Текст книги "Математика. Утрата определенности."
Автор книги: Морис Клайн
Жанр:
Математика
сообщить о нарушении
Текущая страница: 15 (всего у книги 38 страниц)
Рис. 6.5.Переход к пределу х 2→x 1Лейбницу.
Абсолютно равные величины, говорил Лейбниц, имеют, разумеется, разность абсолютно ничтожную.
Тем не менее можно вообразить переход или одно из обращений в нуль, при котором точное равенство или состояние покоя еще не наступило, но достигнуто такое состояние, в котором разность меньше любой заданной величины. В таком состоянии некоторая разность – какая-то скорость, какой-то угол – еще остается, но в каждом случае она бесконечно мала…
Можно ли строго или метафизически обосновать такое состояние мгновенного перехода от неравенства или равенства и сколь законны соображения, использующие бесконечно большие протяженности, продолжающие неограниченно возрастать, или бесконечно малые протяженности, – вопросы, которые мне, по-видимому, придется оставить открытыми…
Вполне достаточно, если каждый раз, когда речь заходит о бесконечно больших (или, точнее, о неограниченных) или о бесконечно малых (т.е. о самых малых из известных нам) величинах, мы условимся понимать, что имеем в виду величины бесконечно большие или бесконечно малые, т.е. сколь угодно большие или сколь угодно малые, вследствие чего допускаемая ошибка может быть меньше заранее заданной величины.
При таких допущениях все правила нашего алгоритма, изложенные в Acta eruditorumза октябрь 1684 г., могут быть доказаны без особого труда.
Далее следовало изложение правил, ничего, впрочем, не добавляющее к их обоснованию.
Сформулированный Лейбницем принцип непрерывности заведомо не был (и ныне не является) математической аксиомой. Тем не менее Лейбниц всячески подчеркивал важность этого принципа и неоднократно использовал его в своих рассуждениях. Так, в письме к Валлису (1698) Лейбниц, отстаивая использование характеристического треугольника (рис. 6.4) как формы, не имеющей размеров и потому остающейся неизменной, когда длины всех сторон треугольника обращаются в нуль, с вызовом спрашивал: «Кто не приемлет форму, лишенную размеров?» В письме к Гвидо Гранди (1713) Лейбниц утверждал, что бесконечно малая – это не простой и абсолютный нуль, а нуль относительный, т.е. исчезающая величина, которая, однако, сохраняет свойство той величины, которая, собственно, исчезает. Но в других случаях Лейбниц признавал, что не верит в истинно бесконечно большие или истинно бесконечно малые величины.
До конца жизни (он умер в 1716 г.) Лейбниц продолжал объяснять, что такое его бесконечно малые и бесконечно большие величины. Однако все эти объяснения были не более убедительны, чем приведенные выше. Созданное Лейбницем дифференциальное и интегральное исчисление не имело ни четко сформулированных понятий, ни обоснований.
У нас может вызвать удивление, что Ньютон и Лейбниц могли довольствоваться столь грубыми рассуждениями. Еще до того, как они приступили к созданию дифференциального и интегрального исчисления, другие великие математики достигли выдающихся успехов, о которых и Ньютон, и Лейбниц, изучавшие труды своих предшественников, безусловно, хорошо знали. Знаменитое высказывание Ньютона «Если я видел дальше других, то лишь потому, что стоял на плечах гигантов» не просто проявление скромности, а констатация факта. Что же касается Лейбница, то он был одним из величайших мыслителей. Мы уже упоминали (гл. III) о том, сколь значительный вклад он внес в развитие различных областей человеческого знания. По широте и силе интеллекта Лейбница можно сравнить разве что с Аристотелем. Разумеется, создание дифференциального и интегрального исчисления потребовало разработки принципиально новых, очень тонких идей, а даже лучшие из умов, способные к величайшим творческим свершениям, не всегда до конца постигают то, что ими же создано.
Ни Ньютон, ни Лейбниц не могли полностью объяснить вводимые ими понятия или обосновать новые операции. Они полагались на плодотворность своих методов, совпадение получаемых ими независимо друг от друга результатов, и продолжали упорно и энергично двигаться вперед, не особенно задумываясь о строгости. Лейбниц, заботившийся о строгости меньше, чем Ньютон, хотя и чаще отвечавший на возражения критиков, считал, что лучшим обоснованием используемых им методов служит их эффективность. Он неоднократно подчеркивал «рецептурную», или алгоритмическую, ценность своих методов. Лейбниц почему-то был убежден, что, сколь бы неясным ни выглядел смысл понятий, результаты рассуждений будут разумны и правильны, если верно сформулировать и надлежащим образом применять правила действий. Подобно Декарту, Лейбниц был человеком проницательным, мыслившим широко. Он предвидел отдаленные последствия новых идей и, не колеблясь, провозгласил рождение новой науки.
Обоснование математического анализа по-прежнему оставалось неясным. Сторонники Ньютона толковали о простых и предельных отношениях; последователи Лейбница предпочитали пользоваться инфинитезимальными, или бесконечно малыми, величинами. Существование столь несхожих между собой подходов осложняло и без того нелегкую работу по обоснованию математического анализа. Кроме того, некоторые английские математики – возможно, в силу традиционной привязанности к греческой геометрии – предъявляли более жесткие требования к строгости доказательств и поэтому с недоверием относились к подходам как Ньютона, так и Лейбница. Другие английские математики, вместо того чтобы заниматься математикой, предпочитали изучать труды Ньютона и поэтому не продвинулись ни на шаг на пути к обоснованию дифференциального и интегрального исчисления. Таким образом, к концу XVII в. математический анализ, так же как арифметика и алгебра, пребывал в состоянии полной неразберихи.
Распространение методов математического анализа на новые области привело к появлению новых понятий и методов, что еще больше осложнило проблему обоснования дифференциального и интегрального исчисления. Примером такого рода дополнительных трудностей могут служить бесконечные ряды. Напомним, с какого рода проблемами столкнулись математики при рассмотрении бесконечных рядов.
Представив функцию 1/(1 + x)в виде (1 + x) − 1и применив к последней теорему о разложении бинома, получим
1/(1 + x) = (1 + x) −1= 1 − x+ x 2 − х 3+ x 4− …, (8)
где многоточие означает, что число членов, выписываемых по такому же закону, как и несколько первых, можно увеличивать неограниченно. Вводя в математический анализ бесконечные ряды, математики намеревались заменить ими функции в таких операциях, как дифференцирование (нахождение производных) и интегрирование (антидифференцирование), поскольку производить операции с более простыми членами ряда гораздо легче, чем с исходными функциями. Кроме того, ряды позволяли по заданному значению независимой переменной вычислять значения таких функций, как, скажем, sin x.Во всех этих случаях важно знать, что ряд равносилен исходной функции. Но функции при заданном xпринимают вполне определенные значения; поэтому прежде всего возникает вопрос: какое значение принимает при заданном xвыбранный нами ряд? Иначе говоря, что мы понимаем под суммой ряда и как ее вычислить? Второй, не менее важный вопрос можно было бы сформулировать так: представляет ли ряд функцию при всех значениях xили по крайней мере при всех тех значениях x,при которых функция имеет смысл.
В первой работе по математическому анализу (1669) Ньютон не без гордости ввел бесконечные ряды для упрощения основных операций – дифференцирования и интегрирования. Так, воспользовавшись для интегрирования (антидифференцирования) функции y = 1/(1 + x 2) теоремой о разложении бинома, Ньютон получил ряд
y= 1 − x 2 + х 4− x 6+ х 8− …,
который и проинтегрировал почленно. Ньютон обратил внимание на то, что если ту же функцию представить в виде y = 1/(x 2+ 1), то та же теорема о разложении бинома даст ряд
y= 1/ x 2 − 1/ х 4 + 1/ x 6− 1/ х 8 + ….
Ньютон заметил далее, что при достаточно малом xследует пользоваться первым разложением, а при достаточно большом x– вторым. Из этого видно, что Ньютон интуитивно сознавал важность такого свойства ряда, как сходимость,хотя и не имел о нем ясного представления.
Обоснование, данное Ньютоном производимым им операциям над бесконечными рядами, может служить великолепным образцом логики того времени. В статье 1669 г. Ньютон утверждал:
То, что обычный анализ [алгебра] выполняет с помощью уравнений с конечным числом членов (если это выполнимо), [новый анализ] всегда может выполнить с помощью уравнений с бесконечным числом членов [рядов]; поэтому я, не задумываясь, назвал новое исчисление анализом. Рассуждения в нем не менее надежны, чем в обычном анализе, не менее точны и уравнения, хотя мы, смертные, чей разум ограничен узкими пределами, не можем ни выразить, ни постичь все члены этих уравнений дабы найти из них точные значения тех величин, которые нам нужны.
Для Ньютона бесконечные ряды были частью алгебры – высшей алгебры, изучающей выражения не с конечным, а с бесконечным числом членов.
Подобно Ньютону и Лейбницу, над решением странной проблемы бесконечных рядов бились несколько представителей славного математического рода Бернулли, а также Эйлер, Д'Аламбер и другие математики XVIII в. Применяя бесконечные ряды в анализе, они совершали всевозможные ошибки, предлагали неверные доказательства, приходили к неверным заключениям. Более того, иногда они в обоснование своих результатов приводили рассуждения, которые мы, ретроспективно, можем назвать лишь смехотворными и нелепыми. Даже беглого перечисления таких рассуждений достаточно, чтобы понять, какая сумятица и неразбериха царили тогда в представлениях о свойствах бесконечных рядов.
При x = 1 ряд (8), представляющий функцию 1/(1 + x),
1/(1 + x) = 1 − x+ x 2 − х 3+ x 4− …, (8)
переходит в ряд
1 − 1 + 1 − 1 + 1 − ….
Вопрос о том, чему равна сумма последнего ряда, порождал бесконечные споры. Если этот ряд записать в виде
(1 − 1) + (1 − 1) + (1 − 1) + …,
то становится ясно, что его сумма должна быть равна нулю. Но если тот же ряд записать как
1 − (1 − 1) − (1 − 1) − …,
то столь же ясно, что сумма ряда должна равняться единице. Однако ясно также и то, что если сумму ряда обозначить через S,то
S= 1 − (1 − 1 + 1 − 1 + …),
или
S= 1 − S,
откуда S= 1/ 2. Последний результат подкрепляется еще одним доводом. Интересующий нас ряд можно рассматривать как геометрическую прогрессию со знаменателем −1, а сумма бесконечной геометрической прогрессии с первым членом aи знаменателем rравна a/(1− r).В нашем случае сумма равна 1/[1 − (−1)], или 1/ 2.
Гвидо Гранди (1671-1742) в своем небольшом сочинении «Квадратура окружностей и гипербол» ( Quadratura circuit et hyperbolae,1703) другим методом получил сумму, равную 1/ 2. Полагая в (8) x = 1, он нашел:
1/ 2= 1 − 1 + 1 − 1 + 1 − ….
Тем самым Гранди утверждал, что сумма ряда равна 1/ 2. Но одновременно он заявлял, что сумма того же ряда равна 0. По мнению Гранди, полученное им «равенство» 0 = 1/ 2доказывало, что мир мог быть создан из ничего.
В письме к Христиану Вольфу, опубликованному в Acta eruditorumза 1713 г., Лейбниц рассмотрел тот же ряд. Он согласился с выводом Гранди, но считал, что к подобному заключению можно было бы прийти, не обращаясь к исходной функции. Взяв первый член, сумму первых двух, трех, четырех и т.д. членов, Лейбниц получил 1, 0, 1, 0, …. Следовательно, счел он, 0 и 1 равновероятны и их среднее арифметическое, равное 1/ 2, – наиболее вероятное значение суммы ряда. Якоб, Иоганн и Даниил Бернулли, а также Лагранж согласились с доводами Лейбница. Признав, что его доводы носят не столько математический, сколько метафизический характер, Лейбниц сослался на распространенность такого рода аргументации: в математике, по его словам, метафизических истин гораздо больше, чем обычно думают.
В одном из писем, датированных 1745 г., и в работе 1754-1755 гг. Эйлер предпринял попытку решить проблему суммирования рядов. Ряд, сумма которого по мере увеличения числа членов все меньше отличается от некоторого фиксированного числа, называется сходящимся, а само это число – суммойряда. По Эйлеру, ряд сходится, если члены его монотонно убывают. Ряд, члены которого не убывают и могут даже возрастать, расходится, а так как ряды такого типа порождаются хорошо известными явными функциями, то Эйлер предложил считать суммой ряда значение функции (при соответствующем значении x).
Теория Эйлера породила дополнительные проблемы. Взяв разложение
1/(1 + x) 2= (1 + x) −2= 1 −2 x+ 3 x 2 −4 x 3+ …,
Эйлер получил при x = −1
∞ = 1 + 2 + 3 + 4 + ….
Результат, казалось бы, вполне осмысленный. Но затем Эйлер рассмотрел ряд для функции 1/(1− x):
1/(1 − x) = 1 + x+ x 2+ x 3+ …
и получил при x = 2
−1 = 1 + 2 + 4 + 8 + ….
Так как сумма ряда, стоящего в правой части этого ряда, должна превышать сумму предыдущего ряда, Эйлер заключил, что −1 больше, чем бесконечность. Некоторые из современников Эйлера утверждали даже, что отрицательные числа, которые больше бесконечности, отличаются от отрицательных чисел, меньших нуля. С этим Эйлер не согласился: по его мнению, бесконечность разделяет положительные и отрицательные числа так же, как нуль.
Взгляды Эйлера на сходимость и расходимость рядов были ошибочными. В его время уже были известны ряды с монотонно убывающими членами, тем не менее не имеющие суммы по Эйлеру, – да и ему самому приходилось работать с рядами, которые не были порождены явными функциями. «Теория» бесконечных рядов Эйлера была явно неполной. Кроме того, Николай Бернулли (1687-1759) в ныне утерянном письме (1743), по-видимому, обратил внимание Эйлера на то, что различные аналитические выражения могут порождать один и тот же ряд, и если следовать предложенному Эйлером определению суммы ряда, то этому ряду надлежит приписать различные суммы. В письме Гольдбаху (1745) Эйлер ответил, что Бернулли не привел никаких примеров в подтверждение своих слов и что он, видимо, сам не верит в то, что два истинно различных алгебраических выражения могут порождать один и тот же ряд. Однако Жан Шарль Калле (1744-1799) предложил пример ряда, порождаемого двумя различными функциями. Лагранж пытался опровергнуть пример Калле, но, как выяснилось впоследствии, аргументы Лагранжа были ошибочными.
Подход Эйлера к бесконечным рядам был неадекватен и по другим причинам. Ряды можно дифференцировать и интегрировать, и то, что дифференцирование и интегрирование ряда приводит соответственно к производной и антипроизводной функции, породившей ряд, требует особого обоснования. Несмотря на это, Эйлер провозгласил: «Всякий раз, когда бесконечный ряд получается при разложении некоторого замкнутого выражения [формулы для функции], его допустимо использовать в математических операциях как эквивалент этого выражения даже при тех значениях переменной, при которых ряд расходится». Мы можем обратить себе на пользу расходящиеся ряды, утверждал Эйлер, и защитить их применение от всяких возражений.
Другие математики XVIII в. также сознавали необходимость отличать ряды, называемые ныне сходящимися, от рядов, которые мы называем расходящимися, хотя и не знали, где именно проходит различие между теми и другими. Трудность была вызвана новизной понятия: подобно первопроходцам, математикам XVIII в. приходилось прорубать себе дорогу через девственный лес. Первоначальная идея Ньютона, принятая Лейбницем, Эйлером и Лагранжем (ряд не более чем «длинный» многочлен и, следовательно, относится к области алгебры), не могла служить основой для обоснования операций, производимых с рядами.
В XVIII в. господствовал формальный подход к бесконечным рядам. Математики того времени отменили все ограничения на операции над рядами, например перестали заботиться о сходимости ряда. Использование рядов давало полезные результаты – и математики довольствовались практическим подтверждением правильности применяемых ими методов. Они далеко вышли за пределы того, что могли бы обосновать, но в целом обращались с расходящимися рядами довольно осторожно.
Хотя арифметика и алгебра были обоснованы ничуть не лучше математического анализа, математики сосредоточили свои усилия на последнем, надеясь изгнать из дифференциального и интегрального исчисления любую неоднозначность. Столь явное предпочтение математическому анализу объяснялось, несомненно, тем, что к началу XVIII в. различные типы чисел стали привычными и казались вполне естественными, в то время как понятия математического анализа по-прежнему оставались странными и даже загадочными, а потому менее приемлемыми. Кроме того, применение чисел не приводило к противоречиям, тогда как применение дифференциального и интегрального исчисления, бесконечных рядов и других разделов математического анализа рождало противоречия.
Ньютоновский подход к анализу потенциально легче поддавался обоснованию, чем подход Лейбница, хотя методология Лейбница отличалась большей гибкостью и была более удобной для приложений. Английские математики все еще надеялись обосновать оба подхода, связав их с евклидовой геометрией. К тому же они путали ньютоновские моменты (приращения неделимых, нынешние дифференциалы) и его непрерывные переменные. Математики, жившие в континентальной Европе, придерживались подхода Лейбница и пытались обосновать введенное им понятие дифференциала (бесконечно малой). Книги, посвященные объяснению и обоснованию подходов Ньютона и Лейбница, слишком многочисленны и противоречивы, чтобы подробно говорить о них. {78}78
Обзор этих работ см. в кн.: Cajori F. A History of the Conceptions of Limits and Fluxions in Great Britain from Newton to Woodhouse. – Chicago: The Open Court Publishing Co., 1915. См. кроме того: Boyer С. The Concepts of the Calculus. – N.Y.: Columbia University Press, 1939, а также (переиздание): Dover Publications, 1949. [Из более поздних работ можно указать, например, брошюру [40] и более обстоятельные книги [41], [42], [43] и особенно [44] – Прим. ред.]
[Закрыть]
Пока одни математики предпринимали усилия, чтобы обосновать математический анализ, другие подвергали сомнению его правильность. Самым сильным нападкам математический анализ подвергся со стороны философа епископа Джорджа Беркли (1685-1753), опасавшегося, что вдохновляемая математикой философия механицизма и детерминизма создает растущую угрозу религии. В 1734 г. Беркли опубликовал сочинение под названием «Аналитик, или Рассуждение, адресованное одному неверующему математику [таковым он называл Эдмонда Галлея], в котором исследуется, являются ли предмет, принципы и заключения современного анализа более отчетливо познаваемыми и с большей очевидностью выводимыми, чем религиозные таинства и положения веры» [21]. «Вынь бревно из глаза своего, и ты узришь соринку в глазу брата своего». Беркли с полным основанием сетовал на загадочность и непонятность того, чем занимаются математики, поскольку те никак не обосновывали и не объясняли своих действий. Беркли подверг критике многие из рассуждений Ньютона, и в частности указал на то, что в «Рассуждении о квадратуре кривых» Ньютон (обозначавший приращение через x,а не h,как это сделали мы) выполнил несколько алгебраических операций, после чего отбросил члены, содержавшие h,мотивируя это тем, будто приращение hтеперь обратилось в нуль. [Ср. равенства (3)и (4).] Поступая так, продолжал Беркли, Ньютон допустил вопиющее нарушение закона противоречия. Такого рода рассуждения в теологии были бы признаны неприемлемыми. Беркли утверждал, что первые флюксии (первые производные), по-видимому, выходят за рамки человеческого разумения, поскольку находятся за пределами конечного.
А если непостижимы первые [флюксии], то что можно сказать о вторых, третьих [производных от производных] и т.д.? Тот, кто сумеет постичь начало начал или конец концов… возможно, окажется достаточно проницательным, чтобы понять подобные вещи. Но, по моему глубокому убеждению, большинство людей не в состоянии понять их в каком бы то ни было смысле… Тому, кто сумеет превратить вторую и третью производную, думается, вряд ли стоит особо привередничать по поводу того или иного пункта в Священном писании.
Говоря об исчезновении (обращении в нуль) hи k,Беркли заметил: «Предполагая, что приращения исчезают, мы, несомненно, должны предположить, что их пропорции, выражения и все, вытекающее из их существования, исчезает вместе с ними». По поводу предложенного Ньютоном представления о производной как об отношении двух исчезающе малых величин hи k,Беркли высказался так: «Они не конечные величины, не величины бесконечно малые, не ничто. Как же не назвать их призраками покинувших нас величин?».
Столь же критически Беркли отнесся и к подходу Лейбница. На введенные Лейбницем понятия он обрушился еще в своей ранней работе «Трактат о принципах человеческого знания» (1710, переработанное издание – 1734) ([21], с. 149-248):
Некоторые из них, имеющие громкое имя, не довольствуются мнением, будто конечные линии могут быть делимы на бесконечное число частей, но утверждают далее, что каждая из этих бесконечно малых частей в свою очередь делима на бесконечное число других частей, или бесконечно малых величин второго порядка, и т.д. ad infinitum.Они утверждают, говорю я, что существуют бесконечно малые части бесконечно малых частей и т.д. без конца… Другие утверждают, что все порядки бесконечно малых величин ниже первого порядка суть ничто…
([21], с. 234.)
Критику идей Лейбница Беркли продолжил в своем «Аналитике» [«Аналитик, или Рассуждение, адресованное неверующему математику» ([21], с. 395-442)]:
Лейбниц и его последователи в их calculus differentialisбез тени сомнения сначала предполагают и затем отвергают бесконечно малые величины, что не может не заметить любой мыслящий человек, наделенный ясным умом и здравостью суждений и не относящийся к такого рода вещам с предвзятой благосклонностью,
Отношение дифференциалов, утверждал Беркли, геометрически должно означать тангенс угла наклона секущей, а не касательной. Эту ошибку математики совершают, пренебрегая высшими дифференциалами. Так, «благодаря двойной ошибке вы приходите хотя и не к науке, но все же к истине», потому что одна ошибка компенсирует другую. Неудовольствие Беркли вызвал и второй дифференциал Лейбница d(dx)– «разность величины dx,которая и сама едва различима».
«Можно ли назвать действия современных математиков, – спрашивал Беркли, имея в виду подход как Ньютона, так и Лейбница, действиями людей науки, если они с гораздо большим рвением стремятся применить свои принципы, нежели понять их?» «Во всякой другой науке, – утверждал Беркли, – люди доказывают правильность заключений, исходя из принятых ими принципов, а не принципы, исходя из заключений».
Беркли завершал свой «Аналитик» целой серией вопросов. Вот некоторые из них:
Разве математики, столь чувствительные в вопросах религии, столь же скрупулезно придирчивы в своей науке? Разве не полагаются они на авторитет, принимая многое на веру, и разве не веруют они в вещи, непостижимые для разума? Разве нет у них своих таинств и, более того, своих несовместимостей и противоречий?
Многие математики выступили с ответом на критику Беркли, и каждый из них пытался, но безуспешно, обосновать математический анализ. Наиболее значительную попытку предпринял Эйлер. Он полностью отверг геометрию как основу анализа и начал работать с функциями чисто формально, т.е. строить рассуждения, исходя из алгебраического (аналитического) представления функций. Эйлер отверг и предложенное Лейбницем понятие бесконечно малой как величины, которая меньше любого заданного числа, но все же не равна нулю. В своем сочинении «Основы дифференциального исчисления» ( Institutiones calculi differentialis,1755), классическом курсе математического анализа XVIII в., Эйлер привел следующее рассуждение:
Каждая величина, несомненно, может уменьшиться настолько, что исчезнет полностью и растает. Но бесконечно малая величина есть не что иное, как исчезающая величина, и поэтому сама равна нулю. Это полностью согласуется также с определением бесконечно малых величин, по которому эти величины должны быть меньше любого заданного числа. Ясно, что такая величина не может не быть нулем, ибо если бы она была отлична от нуля, то вопреки предположению не могла бы быть меньше самой себя.
Такие бесконечно малые, как dx(обозначение Лейбница), равны нулю, следовательно, равны нулю (dx) 2, (dx) 3и т.д., утверждал Эйлер, потому что последние принято считать бесконечно малыми более высокого порядка, чем dx.Производная dy/dx(в обозначениях Лейбница), бывшая для Лейбница отношением бесконечно малых, понимаемых в его смысле, для Эйлера, по существу, обращалась в неопределенность 0/0. Эйлер утверждал, что 0/0 может принимать много значений, так как n∙0 = 0при любом числе n,и, разделив равенство на 0, мы получим n = 0/0. Какое именно значение принимает 0/0 для вполне определенной функции, можно установить с помощью обычного метода вычисления производной. Эйлер демонстрирует это на примере функции y = x 2.Придадим переменной xприращение h(Эйлер обозначал приращение ω). Пока h,по предположению, не равно нулю. [Ср. сказанное в связи с выражениями (1)– (4).] Следовательно,
k/h= 2 x+ h.
Там, где Лейбниц считал приращение hбесконечно малым, но не равным нулю, Эйлер положил hравным нулю, после чего отношение k/h,т.е. 0/0, оказалось равным 2x.
Эйлер подчеркивал, что эти дифференциалы (предельные значения kи h) – абсолютные нули и из них нельзя извлечь ничего, кроме их отношения, которое и было вычислено в заключение и оказалось конечной величиной. В третьей главе «Основ анализа» Эйлера есть немало рассуждений такого рода. Стремясь приободрить читателя, Эйлер замечает, что понятие производной не столь уж загадочно, как обычно думают, хотя оно в глазах многих делает дифференциальное исчисление подозрительным. Разумеется, предложенное Эйлером обоснование метода нахождения производной было ничуть не более здравым, чем обоснования, предлагавшиеся Ньютоном и Лейбницем.
Формальный, некорректный подход Эйлера все же явился большим шагом вперед, ибо, избавляя математический анализ от традиционной основы – геометрии, подводил под него базу арифметики и алгебры. Этот шаг впоследствии привел к обоснованию анализа на основе понятия числа.
Наиболее претенциозная из последующих попыток заложить фундамент анализабыла предпринята в XVIII в. Лагранжем. Подобно Беркли и другим своим предшественникам, Лагранж считал, что полученные с помощью анализа правильные результаты объясняются наложением и взаимной компенсацией ошибок. Свою собственную реконструкцию анализа Лагранж изложил в книге под названием «Теория аналитических функций» (1797; 2-е изд. – 1813). {79}79
В этой книге излагался курс, который Лагранж читал студентам знаменитой парижской Политехнической школы; продолжение и дальнейшее развитие идей Лагранжа содержат учебники еще одного профессора Политехнической школы – О. Коши, о которых пойдет речь в следующей главе.
[Закрыть]Подзаголовок книги гласил: «Содержащая основные теоремы дифференциального исчисления, [доказанные] без использования бесконечно малых, исчезающих величин, пределов и флюксий, и сведенная к искусству алгебраического анализа конечных величин»(курсив М. К.).
Критикуя Ньютона, Лагранж, в частности, указывал, что, рассматривая предел отношения дуги к хорде, тот считал хорду и дугу равными не до и не после, а в момент исчезновения. В этой связи Лагранж заметил:
Такой метод чрезвычайно неудобен тем, что величины приходится рассматривать в тот самый момент, когда они, так сказать, перестают быть величинами, ибо, хотя мы всегда хорошо представляем отношения двух величин, покуда они остаются конечными, их отношение не дает уму никакого ясного и точного представления, коль скоро обе величины исчезают одновременно.
Лагранж не был удовлетворен ни бесконечно малыми величинами Лейбница, ни абсолютными нулями Эйлера, так как оба этих понятия, «хотя и правильны в действительности, все же недостаточно ясны для того, чтобы служить основанием науки, надежность выводов которой зиждется на ее очевидности».
Лагранж хотел придать математическому анализу всю строгость доказательств древних и стремился достичь желаемого путем сведения математического анализа к алгебре. В частности, Лагранж предложил использовать для строгого обоснования анализа бесконечные ряды, которые в то время было принято относить к алгебре, хотя с их обоснованием дело обстояло хуже, чем с обоснованием математического анализа. Лагранж «скромно» заметил, что его метод почему-то не пришел в голову Ньютону.
Нам нет необходимости вдаваться в подробности обоснования анализа «по Лагранжу». Помимо совершенно неудовлетворительного использования рядов Лагранж производил множество алгебраических преобразований, призванных скорее помешать читателю обнаружить немаловажное обстоятельство: отсутствие строгого определения производной. Все результаты, полученные Лагранжем, были обоснованы столь же плохо, как и результаты его предшественников. Лагранж был убежден, что ему удалось избавиться от понятия предела и построить весь анализ на основе алгебры. Несмотря на все допущенные Лагранжем ошибки, предложенный им вариант обоснования анализа имел несколько выдающихся продолжателей.
Мнение о том, что математический анализ представляет собой лишь продолжение алгебры, было подкреплено фундаментальным трехтомным трудом Сильвестра Франсуа Лакруа (1765-1843), вышедшим в 1797-1800 гг. Лакруа шел по стопам Лагранжа. В меньшей по объему однотомной работе под названием «Элементарный трактат по дифференциальному и интегральному исчислению» (1802) Лакруа использовал теорию пределов (точнее, то, что понимали под теорией пределов в начале XIX в.) – правда, по словам Лакруа, лишь для того, чтобы сэкономить место.
Некоторые английские математики начала XIX в. решили взять реванш над превосходившими их математиками из континентальной Европы. Чарлз Бэббедж (1792-1871), Джон Гершель (1792-1871) и Джордж Пикок (1791-1858), бывшие тогда выпускниками Кембриджского университета, основали Аналитическое общество и перевели краткий курс математического анализа Лакруа. {80}80
Деятельность молодых кембриджских математиков (Пикок – Бэббедж – Гершель) имела еще один аспект, не связанный с проблемами обоснования математики, но чрезвычайно важный в тот период для английской науки. Дело в том, что крайне неприятные приоритетные споры об открытии математического анализа, развернувшиеся в XVII в. между Ньютоном и Лейбницем, формально окончилась как будто бы полной победой Ньютона, не потерпевшего в результате их ни малейшего материального или морального ущерба, тогда как Лейбниц из-за этих споров умер буквально в нищете. Однако исторически победителем здесь оказался именно Лейбниц, а научным наследникам Ньютона эти беспредметные дискуссии о первенстве принесли вполне ощутимый вред. Вся континентальная Европа восприняла дифференциальное и интегральное исчисление в том обличье, которое ему придал Лейбниц – с более удобной лейбницевской символикой и терминологией ( производная и интеграл,а не флюксияи флюэнта; исчисление дифференциалов,а не моментов). Существенную роль здесь сыграла отмеченная в книге темпераментная защита Лейбницем своих позиций, а также выдающаяся научная школа Лейбница, возглавляемая братьями Якобом и Иоганном Бернулли. Напротив, в Англии из-за приоритетных соображений на систему обозначений и терминов Лейбница был буквально наложен запрет, что лишало возможности молодых английских ученых следить за достижениями своих континентальных коллег и привело к резкому отставанию английской науки. Даже возрождение английской математики в середине XIX столетия (!), предвестником которого явились названные молодые кембриджцы, было первоначально встречено на континенте с большим недоверием. И деятельность Пикока и его друзей, в частности перевод ими на английский язык «лейбницианского» по форме учебника Лакруа, ставила своей целью приблизить английскую математику к континентальной.
[Закрыть]Однако в предисловии переводчиков говорилось следующее:
Сочинение Лакруа, перевод которого предлагается вниманию публики… может рассматриваться как сокращенный вариант его фундаментального труда по дифференциальному и интегральному исчислению, хотя при доказательстве первых принципов автор пользовался методом пределов Д'Аламбера вместо наиболее правильного и естественного метода Лагранжа, который он применил в более обширном своем сочинении…
Пикок утверждал, что теория пределов неприемлема, так как она отделяет принципы дифференциального исчисления от алгебры. Гершель и Бэббедж выразили полное согласие с мнением своего коллеги.
Насущная необходимость надлежащего обоснования математического анализа остро ощущалась в конце XVIII в. всем математическим миром, и по предложению Лагранжа отделение математики Берлинской академии наук, директором которой он состоял в 1766-1878 гг., назначила в 1784 г. приз (который должен был быть вручен в 1786 г.) за лучшее решение проблемы бесконечности в математике. Объявление об условиях конкурса гласило:
Своими предложениями, всеобщим уважением и почетным титулом образцовой «точной науки» математика обязана ясности своих принципов, строгости своих доказательств и точности своих теорем.
Для обеспечения непрестанного обновления столь ценных преимуществ этой изящной области знания необходима ясная и точная теория того, что называется в математике бесконечностью.
Хорошо известно, что современная геометрия [математика] систематически использует бесконечно большие и бесконечно малыевеличины. Однако геометры античности и даже древние аналитики всячески стремились избегать всего, что приближается к бесконечности, а некоторые знаменитые аналитики современности усматривают противоречивость в самом термине бесконечная величина.
Учитывая сказанное, Академия желает получить объяснение, каким образом столь многие правильные теоремы были выведены из противоречивого предположения, вместе с формулировкой точного, ясного, короче говоря, истинно математического принципа, который был бы пригоден для замены принципа бесконечногои в то же время не делал бы проводимые на его основе исследования чрезмерно сложными или длинными. Предмет должен быть рассмотрен во всей возможной общности и со всей возможной строгостью, ясностью и простотой.
К участию в конкурсе допускались все желающие, за исключением членов Академии, Всего на рассмотрение жюри поступило двадцать три работы. Официальное решение, опубликованное после окончания работы жюри, гласило: