Текст книги "Математика. Утрата определенности."
Автор книги: Морис Клайн
Жанр:
Математика
сообщить о нарушении
Текущая страница: 25 (всего у книги 38 страниц)
С точки зрения интуиционистов неприемлемы классическое и логическое (аксиоматическое) построения системы вещественных чисел, математический анализ, современная теория функций вещественного переменного, интеграл Лебега и многие другие понятия и теории. Брауэр и его сторонники не ограничивались критикой и пытались построить математику на конструктивной основе. Им удалось спасти некоторые разделы перечисленных выше теорий, но конструктивные варианты отличались такой сложностью, что даже разделявший философию интуиционизма Вейль сетовал по поводу невыносимой громоздкости конструктивных доказательств. Среди прочего интуиционистам удалось перестроить на конструктивной основе элементарные разделы алгебры и геометрии.
Тем не менее перестройка происходила чрезвычайно медленно. И в 1927 г. в статье «Обоснования математики» ([50], с. 365-388; ср. также [50], с. 389-399) Гильберт с полным правом заявил: «Какое значение имеют жалкие остатки, немногочисленные, неполные, не связанные друг с другом единичные результаты, которые были выработаны интуиционистами по сравнению с могущественным размахом современной математики!» ([50], с. 383). Разумеется, в 1927 г. интуиционистам, по их же собственным меркам, не удалось продвинуться сколько-нибудь далеко в осуществлении своей программы перестройки классической математики. К сожалению, интуиционисты, как и логицисты, не смогли прийти к единому мнению относительно того, на какой основе производить эту перестройку. Одни считали необходимым исключить все общие теоретико-множественные понятия и ограничиться лишь теми понятиями, которые допускают эффективное определение или построение. Менее экстремистскую позицию занимали конструктивисты, не ставившие под сомнение классическую логику, а стремившиеся как можно полнее использовать ее. {125}125
Дальнейшее развитие идей интуиционизма привело к созданию так называемого конструкционизма(или даже нескольких различных конструктивистских школ), признававшего только те математические объекты, которые допускают прямое построение; в частности, большое развитие получала ленинградская (а позднее московская) конструктивистская группа, возглавляемая А.А. Марковым-мл. (1903-1980); по этому поводу см. [65] и [66], а также примечания А.А. Маркова к русскому переводу книги [67].
[Закрыть]Некоторые выделяли определенный класс математических объектов, а затем вводили конструктивные методы. Немало было и тех, кто допускал по крайней мере тот или иной класс вещественных чисел (не охватывавший весь континуум вещественных чисел). Другие допускали лишь целые числа, а из остальных чисел и функций признавали лишь вычислимые. При этом различные группы понимали вычислимость по-разному. Например, число считалось вычислимым, если к нему можно было приближаться со все возрастающей точностью (эффективно определяя точность приближения!), используя допустимые числа из некоторого множества, по аналогии с тем, как к обычным иррациональным числам можно все более точно приближаться с помощью конечных десятичных дробей.
К сожалению, понятие «конструктивность» отнюдь не является ни четким, ни однозначным. Рассмотрим число N,определенное следующим образом:
На время положим p = 3. Тогда N = 1 − 0,001 = 0,999. С другой стороны, если p = 2, то N = 1,01.Пусть теперь p– первый знак в десятичном разложении числа π, следующий после группы цифр 123456789, идущих друг за другом именно в этом порядке; если же такое pвообще не существует, то положим, что N,по определению, равно 1. Если число pсуществует и четно, то N = 1,000…(на p-м месте после запятой стоит 1). Если число p нечетно, то N = 0,999…( pдевяток после запятой). Однако мы не знаем, существует ли определенное выше число p.Если оно не существует, то N = 1.Если же pсуществует, но не встречается, например, среди первой тысячи знаков десятичного разложения числа π, то мы не можем даже начать выписывать N.Тем не менее Nопределено, и его даже можно записать с любойстепенью точности. Но разве определение Nконструктивно?
Разумеется, доказательства существования, использующие аксиому выбора или гипотезу континуума, не конструктивны; они неприемлемы не только для интуиционистов, но и для многих математиков, не разделяющих идей интуиционистов.
Хотя разные группы интуиционистов и конструктивистов в чем-то расходились между собой, им все же удалось перестроить значительную часть классической математики. Некоторые из перестроенных на конструктивной основе теоремы оказались более узкими, чем их неконструктивные прототипы. Когда интуиционистам указывали на это, они отвечали, что классический анализ при всей своей несомненной полезности по математической истинности уступает конструктивному анализу. Резюмируя, можно сказать, что конструктивистам удалось добиться лишь весьма ограниченных успехов и что перспективы распространить конструктивистский подход на всю современную математику нельзя считать обнадеживающими. Имея в виду медленный прогресс конструктивистского направления, математики из школы Бурбаки, о которой у нас пойдет речь в дальнейшем, заметили: «Интуиционистская школа, о которой математики вспоминают как о своего рода историческом курьезе, во всяком случае, оказала услугу математике тем, что заставила своих противников, т.е. подавляющее большинство математиков, яснее осознать причины (одни – логического порядка, другие – психологического) их веры в математику» ([68], с. 53). {126}126
Критику интуиционизма главой советской конструктивистской школы математиков А.А. Марковым см. на с. 5 книги [67].
[Закрыть]Критики интуиционизма вполне могли бы процитировать четверостишие Сэмуэля Хоффенштейна:
Мало-помалу все станет гладко,
Коль все ошибки изымем из факта,
Иллюзий плевелы – из истины золота,
Но разум погибнет от лютого голода.
Чтобы гарантировать надежность оснований математики, интуиционисты готовы даже пожертвовать какими-то разделами классической математики и не считают слишком высокой ценой отказ от «рая» канторовской теории трансфинитных чисел.
Хотя противники интуиционизма иногда излишне бесцеремонно и догматически требовали отказа от интуиционистской философии, критические замечания в адрес интуиционизма высказывали и сочувствующие ему люди – и к этим замечаниям нельзя не отнестись серьезно. В частности, одно из критических замечаний состояло в том, что теоремы, которые интуиционисты столь лихорадочно стремились перестроить в соответствии со своими принципами, не были подсказаны интуицией и вряд ли подкреплялись ею. Открытию этих теорем в равной мере способствовали все известные математические методы, всевозможные рассуждения, догадки, обобщения частных случаев и внезапные, не поддающиеся рациональному объяснению озарения. Следовательно, на практике интуиционисты не менее других зависят от обычных методов, принятых в математике, и даже от классической логики, хотя и пытаются реконструировать доказательства в соответствии со своими принципами. В ответ на подобное замечание интуиционисты могли бы возразить, что когда новые результаты устанавливаются традиционными методами, сами результаты вполне могут оказаться интуитивно приемлемыми. Не отрицая важности других утверждений интуиционизма, нельзя не отметить, что многие теоремы, даже приемлемые для интуиционистов, содержат столь тонкие и далекие от интуиции утверждения, что трудно представить, как может человеческий разум непосредственно воспринимать их истинность.
Тезис о важной роли обычных приемов математического творчества, а также идеализации и абстракции выдвинули Феликс Клейн и Мориц Паш. Разве интуиция могла бы открыть непрерывную (нигде не дифференцируемую) функцию {127}127
Не останавливаясь подробно, упомянем лишь о методологических установках яркой и пользующейся известностью книги Б. Мандельброта [69], которые кратко (и не совсем точно) можно охарактеризовать как утверждение о том, что в реальном мире мы чаще всего встречаемся именно с нигде не дифференцируемыми («изломанными») функциями, а «гладкие» функции представляют собой не более чем идеализированное описание негладких.
[Закрыть]или кривую, покрывающую квадрат (кривую Пеано)? Такого рода «патологические» математические объекты, даже если их существование подсказано интуицией, подлежат «очищению», которое производится путем идеализации и абстракции. По выражению Клейна, примитивная интуиция не точна, а утонченная интуиция вообще не является интуицией, а возникает в результате логического вывода из аксиом. В ответ на требование полагаться на надежность логического вывода из аксиом Брауэр возразил, что непротиворечивость системы аксиом доказывается с помощью интерпретаций или моделей (гл. VIII), относительно которых должно быть известно, что они непротиворечивы. Всегда ли мы, справедливо заметил Брауэр, располагаем такими моделями, и не полагаемся ли мы на интуицию, объявляя их непротиворечивыми?
Вейль также оспаривал утверждение о том, что традиционные способы построения новых математических объектов и доказательства якобы обладают большей силой по сравнению с конструктивными. В книге «Разум и природа» (1934) он писал: «Приятно утешать себя надеждой, что сознанию откроются истины более глубокие по своей природе, чем те, которые доступны непосредственно интуиции».
Некоторые из противников интуиционизма, вполне признавая, что математика – это творение человека, тем не менее считали, что правильность или неправильность может быть установлена объективно, тогда как интуиционисты ставили решение этих вопросов в зависимость от человеческого разума, склонного заблуждаться. В этом, как писали Гильберт и Пауль Бернайс (1888-1978) в первом издании своего труда [75] по основаниям математики, мы усматриваем легко уязвимое место интуиционистский философии. На какие понятия и рассуждения мы можем положиться, если правильность понимается как очевидность для человеческого разума? Где же истина, объективно существующая для всех людей?
Другое критическое замечание в адрес интуиционизма состояло в том, что он совсем не касается вопросов о приложимости математики к исследованию природы. Интуиционизм не связывает математику с восприятием. Брауэр признавал, что интуиционистская математика бесполезна для практических приложений. Более того, Брауэр отрицал господство человека над природой. Несмотря на всевозможные критические замечания в адрес интуиционизма, Вейль заявил в 1951 г.: «Думаю, что всякому, кто хотел бы по-прежнему верить в истинность математических утверждений, в истинность, основанную на опыте, придется принять критику, которой подверг основания математики Брауэр».
Доктрины интуиционизма затронули и еще один вопрос, тесно связанный с их основными установками. Как мы уже знаем, интуиционисты утверждали, что здравые и приемлемые идеи могут восприниматься и воспринимаются человеческим разумом. Эти идеи не рождаются в словесной форме. Язык не более чем несовершенное устройство для передачи идей. Вопрос, породивший долгие споры и обсуждения, состоял в следующем: могут ли мысли существовать в бессловесной форме? С одной стороны, в Евангелии от Иоанна говорится: «В начале было Слово». Хотя св. Иоанн, разумеется, не имел в виду математику, процитированное высказывание согласуется с позицией древнегреческих философов и взглядами некоторых современных психологов. С другой стороны, епископ Беркли считал, что слова – это помеха для мышления.
Эйлер затронул эту проблему в «Письмах к немецкой принцессе» (1768-1772; адресатом писем была принцесса Ангальт-Дессау, племянница Фридриха Великого):
Какой бы склонностью ни обладал человек к тренировке своей способности к абстракции и к выработке общих идей, он не сможет преуспеть в этом без помощи языка, устного или письменного. И тот, и другой содержат множество различнейших слов, представляющих собой не что иное, как знаки, соответствующие нашим идеям. Значение словам придается обычаем или молчаливым соглашением нескольких людей, живущих вместе.
Следовательно, единственное назначение языка состоит в том, чтобы люди могли сообщить друг другу о своих чувствах. Одинокий человек мог бы вполне обойтись и без языка. Стоит немного подумать, как станет ясно, что язык нужен людям, чтобы они могли следить за своими мыслями и развивать их, а также общаться друг с другом.
В книге «Исследование психологии процесса изобретения в области математики» (1945) Жак Адамар занялся изучением вопроса о том, как мыслит математик, и обнаружил, что в процессе творчества почти все математики избегают пользоваться языком. Они мыслят смутными образами, визуальными или тактильными. Именно о таком характере мышления говорится в письме Эйнштейна к Адамару, приведенном в названной книге:
Слова, написанные или произнесенные, не играют, видимо, ни малейшей роли в механике моего мышления. Психологическими элементами мышления являются некоторые более или менее ясные знаки или образы, которые могут быть «по желанию» воспроизведены и скомбинированы.
…Элементы, о которых я только что упомянул, бывают у меня обычно визуального или изредка двигательного типа. Слова или другие условные знаки приходится подыскивать (с трудом) только на вторичной стадии…
([70], с. 80.)
Разумеется, визуализация играет главную роль в творческом акте. Образ бесконечных прямых, делящих евклидову плоскость на две части, берет начало из визуализации. Вопрос сводится к следующему: «верит» ли разум фактам (независимо от того, каким образом они получены) настолько, что, как утверждают интуиционисты, необходимость в точной словесной формулировке и логическом доказательстве отпадает?
В 1930 г. Аренд Гейтинг (р. 1898), наиболее выдающийся представитель интуиционизма после Брауэра, опубликовал работу с изложением формальных правил интуиционистской логики высказываний {128}128
В разработке интуиционистской логики приняли участие также московские математики В.И. Главенко (1897-1940; работы 1928-1929) и особенно А.Н. Колмогоров (р. 1903; работы 1925, 1932). Ср. также [71].
[Закрыть]; это явилось своего рода символическим выражением намерения наладить отношения с формальными логиками. Логика высказываний охватывала лишь часть классической формальной логики. Например, в логике Гейтинга из истинности высказывания pследует: неверно, что pложно. Но из утверждения «неверно, что pложно» еще не следует, что pистинно, так как высказывание pможет оказаться неконструктивным. Закон исключенного третьего (утверждение « pили не pвсегда истинно») в логике Гейтинга не используется. Но если из высказывания pследует высказывание q,то из отрицания qследует, что pложно. Сами интуиционисты не придали особого значения предпринятой Гейтингом попытке формализации логики. Она не позволяла полностью представить идеи. Кроме того, формализация Гейтинга не была единственной: среди интуиционистов не существовало единого мнения по поводу того, какие логические принципы считать приемлемыми.
Несмотря на ограничения, наложенные интуиционистами на математику, и на критику интуиционистской философии представителями других направлений, в целом интуиционизм пошел математике на пользу. Он выдвинул на первый план вопрос «Что означает в математике существование?», впервые серьезно обсуждавшийся в связи с аксиомой выбора. Перефразируя Вейля, можно сказать; много ли проку от того, что мы знаем о существовании числа, обладающего теми или иными свойствами, если у нас нет возможности реализовать или вычислить его? Неограниченное, наивное использование закона исключенного третьего явно нуждается в пересмотре. Особенно важно, по-видимому, то, что интуиционизм отстаивал непременную вычислимость чисел и функций, существование которых доказано лишь тем, что предположение об их несуществовании приводит к противоречию. Узнать эти числа непосредственно – это то же самое, что жить рядом с другом, но это означает совсем иное, чем просто знать, что где-то в мире у тебя есть друг.
Противоборство логицистов и интуиционистов было лишь первой схваткой в разгоравшейся битве за обоснование математики. В борьбу вступали все новые участники, о которых речь еще впереди.
XI
Формализм и теоретико-множественные основания математики
Какое значение могут иметь жалкие остатки, немногочисленные, неполные, не связанные друг с другом единичные результаты, которые были выработаны интуиционистами, по сравнению с могущественным размахом современной математики! {129}129
Гильберт Д. Основания математики. – В кн.: Основания геометрии. – М. – Л.: Гостехиздат, 1948, с. 383.
[Закрыть]Давид Гильберт
Логицизм и интуиционизм – два направления, возникшие в первые годы XX в. и придерживавшиеся диаметрально противоположных взглядов на основания математики, – были лишь первыми признаками надвигающейся бури. Третье направление – формализм– сформировал и возглавил Давид Гильберт. Родоначальником четвертого (теоретико-множественного)направления в основаниях математики стал Эрнст Цермело.
В своем докладе [51] на II Международном математическом конгрессе, проходившем в 1900 г. в Париже (гл. VIII), Гильберт подчеркнул важность доказательства непротиворечивости математики. Он указал также, что желательно получить прямое доказательство полной упорядоченности вещественных чисел. Но из работ Цермело мы знаем, что полное упорядочение эквивалентно аксиоме выбора. Гильберт обратил также внимание математиков на необходимость доказательства гипотезы континуума,согласно которой не существует (количественного) трансфинитного числа, большего N 0и меньшего c.Еще до того, как обрели известность парадоксы теории множеств, доставившие немало хлопот математикам, и возникла дискуссия по поводу аксиомы выбора, Гильберт предвидел насущную необходимость решения всех этих проблем.
Суть своего подхода к основаниям математики, в том числе и к доказательству ее непротиворечивости, Гильберт изложил в 1904 г. в докладе на III Международном конгрессе математиков в Гейдельберге. Тогда он еще не имел серьезных работ, реализующих намеченную им программу. В последующие 15 лет логицисты и интуиционисты развили бурную деятельность в направлении, указанном этим докладом; однако Гильберт, мягко говоря, не был удовлетворен предложенными ими решениями проблем, потрясающих сами основания математики.
С логицизмом Гильберт разделался довольно спокойно. Его главное возражение против логицизма в докладе на конгрессе и в работе, опубликованной в том же 1904 г., сводилось к тому, что в ходе длительного и сложного развития логики целые числа оказались, хотя и неявно, вовлеченными в присущую ей систему понятий. Следовательно, занимаясь построением понятия числа, логика в действительности ходит по замкнутому кругу. Критиковал Гильберт и задание множеств по их свойствам: при таком определении множеств возникала необходимость различать высказывания и пропозициональные функции по типам, а теория типов требовала принятия сомнительной аксиомы сводимости. Гильберт разделял мнение Рассела и Уайтхеда о необходимости включения в математику бесконечных множеств. Но для этого потребовалась бы аксиома бесконечности, а Гильберт вместе с другими не считал ее аксиомой логики.
С другой стороны, философия интуиционизма также не устраивала Гильберта, поскольку интуиционисты отвергали не только бесконечные множества, но и обширные разделы анализа, опирающиеся на чистые теоремы существования, и он яростно нападал на интуиционизм. В 1922 г. он обвинил интуиционистов в том, что они «стремятся разрушить и изуродовать математику». В статье 1927 г. он выразил свой протест против интуиционизма следующим образом: «Отнять у математиков закон исключенного третьего – это то же самое, что забрать у астрономов телескоп или запретить боксерам пользование кулаками. Запрещение теорем существования и закона исключенного третьего почти равносильно полному отказу от математической науки» ([50], с. 383).
По поводу отношения Гильберта к интуиционизму Вейль сказал в 1927 г.: «То, что с этой [интуиционистской] точки зрения надежна лишь часть классической математики, причем далеко не самая лучшая, – горький, но неизбежный вывод. Гильберту была невыносима мысль об этой ране, нанесенной математике».
И логицизм, и интуиционизм Гильберт обвинял в том, что они не смогли доказать непротиворечивость математики. В работе 1927 г. Гильберт торжественно заявил:
Математика есть наука, в которой отсутствует гипотеза. Для ее обоснования я не нуждаюсь ни, как Кронекер, в господе боге, ни, как Пуанкаре [который считал, что доказать непротиворечивость системы, использующей математическую индукцию, невозможно], в предположении об особой, построенной на принципе полной индукции способности нашего разума, ни, как Брауэр, в первоначальной интуиции, наконец, ни, как Рассел и Уайтхед, в аксиомах бесконечности, редукции [сводимости] или полноты, которые являются подлинными гипотезами содержательного характера и, сверх того, вовсе не правдоподобными.
([50], с. 383.)
В 20-е годы XX в. Гильберт сформулировал свой собственный подход к обоснованию математики и до конца жизни работал над ним. Среди работ, опубликованных Гильбертом в 20-е годы и в начале 30-х годов, особое место по богатству идей занимает работа «О бесконечности» ([44]*, 1925), где он формулирует замысел своей теории: «Эта теория ставит своей целью установить определенную надежность математического метода» ([50], с. 340).
Первый из тезисов Гильберта состоял в том, что, поскольку логика, развиваясь, непременно включает в себя математические идеи и поскольку для сохранения классической математики нам неизбежно приходится привлекать внелогические аксиомы типа аксиомы бесконечности, правильный подход к математике должен включать понятия и аксиомы не только логики, но и математики. Кроме того, логика должна чем-то оперировать, и это «что-то» состоит из внелогических конкретных понятий (таких, как понятие числа), воспринимаемых интуитивно еще до того, как мы начинаем рассуждать логически.
Принятые Гильбертом логические аксиомы несущественно отличаются от аксиом Рассела, хотя Гильберт ввел больше аксиом, поскольку его не интересовало построение наиболее экономной системы аксиом логики. Но так как, согласно Гильберту, математика невыводима из логики (математика не следствие логики, а автономная научная дисциплина), то аксиоматика как логики, так и математики должна включать математические и логические аксиомы. Гильберт считал также, что математику надежнее всего рассматривать не как фактическое знание, а как формальную, т.е. абстрактную, дисциплину, занимающуюся преобразованием символов безотносительно к их значению (хотя неформально значение символов и их отношение к реальности также учитываются). Доказательства теорем должны сводиться к преобразованиям символов, производимым по определенным правилам логического вывода.
Чтобы избежать неоднозначности языка и бессознательного использования интуитивных представлений, приводящих к одним парадоксам, исключить другие парадоксы и достичь строгости доказательств и объективности, Гильберт счел необходимым записать все утверждения логики и математики в символической форме. Хотя символы и могли иметь некоторое интуитивно воспринимаемое значение, в предложенной Гильбертом трактовке математики они не нуждались в интерпретации. Некоторые символы могли даже означать бесконечные множества, поскольку Гильберт намеревался включить их в свою теорию, но в таком случае они оказались бы лишенными интуитивного образа. Такие «идеальные элементы», как их называл Гильберт, необходимы для построения всей математики; поэтому их введение обоснованно, хотя сам Гильберт считал, что в реальном мире существует лишь конечное число объектов: материя состоит из конечного числа элементов.
Суть рассуждений Гильберта можно понять, если воспользоваться следующей аналогией. Иррациональное число лишено интуитивного смысла. Хотя мы можем построить отрезки, длины которых выражаются иррациональными числами, эти длины сами по себе еще не создают никакого интуитивного представления об иррациональных числах.Тем не менее иррациональные числа как идеальные элементы с необходимостью входят даже в элементарную математику. Именно поэтому математики и шли на использование иррациональных чисел, хотя те до 70-х годов XIX в. не имели логического обоснования. Гильберт занял аналогичную позицию в отношении комплексных чисел, т.е. чисел, содержащих выражение √−1. Комплексные числа не имеют прямых аналогов среди вещественных чисел, тем не менее они позволяют сформулировать некоторые общие теоремы, например теорему о том, что каждое алгебраическое уравнение n-й степени имеет ровно nкорней, и делают возможной теорию функций комплексного переменного, оказавшуюся необычайно полезной даже в физических исследованиях. Независимо от того, означают ли символы объекты, имеющие интуитивный смысл или лишенные его, все знаки и символы понятий и операций рассматриваются как чисто формальные элементы той системы, которую мы строим. По мнению Гильберта, при обосновании математики элементами математического мышления следует считать символыи высказывания,т.е. комбинации (или строки) символов. Формалисты надеялись «купить» определенность за подходящую цену, и этой ценой было манипулирование символами, лишенными всякого смысла.
К счастью, символика логики была разработана в конце XIX – начале XX вв. (гл. VIII), поэтому у Гильберта с самого начала было под рукой все необходимое. В частности, он располагал такими символами, как – ~ (не), ∙ (и), / (или), (следует), (существует). Все они были первичными, или неопределяемыми, понятиями. Что же касается самой математики, то для нее символические обозначения были разработаны давно.
По замыслу Гильберта из выбранных им аксиом логики должны были следовать все законы логики Аристотеля. Применимость этих аксиом вряд ли вызывала у кого-нибудь сомнения, например, если X, Y и Z – высказывания, то одна из аксиом Гильберта гласит: «Если X, то X / Y» (иными словами, «Если истинно X, то истинно также X или Y»). Другая аксиома сводится к неформальному утверждению о том, что если из X следует Y, то из «Z или X» следует «Z или Y». Особое место в логике Гильберта занимает схема заключения. На неформальном уровне она утверждает, что если формула А верна и если из формулы А следует формула В, то формула В верна. В аристотелевой логике этот закон называется modus ponens(модус поненс). Гильберт не хотел также отказываться от закона исключенного третьего и с помощью специального приема записал в символическом виде и этот закон. Тот же прием позволил формализовать и аксиому выбора, которая, несомненно, принадлежит к числу математических аксиом. Подобный прием позволял избегать явного употребления слова «все» – Гильберт надеялся, что это поможет ему обойти все парадоксы.
В любой области математики, имеющей дело с числами, существуют (в соответствии с программой Гильберта) аксиомы арифметики. Например, существует аксиома «из a = bследует a' = b'», утверждающая, что если два целых числа aи bравны, то числа, непосредственно следующие за ними (интуитивно – ближайшие большие a,соответственно b,целые числа), также равны. В аксиомы арифметики входит и аксиома математической индукции (ср. [72]). Как правило, аксиомы имеют отношение к нашему опыту, связанному с наблюдением явлений природы, или к миру уже существующих математических знаний.
Формальная система, представляющая теорию множеств, должна содержать (записанные в виде комбинаций символов) аксиомы, которые указывают, какие множества допустимо образовывать. Например, подобные аксиомы могут допускать составление множества, являющегося объединением двух множеств, и множества всех подмножеств данного множества.
Записав все математические и логические аксиомы в виде символических формул, Гильберт подготовил все необходимое для ответа на главный вопрос: что следует понимать под объективным доказательством? По Гильберту, строгое доказательство складывается из трех этапов: 1) предъявление некоторой формулы; 2) утверждение, что из предъявленной формулы следует другая формула, и 3) предъявление второй формулы. Последовательность из этих трех этапов, в которой вторая предъявляемая формула является следствием из принятых ранее аксиом или ранее выведенных заключений, и является доказательством теоремы. Допустимой операцией считается также подстановка одного символа или группы символов вместо другого символа или группы символов. По Гильберту, вывод формулы сводится к применению логических аксиом для манипуляции с символами ранее выведенных формул или аксиом.
Формула истинна в том и только том случае, если ее можно получить как последнее звено последовательности формул, каждый член которой либо представляет собой аксиому формальной системы, либо выведен с помощью одного из правил вывода. При желании можно проверить, является ли данная формула заключительным звеном соответствующей цепочки дедуктивных выводов, поскольку доказательство по существу представляет собой механическое преобразование символов. Мы видим, что, с точки зрения формалиста, доказательство и строгость – понятия вполне определенные и объективные.
Собственно математику формалист рассматривает как набор формальных систем, каждая из которых имеет свою логику, обладает своими собственными понятиями, своими аксиомами, своими правилами дедуктивного вывода и своими теоремами. Развитие каждой из этих формальных систем и составляет задачу математики.
Такова была предложенная Гильбертом программа построения собственно математики. Но свободны ли от противоречий выводимые из аксиом заключения? Поскольку предыдущие доказательства непротиворечивости основных областей математики проводились в предположении, что арифметика непротиворечива (более того, как показал сам Гильберт, непротиворечивость евклидовой геометрии сводится к непротиворечивости арифметики), вопрос о непротиворечивости последней приобрел решающее значение. По словам Гильберта, «в геометрии и физической теории доказательство непротиворечивости достигается путем сведения к непротиворечивости арифметики. Подобный метод явно непригоден для доказательства непротиворечивости самой арифметики». Гильберта волновал вопрос абсолютной, а не относительной непротиворечивости. На этой проблеме он сосредоточил свои усилия, утверждая, что нельзя подвергать себя риску столкнуться в будущем с неприятными сюрпризами, подобными тем, которые возникли в математике начала XX в.
Непротиворечивость «не видна снаружи». Невозможно предвидеть все следствия из аксиом. Но Гильберт, как и почти все математики, занимавшиеся проблемами оснований математики, использовал понятие материальной импликации (гл. VIII), в которой из ложного высказывания следует что угодно. Если в системе существует противоречие, то по закону противоречия одно из каких-то двух высказываний должно быть ложным, а если существует ложное высказывание, то из него следует, что 1 = 0. Следовательно, для доказательства непротиворечивости необходимо лишь убедиться в том, что мы нигде не придем к утверждению 1 = 0. Тогда, заметил Гильберт в работе 1925 г., «то, что мы пережили дважды – сначала с парадоксами дифференциального исчисления, а затем с парадоксами теории множеств – не произойдет в третий раз и не повторится никогда».
В серии работ, выполненных в период 1920-1930 гг., Гильберт и его ученики Вильгельм Аккерман (1896-1962), Пауль Бернайс (1888-1978) и Джон фон Нейман (1903-1957), постепенно создали метод, получивший название гильбертовской Beweistheorie[теории доказательства] или метаматематики, – метод доказательства непротиворечивости любой формальной системы (ср. [73], [74]). Суть основной идеи метаматематики можно пояснить с помощью следующей аналогии. Допустим, вы захотели бы изучить выразительные возможности японского языка и решили бы проводить этот анализ на японском языке – тогда ваши результаты оказались бы в значительной мере ограничены возможностями самого японского языка. Но если считать, что английский язык выразителен, то при изучении возможностей японского языка целесообразно было бы воспользоваться английским.