий разум глубже, чем в язык. Мир интуитивных математических представлений противостоит миру восприятий. К последнему, а не к математике, принадлежит язык, служащий для повседневного общения. Язык с помощью букв и звуков пробуждает в человеческом разуме копии идей. Различие между идеями и их копиями такое же, как между восхождением на гору и его словесным описанием. Но математические идеи не зависят от словесного одеяния, в которое их облекает язык, и в действительности гораздо богаче. Мысли никогда невозможно выразить полностью даже на математическом языке, в том числе и на языке символов. Кроме того, язык вносит отклонения от предмета собственно математики.

Еще более решительную позицию, резко контрастирующую с логицизмом, интуиционизм занимает в отношении логики. Логика принадлежит языку. Она дает систему правил, позволяющих осуществлять дедуктивный вывод новых словесных связок, предназначаемых, по предположению, для того, чтобы передавать истины. Однако эти истины не относятся к числу постигаемых непосредственно и даже постигаемых вообще. Логика не является надежным инструментом для открытия истин и не может открыть истины, не получаемые каким-то другим путем. Логические принципы – это закономерности, наблюдаемые апостериорно в языке. Их можно назвать удобным инструментом для манипулирования языком или считать, что они образуют теорию представлений языка. Логика – это наделенное внутренней структурой словесное построение, и не более того. Самые значительные успехи в математике достигнуты не за счет усовершенствования логической формы, а в результате изменений основной теории. Логика строится на математике, а не математика на логике. Логика обладает гораздо меньшей определенностью, чем наши интуитивные представления, и поэтому математика не нуждается в поддержке со стороны логики. Если посмотреть исторически, то принципы логики сначала были абстрагированы из опыта, накопленного в обращении с конечными множествами, после чего их объявили обладающими априорной справедливостью и в дополнение ко всему распространили на бесконечные множества.

Не признавая никаких априори обязательных логических принципов, Брауэр тем самым отвергал математическую задачу вывода заключений из аксиом. Следовательно, наряду слогицизмом Брауэр отвергал и аксиоматизацию математики, предпринятую в конце XIX в. Математика отнюдь не обязана почтительно относиться к правилам логики. Знание математики не требует знания формальных доказательств, и поэтому парадоксы несущественны, даже если бы мы приняли те математические понятия и построения, которые приводят к парадоксам. Парадоксы являются дефектом логики, а не собственно математики. Следовательно, непротиворечивость – это своего рода привидение. Она лишена плоти. Непротиворечивость возникает как следствие правильных размышлений, а о правильности размышлений мы судим интуитивно.

Но в логике существуют некоторые ясные, интуитивноприемлемые логические принципы или методы, которые можно использовать для вывода новых теорем из старых. Эти принципы входят составными частями в фундаментальную математическую интуицию. Не все из обычных логических принципов приемлемы для фундаментальной интуиции, и следует критически относиться к тому, что считалось приемлемым со времен Аристотеля. Поскольку математики излишне свободно применяли ограниченные законы Аристотеля, те породили антиномии. Что же допустимого или надежного, спрашивали интуиционисты, в математических построениях, если математики временно предали забвению интуицию и работают лишь со словесной структурой?

Итак, интуиционисты принялись анализировать логические принципы, намереваясь установить, какие из них можно принять, чтобы обычная логика соответствовала и надлежащим образом выражала правильные интуитивные представления.В качестве примера логического принципа, применявшегося излишне свободно, Брауэр привел закон исключенного третьего. Этот принцип, утверждающий, что каждое осмысленное высказывание либо истинно, либо ложно, исторически возник в рассуждениях, проводимых применительно к конечным множествам, и был абстрагирован из них. Затем закон исключенного третьего был принят как независимый и априорный принцип и необоснованно распространен на бесконечные множества. Но если для конечногомножества мы можем решить, все ли его элементы обладают некоторым свойством, проверяя один за другим все элементы множества, то для бесконечногомножества такая проверка становится невозможной. Может случиться так, что мы заведомо будем знать, что некий элемент бесконечного множества не обладает интересующим нас свойством, или по определению нам будет известно (или мы сумеем это доказать), что каждыйэлемент множества обладает требуемым свойством. Однако установить с помощью закона исключенного третьего, что каждый элемент множества обладает нужным свойством, нам не удастся никогда, ибо это потребовало бы бесконечного числа проверок.

Так, если доказано, что не все элементы бесконечного множества целых чисел четны, то заключение о существовании (а что означает сам термин «существование») среди них по крайней мере одного нечетного целого числа Брауэр отверг как основанное на применении к бесконечным множествам закона исключенного третьего. Но рассуждения такого типа широко используются в математике для доказательства существования различных сущностей, например для доказательства того, что каждое алгебраическое уравнение имеет корень (гл. IX). Следовательно, многие математические доказательства неприемлемы для интуиционистов. По их утверждениям, такие доказательства слишком неопределенны в отношении тех математических объектов, существование которых они должны доказывать. Закон исключенного третьего может быть использован лишь в тех случаях, когда множество содержит конечное число элементов. Например, если бы мы, рассматривая конечный набор целых чисел, доказали, что они не все четны, то отсюда действительно следовало бы, что по крайней мере одно из чисел нечетно.

Вейль, говоря об интуиционистском взгляде на логику, утверждал:

Согласно его [Брауэра] взглядам и свидетельствам истории, классическая логика была абстрагирована из математики конечных множеств и их подмножеств… Забыв о столь ограниченном происхождении, кто-то впоследствии ошибочно принял логику за нечто, стоящее над математикой и предшествующее всей математике, и, наконец, без всякого на то основания применил логику к математике бесконечных множеств. В этом грехопадение и первородный грех всей теории множеств, за что ее и покарали антиномии. Удивительно не то, что такие противоречия возникли, а то, что они возникли на столь позднем этапе игры.

Несколько позднее Вейль добавил: «Принцип исключенного третьего может быть верным для господа бога, как бы обозревающего единым взглядом бесконечную последовательность натуральных чисел, но не для человеческой логики».

В работе 1923 г. Брауэр привел примеры теорем, которые нельзя считать доказанными, если отрицать применение закона исключенного третьего к бесконечным множествам. {121}121
  Нам нет необходимости вдаваться в технические детали этих теорем. Мы упоминаем их лишь для того, чтобы привести конкретные примеры. [Отметим также, что отказ интуиционистов от закона исключенного третьего не означал еще полного отказа от какого бы то ни было логического аппарата – речь шла лишь о пересмотре фундаментальных законов логики, из числа которых отбрасывался закон исключенного третьего (ср. ниже). – Прим. ред.]


[Закрыть]
В частности, не доказана ни теорема Больцано – Вейерштрасса, утверждающая, что каждое ограниченное бесконечное множество имеет предельную точку, ни теорема о существовании максимума непрерывной функции на замкнутом отрезке. Отвергнутой оказалась и лемма Гейне – Бореля, согласно которой из любого множества отрезков, покрывающих отрезок (взятый вместе с его концами) можно выделить конечную подсистему отрезков, также покрывающих этот отрезок. Разумеется, следствия из всех этих теорем интуиционисты также не считают приемлемыми.

Однако интуиционисты не только отказались от неограниченного использования закона исключенного третьего для доказательства существования математических объектов, но и выдвинули еще одно требование. Они сочли неприемлемым задавать множество свойством, присущим всем его элементам (например, множество, задаваемое признаком «красный», присущим всем элементам этого множества). По мнению интуиционистов, математическому рассмотрению подлежат только конструктивные понятия и объекты, только о них имеет смысл утверждать, что они существуют. Иначе говоря, необходимо указывать метод, позволяющий построить объект или объекты за конечное число шагов (или вычислить с любой требуемой степенью точности). {122}122
  Несколько иначе подходил к понятию «существования» математического объекта Пуанкаре. Для него, как для формалистов (гл. XI), понятие было приемлемым, если оно не приводило к противоречиям.


[Закрыть]
Так, число π, с точки зрения интуиционистов, вполне приемлемо, так как возможно выписать любое число верных знаков его десятичной записи. Если бы нам удалось доказать, что при некотором n > 2существуют целые числа x, yи z,удовлетворяющие уравнению x n+ y n= z n(т.е. доказать великую теорему Ферма), но мы не могли бы при этом указать конкретные значения чисел n, x, yи z, то интуиционист не принял бы такого доказательства. {123}123
  В настоящей, не рассчитанной на математиков, книге автор иногда позволяет себе пренебречь точностью ради большей выразительности. В частности, приведенный в книге пример «истинные интуиционисты», пожалуй, и не приняли бы [менее яркий, но более корректный пример: задача об отыскании максимума функции переменных]. Дело в том, что множество всевозможных четверок (x, y, z, n)целых (или натуральных) чисел счетно,т.е. его можно упорядочить наподобие ряда натуральных чисел (где n > 2). Поэтому доказательство существования решения уравнения Ферма одновременно устанавливает, что решение может быть найдено в процессе, конечного (хоть и неопределенно длинного – это неважно!) перебора четверок (x, y, z, n)и проверки выполнимости равенства x n+ y n= z nдля каждой из них, а такой конечный перебор, разумеется, является вполне эффективной процедурой.


[Закрыть]
С другой стороны, определение простого числа конструктивно, так как можно указать метод, позволяющий за конечное число шагов установить, является ли то или иное число простым.

Рассмотрим еще один пример. Числами-близнецами называют простые числа вида l − 2и l, например 5 и 7, 11 и 13. До сих пор неизвестно, конечно или бесконечно количество пар чисел-близнецов. Пусть теперь  l– наибольшее простое число, такое, что l − 2также простое число, если этому нашему определению отвечает какое-то значение  lили же l = 1, если l, описываемое первым условием, не существует. Классицист сочтет число  lвполне определенным независимо от того, известно или не известно, что последняя пара чисел-близнецов существует, так как по закону исключенного третьего такая пара чисел либо имеется, либо нет, – и, значит,  lопределено либо первым, либо вторым ( l = 1) способом. То, что реально мы не в состоянии вычислить l, для неинтуиционистов несущественно. Интуиционист же будет считать приведенное выше «определение» числа  lлишенным смысла до тех пор, пока число  lнельзя будет вычислить, т.е. пока не будет решена проблема конечности или бесконечности числа пар чисел-близнецов. Требование конструктивности относится, в частности, и к определению бесконечных множеств. Бесконечные множества, построенные с помощью аксиомы выбора, неприемлемы с точки зрения интуиционистов. Как показывают приведенные выше примеры, некоторые из доказательств существования неконструктивны. Следовательно, их необходимо отвергнуть не только потому, что в них может использоваться закон исключенного третьего, но и по другой причине.

По выражению Германа Вейля, неконструктивные доказательства существования извещают мир о том, что сокровище существует, не указывая при этом его местонахождение, т.е. не позволяя это сокровище использовать. Такие доказательства не могут заменить построение – подмена конструктивного доказательства неконструктивным влечет утрату смысла и значения самого понятия «доказательство». Вейль указал, что приверженцы философии интуиционизма вынуждены отказаться от наиболее важных теорем существования классического анализа. Канторовскую иерархию трансфинитных чисел Вейль считал очень запутанной. Классический анализ, писал Вейль в книге «Континуум» (1918), – это дом, построенный на песке. Уверенным можно быть только в том, что доказано интуиционистскими методами.

Отрицание закона исключенного третьего приводит к возможности появления новых типов неразрешимых высказываний. В бесконечных множествах, как утверждают интуиционисты, возможна третья ситуация: могут существовать высказывания, которые нельзя ни доказать, ни опровергнуть. Интуиционисты приводили пример такого высказывания. Пусть, по определению, число kхарактеризуется условием, согласно которому k-e положение в десятичном разложении числа πзанимает первый нуль, такой, что за ним по порядку следуют цифры от 1 до 9. По логике Аристотеля, kлибо существует, либо не существует, и математики, следуя Аристотелю, исходили в своих рассуждениях лишь из этих двух возможностей. Брауэр и интуиционисты отвергли все рассуждения подобного типа на том основании, что неизвестно, удастся ли нам вообще когда-либо доказать, существует ли число kили не существует. Иначе говоря, по мнению интуиционистов, существуют вполне осмысленные и важные математические проблемы, которые могут оказаться неразрешимыми, какое бы обоснование мы ни подводили под математику . {124}124
  Ср. с обсуждением в гл. XII современного положения с канторовской проблемой континуума.


[Закрыть]
Эти вопросы могут казаться нам разрешимыми только потому, что они касаются понятий и проблем, сходных с теми, которые нам уже приходилось решать в прошлом.


    Ваша оценка произведения:

Популярные книги за неделю