355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Морис Клайн » Математика. Утрата определенности. » Текст книги (страница 3)
Математика. Утрата определенности.
  • Текст добавлен: 31 октября 2016, 02:56

Текст книги "Математика. Утрата определенности."


Автор книги: Морис Клайн


Жанр:

   

Математика


сообщить о нарушении

Текущая страница: 3 (всего у книги 38 страниц)

Из аксиом с помощью рассуждений выводятся заключения. Существует много типов рассуждений, например рассуждения по индукции, по аналогии и дедукции. Правильность заключения гарантирует лишь один из многих типов рассуждений. Заключение «Все яблоки красные», сделанное на основании того, что тысяча просмотренных яблок оказались красными, индуктивно и поэтому не абсолютно надежно. Заключение «Джон сможет окончить этот колледж», сделанное потому, что брат Джона, унаследовавший от родителей те же способности, окончил колледж, получено с помощью рассуждения по аналогии и заведомо не надежно. С другой стороны, дедуктивное рассуждение, несмотря на множество различных форм, гарантирует истинность заключения. Так, допуская, что все люди смертны и Сократ – человек, следует прийти к заключению, что Сократ смертен. Используемое в этом рассуждении правило логики является одной из форм суждения, которое Аристотель назвал силлогистическим выводом.К правилам дедуктивного рассуждения Аристотель относил также закон противоречия(никакое высказывание не может быть одновременно истинным и ложным) и закон исключенного третьего(любое высказывание должно быть либо истинным, либо ложным).

Аристотель, а вслед за ним и весь мир приняли за неоспоримую истину, что применение правил дедуктивного вывода к любым посылкам гарантирует получение заключений, не уступающих по надежности посылкам. Иначе говоря, если посылки истинны, то истинны и заключения. Следует отметить, в особенности для обсуждения в дальнейшем, что Аристотель абстрагировал правила дедуктивной логики из рассуждений, которыми тогда уже широко пользовались математики. {8}8
  Так, например, еще Платон весьма высоко ценил логический метод «доказательства от противного», при котором установление истинности предложения pначинается с предпосылки «пусть pневерно», и из этой предпосылки выводится противоречие [так, пифагорейское доказательство иррациональности √2 (в наших обозначениях) начинается с утверждения: «Пусть √2 = m/n– рационально…»]. Общую форму этому методу придал, как будто, основатель так называемой элейскойшколы в древнегреческой философии Парменид (V в. до н.э.), глубоко почитавшийся Платоном (ему посвящен диалог Платона «Парменид»).


[Закрыть]
Дедуктивная логика – дитя математики.

Хотя почти все греческие философы считали дедуктивный вывод единственно надежным методом получения истины, Платон придерживался несколько иных взглядов. Не выдвигая возражений против дедуктивного доказательства, Платон тем не менее считал его поверхностным, поскольку математические аксиомы и теоремы существуют в некотором объективном, независимом от человека мире, и в соответствии с учением Платона об анамнезисе человеку необходимо лишь вспомнить эти аксиомы, чтобы сразу же распознать их неоспоримую истинность. Теоремы, если воспользоваться сравнением из диалога Платона «Теэтет», подобны птицам в птичнике. Они существуют сами по себе, и необходимо лишь «схватить» их. В диалоге Платона «Менон» Сократ с помощью искусно поставленных вопросов вытягивает из молодого раба утверждение, что площадь квадрата, построенного на гипотенузе равнобедренного прямоугольного треугольника, вдвое больше площади квадрата, построенного на любом из катетов. Сократ торжествующе заключает, что искусно поставленные вопросы помогли рабу, никогда не изучавшему геометрию, вспомнить теорему.

 Важно правильно оценивать, сколь радикальной была приверженность дедуктивному доказательству.Предположим, что некий ученый, измерив сумму углов ста различных треугольников, отличающихся расположением, размерами и формой, обнаружил, что в пределах точности измерений сумма углов всегда оказывается равной 180°. Разумеется, ученый решил бы, что сумма углов любого треугольника равна 180°. Но его доказательство было бы индуктивным, а не дедуктивным – и поэтому неприемлемым с точки зрения математики. Он мог бы точно так же проверить сколько угодно четных чисел и убедиться, что каждое из них представимо в виде суммы двух простых чисел. Но подобная проверка не является дедуктивным доказательством, и ее результат не сочли бы за математическую теорему. Итак, мы видим, что дедуктивность доказательства – требование весьма ограничивающее. Тем не менее греческие математики, бывшие в большинстве своем философами, упорно настаивали на исключительном использовании дедуктивных рассуждений, так как именно дедукция приводит к абсолютным истинам, к вечным ценностям.

Предпочтение, отдаваемое философами дедуктивным рассуждениям, обусловлено еще одной причиной. Философов интересуют лишь самые общие факты, касающиеся человека и физического мира, а чтобы установить такие универсальные истины, как то, что человек по существу добр, что в мире царит порядок или что человеку есть ради чего жить, дедуктивный вывод из подходящих исходных принципов осуществим в гораздо большей мере, чем индукция или рассуждение по аналогии.

Еще одну причину того, что греки классического периода отдавали предпочтение дедукции, можно усмотреть в организации их общества. Философией, математикой и искусством, естественно, увлекались прежде всего состоятельные люди, а не те, кто занимался физическим трудом. Все домашнее и общественное хозяйство держалось на рабах, метеках (свободных людях, не имевших, однако, гражданских прав) {9}9
  Укажем, однако, что статут «временно поселившихся лиц», или метеков, имели в Афинах периода их расцвета и многие выдающиеся ученые – назовем хотя бы имена Аристотеля из Стагира, Евдокса Родосского, Демокрита Абдерского, Гиппократа Хиосского (математик) или Гиппократа Косского (врач).


[Закрыть]
и на свободных гражданах – ремесленниках; они же представляли все важнейшие профессии. Образованные свободные граждане не занимались физическим трудом и редко участвовали в торговых сделках. Платон провозгласил, что профессия лавочника недостойна свободнорожденного, и предложил подвергать наказанию всякого гражданина, который унизит себя подобным занятием, как совершившего преступление. Аристотель утверждал, что в идеальном государстве ни один гражданин (в отличие от рабов) не должен заниматься никаким ремеслом. Беотийцы (одно из греческих племен) запрещали тем, кто запятнал себя участием в торговых сделках, в течение десяти лет занимать общественные должности. В таком обществе эксперимент и наблюдение были мыслителям чужды. Считалось, что источники такого рода не могут помочь получить результаты научного, в частности математического, характера.

Хотя приверженность греков дедуктивному доказательству имела под собой немало оснований, не вполне ясно, кто из философов или какая группа мыслителей впервые продемонстрировали эту приверженность. Наши знания учений и трудов философов – до Сократа – носят, к сожалению, весьма фрагментарный характер, и, хотя на этот счет неоднократно высказывались различные мнения, ни одно из них не получило общего признания. Мы можем лишь с уверенностью утверждать, что во времена Аристотеля требование дедуктивности соблюдалось неукоснительно, так как Аристотель, формулируя в явном виде стандарты строгости, отмечает необходимость неопределяемых терминов и правил логического вывода.

Насколько удалось грекам осуществить свой план установления математических законов Вселенной? К счастью, лучшие достижения греческой математики, созданной усилиями Евклида, Аполлония, Архимеда и Клавдия Птолемея, дошли до нас. Хронологически все эти авторы относятся ко второму великому периоду греческой культуры, получившему название эллинистическогоили александрийского(300 г. до н.э. – 600 г. н.э.). В IV в. до н.э. царь Филипп Македонский предпринял попытку покорить персов, господство которых распространялось на весь Ближний Восток. Персы были традиционными врагами европейских греков. Филипп был убит, и на трон вступил его сын Александр. Александр Македонский разгромил персов и перенес культурный центр своей безмерно расширившейся империи в новый город, который он с присущей ему «скромностью» назвал в свою честь Александрией. Александр Македонский умер в 323 г. до н.э., но его план создания нового центра подхватили и продолжили его преемники в Египте, вошедшие в историю под именем династии Птолемеев.

Достоверно установлено, что Евклид жил и преподавал в Александрии около 300 г. до н.э. (сам Евклид скорее всего получил образование в Платоновской Академии в Афинах). Это почти единственная информация, которой мы располагаем о частной жизни Евклида. Свои труды Евклид облекал в форму обширных систематических дедуктивных обзоров отдельных открытий многих греческих авторов классического периода. В главном труде Евклида – «Началах» излагаются основные свойства пространства и пространственных фигур.

«Началами» Евклида отнюдь не исчерпывается его вклад в развитие геометрии пространства. Он посвятил коническим сечениям не дошедшее до нас сочинение, а уроженец города Перга в Малой Азии Аполлоний (262-190 гг. до н.э.), изучавший математику в Александрии, продолжил исследование параболы, эллипса и гиперболы и написал по этому предмету классический труд – «Конические сечения».

Архимед (287-212 гг. до н.э.), возможно получивший образование в Александрии {10}10
  Во всяком случае, Архимед был тесно связан с александрийскими учеными, в частности, хорошо известна его дружба (и переписка) с Эратосфеном.


[Закрыть]
, но живший на Сицилии, добавил к чисто геометрическим достижениям греков трактаты: «О шаре и цилиндре», «О коноидах и сфероидах» и «Квадратура параболы», посвященных вычислению площадей и объемов сложных фигур и тел по методу, предложенному Евдоксом (390-337 гг. до н.э.) и получившему впоследствии название метод исчерпывания. В наши дни подобные задачи решаются методами интегрального исчисления.

Греки внесли еще один крупный вклад в изучение пространства и пространственных фигур: они создали тригонометрию. Ее основы были заложены Гиппархом, который жил на Родосе и в Александрии и умер около 125 г. до н.э. Его труд был продолжен Менелаем (ок. 98 г. н.э.), а полное и вполне авторитетное изложение астрономии дал египтянин Клавдий Птолемей (умер в 168 г. н.э.), работавший в Александрии. Главный труд Птолемея «Большое математическое построение астрономии» более известен под арабским вариантом названия – «Альмагест». {11}11
  От греческого слова μεγιση – величайший; это название хорошо характеризует отношение арабских ученых к замечательному произведению Птолемея.


[Закрыть]
 Тригонометрия занимается изучением количественных соотношений между сторонами и углами треугольника. Греков интересовали главным образом треугольники на поверхности сферы со сторонами, образованными дугами больших кругов (так называются круги, плоскость которых проходит через центр сферы), поскольку именно такие сферические треугольники находили применение при изучении движений планет и звезд, перемещавшихся, как считали греки, по дугам больших кругов. Но ту же теорию можно «перенести» и на случай треугольников на плоскости. Именно этот вариант – плоская тригонометрия – входит в программу современной средней школы. Введение тригонометрии потребовало весьма основательных познаний в арифметике и даже некоторого знакомства с алгеброй. В дальнейшем (гл. V) мы узнаем о достижениях греков в этих областях математики.

Достигнутые успехи превратили математику из свода неясных, эмпирических, разрозненных фрагментов в блестящую, обширную, систематическую и глубокую науку. Классические труды Евклида, Аполлония и Архимеда («Альмагест» Птолемея является исключением), посвященные изучению свойств пространства и пространственных фигур, могут показаться весьма специальными и не позволяют составить верное представление о более широкой значимости излагаемого в них материала. Может создаться впечатление, что эти чисто геометрические сочинения имеют весьма косвенное отношение к раскрытию истинных тайн природы. Ведь все классические труды посвящены лишь изложению формализованной, изысканной, дедуктивной математики. В этом отношении греческие математические тексты не отличаются от современных учебников и монографий по математике. Авторы таких книг видят свою главную задачу в организации и связном изложении полученных математических результатов и считают излишним как-либо обосновывать важность излагаемых разделов науки и игнорируют возможные эвристические соображения и разбор частных случаев, подкрепляющих правдоподобность доказываемых теорем, а также умалчивают о возможных применениях своих конструкций. Многие историки науки, специализирующиеся на изучении греческой математики классического периода, склонны поэтому считать, что математики той эпохи занимались математикой ради математики, и в подтверждение своих слов ссылаются на два величайших компилятивных сочинения классического периода – «Начала» Евклида и «Конические сечения» Аполлония. Но те, кто так утверждает, чрезмерно сужают поле зрения. Ограничиваться рассмотрением только «Начал» и «Конических сечений» – это то же самое, что, исходя из одной лишь работы Ньютона о разложении бинома, утверждать, что Ньютон был чистым математиком.

Подлинной целью греков было исследование природы. Этой цели служило все – даже геометрические истины высоко ценились лишь постольку, поскольку они были полезны при изучении физического мира. Греки понимали, – что в структуре Вселенной воплощены геометрические принципы, первичным компонентом которых является пространство. Именно поэтому исследование пространства и пространственных фигур явилось существенным вкладом в изучение природы. Геометрия входила составной частью в более широкую программу космологических исследований. Например, изучение сферической геометрии было предпринято, когда астрономия приобрела математический характер, что произошло во времена Платона. Греческое слово «сфера» (шар) у пифагорейцев имело тот же смысл, что и (тогда еще не существовавшее) слово «астрономия». Сочинение Евклида «Феномены», посвященное сферической геометрии, предназначалось для использования в астрономии. Подобные факты и более полное знание того, как происходило развитие математики в последующие времена, позволяют утверждать, что и у греков к постановке математических проблем приводили естественнонаучные исследования и что математика была неотъемлемой частью изучения природы. Чтобы прийти к такому выводу, не нужно строить умозрительные заключения – достаточно выяснить, чего именно удалось достигнуть грекам в исследовании природы и кому принадлежат самые крупные достижения.

Величайший успех в области собственно физической науки выпал на долю астрономии. Платон, хорошо осведомленный о впечатляющем числе астрономических наблюдений, проведенных в Древнем Египте и Вавилоне, неоднократно подчеркивал, что египтяне и вавилоняне не располагали основополагающей, обобщающей теорией, которая позволила бы объяснить наблюдаемые нерегулярные движения планет. Положение дела попытался «исправить» некогда учившийся в Академии Евдокс, чья чисто геометрическая работа включена в V и XIII книги «Начал» Евклида. Полученное Евдоксом решение составило первую в истории науки в разумных пределах завершенную астрономическую теорию.

Мы не станем подробно описывать теорию Евдокса. Скажем лишь, что это была сугубо математическая теория, рассматривавшая движения взаимодействующих сфер. За исключением сферы неподвижных звезд, все сферы в теории Евдокса были не материальными телами, а математическими конструкциями. Евдокс даже не пытался установить, какие силы вынуждают сферы вращаться так, как они, по его утверждению, вращались. Теория Евдокса весьма современна нам по духу, ибо и в настоящее время целью науки зачастую считается математическое описание, а не физическое объяснение. Теория Евдокса была превзойдена теорией, создание которой принято приписывать трем величайшим астрономам-теоретикам: Аполлонию, Гиппарху и Птолемею. Эта теория вошла в «Альмагест» Птолемея.

Никакие труды Аполлония по астрономии до нашего времени не дошли. Однако различные греческие авторы, в том числе Птолемей (в XII книге «Альмагеста»), ссылаются на его результаты. Как астроном, Аполлоний пользовался такой известностью, что получил прозвище ε (эпсилон), поскольку он много занимался движением Луны, а Луну греческие астрономы обозначали буквой ε. До нас дошло лишь одно небольшое астрономическое сочинение Гиппарха, но в «Альмагесте» Птолемея мы находим ссылки на Гиппарха и восхваления в его адрес.

Основная схема того, что теперь принято называть птолемеевой системой мира,вошла в греческую астрономию в период между работами Евдокса и Аполлония. Согласно этой схеме, планета  Pдвижется с постоянной скоростью по окружности с центром S,в то время как центр Sв свою очередь движется по окружности, центр которой совпадает с Землей  E(рис. 1.5). Окружность, по которой движется точка S,называется деферентом,окружность, которую описывает планета P, – эпициклом.Точка Sдля некоторых планет совпадает с Солнцем, а в остальных случаях это просто математическая точка. Направления, в которых движутся точки Pи S,могут как совпадать, так и быть противоположными. Например, в случае Солнца и Луны точки Sи Pдвижутся по окружностям в противоположные стороны.

Рис. 1.5.Эпицикл и деферент.

Для описания движений некоторых планет Птолемей несколько видоизменил описанную схему. Подходящим образом выбирая радиусы эпицикла и деферента, скорости движения тела по эпициклу и скорости движения эпицикла по деференту, Гиппарх и Птолемей смогли получить описания движений небесных тел, хорошо согласующиеся с результатами астрономических наблюдений того времени. Со времен Гиппарха лунное затмение можно было бы предсказать с точностью до одного-двух часов, хотя солнечные затмения удавалось предсказывать менее точно. Такие предсказания стали возможными, потому что Птолемей применил тригонометрию, разработанную им, по его собственному признанию, для астрономии.

Как и Евдокс, Птолемей отчетливо сознавал (и это необходимо особо отметить, имея в виду нашу главную тему – поиск истин), что его теория представляет собой не более чем удобное математическое описание, согласующееся с наблюдениями, и не обязательно должна отражать истинный механизм движения планет. При описании движений некоторых планет Птолемею приходилось рассматривать несколько альтернативных схем, и он отдавал предпочтение той, которая была проще с точки зрения математики. В XIII книге «Альмагеста» Птолемей утверждает, что астрономия должна стремиться к возможно более простой математической модели. Но христианский мир принял математическую модель Птолемея за абсолютную истину.

Теория Птолемея дала первое полное, в разумных пределах, подтверждение постоянства и неизменности природы и была воспринята как окончательное решение поставленной Платоном проблемы объяснения видимых движений небесных тел. Никакой другой из полученных в греческую эпоху результатов не может соперничать с «Альмагестом» по глубине влияния на представления о Вселенной, и ни одно сочинение, за исключением «Начал» Евклида, не обрело столь беспрекословного авторитета.

Разумеется, в нашем кратком очерке греческой астрономии не названы многие другие достижения античных астрономов и не дано полного представления о глубине и размахе свершений тех, кого мы здесь упомянули. Греческая астрономия достигла высокого уровня развития и наглядности и весьма широко применяла математику. Кроме того, почти каждый греческий математик, в том числе и такие мастера, как Евклид и Архимед, занимался астрономией.

Постижение физических истин не закончилось на геометрии пространства и астрономии. Греки заложили также основы механики. Механика изучает движение тел, которые можно рассматривать как материальные точки, движение протяженных тел и силы, вызывающие эти движения. В своей «Физике» ([6], т. 3, с. 59-262) Аристотель свел воедино все высшие достижения греческой механики. Как и вся аристотелева физика, его механика опирается на рациональные самоочевидные принципы, согласующиеся с наблюдениями. Хотя эта теория сохранила влияние на протяжении почти двух тысячелетий, мы не останавливаемся на ее изложении, так как она была полностью вытеснена механикой Ньютона. Существенными дополнениями к аристотелевой теории движения стали работы Архимеда по определению центров тяжести тел и его теория рычага. Во всей этой деятельности для нас наиболее существенна ведущая роль математики; тем самым получило подтверждение всеобщее убеждение в том, что в постижении законов природы первостепенное значение имеет математика.

Не меньший интерес, чем астрономия и механика, вызвала оптика. Основы этой науки также были заложены греками. Почти все греческие философы, начиная с пифагорейцев, строили умозрительные заключения о природе света, зрения и цвета, но нас интересуют математические достижения в этой области. Первым было априорное утверждение Эмпедокла (около 490 г. до н.э.) из Агригента – города на острове Сицилия – о том, что свет распространяется с конечной скоростью. Хронологически первыми систематическими исследованиями света, сохранившимися до нашего времени, стали сочинения Евклида «Оптика» и «Катоптрика» {12}12
  Возможно, что вариант «Катоптрики», которым мы располагаем сегодня, в действительности представляет собой компиляцию работ нескольких авторов, в том числе и Евклида.


[Закрыть]
. В «Оптике» Евклид рассматривает проблемы зрения и использования зрения для определения размеров различных предметов. В «Катоптрике» (теории зеркал) показано, как ведут себя лучи света при отражении от плоских, выпуклых и вогнутых зеркал и как ход лучей сказывается на том, что мы видим. Как и «Оптика», «Катоптрика» начинается с определений, которые в действительности являются постулатами. Теорема I (аксиома в современных учебниках и монографиях), играющая основополагающую роль в геометрической оптике известна как закон отражения. Она утверждает, что угол αобразуемый с поверхностью зеркала лучом света, падающим на зеркало из точки P,равен углу, образуемому с поверхностью зеркала отраженным лучом (рис. 1.6). Евклид также установил закон падения для луча, падающего на выпуклое и вогнутое зеркала: в точке касания Евклид заменил зеркало касательной плоскостью R(рис 1.7) «Оптика» и «Катоптрика» – сочинения математические не только по содержанию, но и по своей структуре. Основное место в них, как и в «Началах» Евклида, отводится определениям, аксиомам и теоремам.

Рис. 1.6.Отражение от плоского зеркала.

Рис. 1.7.Отражение от выпуклого зеркала.

 Математик и инженер Герон (I в.) вывел из закона отражения важное следствие. Если Pи Qна рис. 1.6 – любые две точки, расположенные по одну сторону от прямой ST,то из всех путей, ведущих из точки P кпрямой ST,a затем к точке Q,кратчайший соответствует такому положению точки R,при котором отрезки прямых PRи QRобразуют с прямой STравные углы. Следовательно, луч света, идущий из точки Pк зеркалу и затем к точке Q, распространяется по кратчайшему пути.Отсюда ясно, что природа весьма «сведуща» в геометрии и использует ее с наибольшей пользой. Теорема, которую мы только что воспроизвели, заимствована нами из «Катоптрики» Герона, где рассмотрено также отражение луча света от вогнутых и выпуклых зеркал, а также от комбинаций зеркал.

Об отражении света от зеркал различной формы было написано великое множество работ. Среди ныне безвозвратно утерянных сочинений – «Катоптрика» Архимеда, «О зажигательном зеркале» Аполлония (около 190 г. до н.э.) и «О зажигательных зеркалах» Диоклеса (около 190 г. до н.э.). Зажигательные зеркала были вогнутыми и имели форму сферического сегмента параболоида вращения (поверхности, образованной вращением параболы вокруг ее оси) и эллипсоидов вращения. Аполлонию было известно, а в книге Диоклеса содержалось доказательство, что параболическое зеркало, отражая свет от источника света, помещенного в его фокусе, собирает лучи в пучок, параллельный оси зеркала (рис. 1.8). Наоборот, если пучок падающих лучей направить параллельно оси параболического зеркала, то после отражения лучи соберутся в фокусе. Собранные в фокусе солнечные лучи вызывают резкий разогрев и способны зажечь помещенный в фокусе горючий материал, откуда и название – зажигательное зеркало. По преданию, Архимед, воспользовавшись этим свойством зажигательных зеркал, сконцентрировал солнечные лучи на римских судах, блокировавших с моря его родной город Сиракузы, и поджег неприятельский флот. Аполлонию были известны отражательные свойства и других конических сечений. Он знал, например, что все лучи, выходящие из одного фокуса эллиптического зеркала, после отражения собираются в другом фокусе. В книге III «Конических сечений» приведены соответствующие геометрические свойства эллипса и гиперболы.

Рис. 1.8.Отражение от параболического зеркала.

Греки заложили основы многих других наук. Особенно велика их роль как основоположников географии и гидростатики. Эратосфен из Кирены (около 284-192 гг. до н.э.), один из наиболее образованных людей античности, директор Александрийской библиотеки, вычислил расстояния между многими населенными пунктами на той части Земли, которая была известна древним грекам. Ему также принадлежит широко известное ныне вычисление длины окружности Земли. В своей «Географии» Эратосфен помимо описаний используемых им математических методов объяснил причины изменений, происходящих на поверхности Земли.

Самым обширным сочинением по географии была «География» Птолемея в восьми книгах. В ней Птолемей не только дополнил и расширил труд Эратосфена, но и определил положение на поверхности Земли восьми тысяч мест, указав те самые их широты и долготы, которыми мы пользуемся и поныне. Птолемей изложил также методы составления карт, применяемые и в современной картографии, в частности метод стереографической проекции. Во всех трудах по географии основную роль играла сферическая геометрия, которую греки применяли с IV в. до н.э.

Гидростатика занимается изучением давления, оказываемого жидкостью на погруженное в нее тело. Здесь основополагающим трудом по праву считается сочинение Архимеда «О плавающих телах». Как и все остальные сочинения, о которых мы упоминали, оно чисто математическое как по своему подходу, так и по способу получения результатов. В частности, именно в этом сочинении сформулирован знаменитый принцип, известный ныне под названием закона Архимеда,который гласит, что на погруженное в жидкость тело действует выталкивающая сила, равная весу вытесненной телом жидкости. Таким образом, мы обязаны Архимеду объяснением того, каким образом человек может остаться на плаву в мире сил, стремящихся утопить его.

Хотя в александрийский период дедуктивный подход к математике и математическому изложению законов природы играет главенствующую роль, следует отметить, что в отличие от своих предшественников классического периода александрийцы не отказывались от экспериментов и наблюдений. Так, александрийцы использовали результаты высокоточных астрономических наблюдений, которые в течение двух тысячелетий производили вавилоняне. Гиппарх составил каталог звезд, наблюдавшихся в его время. Среди изобретений александрийцев (сделанных главным образом Архимедом, а также математиком и инженером Героном) мы находим солнечные часы, астролябии и устройства для использования энергии пара и воды.

Особую известность приобрел Александрийский музей, основанный непосредственным преемником Александра Македонского в Египте – Птолемеем Сотером. Музей стал родным домом ученых; его библиотека насчитывала около 400 тыс. томов. Поскольку ее хранилища не могли вместить все рукописи, еще 300 тыс. томов были размещены в храме Сераписа. Ученые не только занимались наукой, но и проводили занятия с учениками.

Своими математическими трудами и многочисленными исследованиями греки существенно подкрепили тезис о том, что Вселенная зиждется на математических принципах. Математика внутренне присуща природе, является истиной о структуре природы, или, если воспользоваться выражением Платона, реальностью о физическом мире. Закон и порядок существует в природе, и математика – ключ к пониманию этого порядка. Более того, человеческий разум способен проникнуть в сокровенный план природы и открыть математическую структуру Вселенной.

Толчком к созданию концепции логического, математического подхода к познанию природы послужили, по-видимому, «Начала» Евклида. Хотя сочинение Евклида предназначалось для изучения физического пространства, структура самого сочинения, его необычайное остроумие и ясность изложения стимулировали аксиоматическо-дедуктивный подход не только к остальным областям математики, например к теории чисел, но и ко всем естественным наукам. Через «Начала» Евклида понятие логической структуры всего физического знания, основанного на математике, стало достоянием интеллектуального мира.

Тем самым греки установили союз математики и изучения явлений природы, который стал фундаментом всей современной науки. Вплоть до конца XIX в. поиск математических принципов, лежащих в основе природы, был поиском истины. Глубокое убеждение в том, что математические законы открывают истины о природе, привлекало к математике самых глубоких и возвышенных мыслителей.


    Ваша оценка произведения:

Популярные книги за неделю